AP Biology Pre-Discussion Questions: Information 2- Central Dogma

Instructions:

Topic Presentation:

Textbook Reading:

Principles of Life:

OpenStax Biologu:

Biozone Pages:

Supplementary Resources:

"Crash Course: Biology" Videos:

Videos By Paul Andersen:

Part 1: DNA Replication

Questions to answer:

Things you should make sure you understand:

Part 2: Transcription

Questions to answer:

Things you should make sure you understand:

Part 3: Translation

Ouestions to answer:

Things you should make sure you understand:

Instructions:

- Open the presentation.
- Interact with it. Take notes as you wish.
- Self-Quiz 1: Answer the "Questions to answer".
- Self- Quiz 2: Make sure you understand the "Things you should make sure you understand".
- Feel free to view the "Supplementary Resources".
- Write down any other questions that you have about the material.

Topic Presentation:

click here

Note: This is a 3-part presentation

Textbook Reading:

Principles of Life:

- Part 1: Chapter 9 (section 9.2)
- Part 2: Chapter 10 (section 10.1, 10.2)

• Part 3: Chapter 9 (section 9.3), chapter 10 (section 10.3, 10.4, 10.5)

OpenStax Biology:

- Part 1: Chapter 14- Sections 14.3 14.6
- Part 2: Chapter 15- Sections 15.1 15.4
- Part 3: Chapter 15- Section 15.6

Biozone Pages:

Volume 1:

Part 1: pp. 105-111Part 2: pp. 115-116

• Part 3: pp. 112-114, 117-121

Supplementary Resources:

"Crash Course: Biology" Videos:

DNA Structure & Replication: Biology #10

DNA, Hot Pockets, & The Longest Word Ever: Biology #11

Videos By Paul Andersen:

"DNA & RNA Part 2"

"DNA Replication"

"Transcription & Translation"

"The Central Dogma"

"Genotypes and Phenotypes"

Part 1: DNA Replication

Questions to answer:

- 1. Diagram the "Central Dogma" of molecular genetics. How does it allow for DNA to serve as both the heritable molecule and code for protein sequence?
- 2. Explain the experiment conducted by Meselson and Stahl. How did the results of their experiment demonstrate the semi-conservative model of DNA replication was the accurate model?

- 3. Explain how each of the following enzymes contributes to the process of DNA replication:
 - a. helicase
 - b. single-stranded binding proteins
 - c. DNA polymerase
 - d. primase
 - e. ligase
 - f. Topisomerase/gyrase
- 4. How does replication of the leading strand differ from replication of the lagging strand? Why can't both strands of DNA be replicated in the same fashion?
- 5. Diagram the replication fork. Include:
 - a. the leading strand
 - b. the lagging strand
 - c. prime orientation of both parent strand and both daughter strands.
 - d. Replisome
 - e. Okazaki fragments
- 6. Why is telomerase necessary during the replication of eukaryotic chromosomes?

Things you should make sure you understand:

(feel free to ask questions about them in class)

- How to recognize the 5' and 3' ends of a DNA strand.
- The structural differences between free nucleotides (nucleoside tri-phosphates), and nucleotides in a nucleic acid.
- Why replication is necessary for cells, where it happens, its inputs and its outputs.
- The specific details of the process of replication.
- The mechanisms in replication that reduce the error rate.
- The major differences in replication between prokaryotes and eukaryotes.

Part 2: Transcription

Questions to answer:

- 1. How did Beadle and Tatum's work on auxotroph's suggest that metabolism was controlled by protein enzymes?
- 2. How does RNA polymerase identify where to begin transcription of a gene?
- 3. Explain the relationship between the promoter, enhancers, and transcription factors.

- 4. Diagram each of the following phases of transcription.
 - a. initiation
 - b. elongation
 - c. termination
- 5. Explain what happens during each of the following post-transcriptional modifications of eukaryotic transcripts:
 - a. splicing
 - b. 5' capping
 - c. poly adenulation.
- 6. How do eukaryotic cells utilize alternative splicing to maximize variety of gene products that they can produce?

Things you should make sure you understand:

(feel free to ask questions about them in class)

- The relationship between DNA, RNA, Protein, Cells and the Organism.
- Why transcription is necessary for cells, where it happens, its inputs and its outputs.
- The major structural differences between RNA and DNA.
- The specific details of the process of transcription.
- The major differences in transcription between prokaryotes and eukaryotes.

Part 3: Translation

Questions to answer:

- **1.** Explain the meaning of this statment: "The genetic code is punctuated, unambiguous, and redundant."
- **2.** How does the structure of a tRNA molecules enable its function?
- **3.** How does the structure of a ribosome enable its function?
- **4.** Diagram what happens during each of the following phases of translation. Include the location (A, P, or E site) of incoming tRNA molecules, incoming amino acids, the growing polypeptide chain, uncharged tRNA molecules and release factors as appropriate:
 - **a.** initiation
 - **b.** elongation
 - **c.** termination

- 5. Diagram a complete eukaryotic transcription unit. Define each part.
- **6.** Explain the effect that point mutations and frameshift mutations can have on gene products. Make sure to differentiate between:
 - a. neutral (silent) mutations
 - **b.** missense mutations
 - **c.** nonsense mutations
 - **d.** Why insertion/deletion of three bases is less deleterious than insertion/deletion of one or two bases.

Things you should make sure you understand:

(feel free to ask questions about them in class)

- How mRNA sequence dictates protein sequence.
- Why translation is necessary for cells, where it happens, its inputs and its outputs.
- How amino acids are associated and disassociated from tRNA molecules.
- The major differences in translation between prokaryotes and eukaryotes.
- How and why the meaning of the term "gene" has changed over the past 100 years.