[Public] Roadmap Proposal: Bazel + Python

tl,dr This is an external-facing roadmap proposal for improvements to Bazel to make the tool
useful to Python users.

Last updated: 2018-02-06
Authors: davidstanke@google.com, stewartr@google.com

Roadmap
Phase 1
Bazel buil X les from pure Python (2 or n Linux, m nd Window
Bazel builds executables with C extension modules on Linux a
Bazel allows PyP| dependencies to be included in a build
Bazel output can target Docker containers
Bazel Python rtis mov f Bazel core and into rul hon
Phase 2
Future
Roadmap
Phase 1

Objective: Bazel supports standard Python build use cases (“Bazel works for Python developers”)

Bazel can build executables from pure Python (2 or 3) code on Linux, macOS and Windows
e Feedback:
o the current rules are buggy, especially regarding some Python 3 assumptions

m Various bazel tooling expects to run with a python 2 interpreter, but sometimes decides
to use whatever py_runtime has been given. This breaks if said runtime is python 3.

m Sometimes you do need to run tooling under the appropriate runtime (such as when
fetching packages with pip, since the wheel you get is dependent upon the python
version you are using). This doesn't happen in the right places, which is the crux of
https://github.com/bazelbuild/rules_python/issues/37

Bazel users would like to ship the toolchain through Bazel (i.e., bundle a non-system interpreter)
Not realistic for everything to be rooted at tree root. Rooting issue seems to be causing issues
where bazel run != bazel test.
o Testing?
e Proposal:
O

Bazel can build executables with C extension modules on Linux and macOS
e Feedback: Bazel can't build C extension modules. Many third party libraries use C extension modules
and can't be built without this support.
e Proposal:
o Operation Purple Boa

e See: https://groups.google.com/forum/#!topic/bazel-sig-python/_PfMBUkwulc

https://github.com/bazelbuild/rules_python/issues/62
https://docs.google.com/document/d/1dQjbbLEJqxUIJWmH5sIZAv-_emnKksDI-VCG1v86dWA/edit
https://groups.google.com/forum/#!topic/bazel-sig-python/_PfMBUkwulc

Bazel allows PyPl dependencies to be included in a build
e Feedback: the current rules are buggy

e |[ssues:
o Issue
o |ssue
o Issue: dealing with “extra”
o Issue: hard-coded pygen, doesn’t use pyrun
o Issue: doesn't use cache (but is cache hermetic?)

o Issue: needs to do a better job of showing progress (since these can take many minutes)
e Proposals:
o dududko@gmail.com proposal: https://github.com/bazelbuild/rules_python/pull/61
o Python builds should happen in a “clean” environment: dependencies will need to be declared
explicitly; system-installed libraries should not be importable into Bazel builds
Bazel supports requirements.txt
Ideally, we should support three use cases:
i. Runthetests
i. Runabinary locally
iii. Build an artifact and throw it to the deployment system
o See: https://groups.google.com/forum/#!topic/bazel-sig-python/_LzsWf8vxak

Bazel output can target Docker containers
e Feedback:
o The current rules are buggy (Python 3 bug)
o Users would like to build a Docker image from macOS
o Bazel can output to a Docker container
m Request: an easier way to add a py_library to a container

e Proposal:
O

Bazel Python support is moved out of Bazel core and into rules_python
e Feedback: Bazel Python users should not have to investigate Bazel's core Java code to understand how
rules are working
e Response: It is Google's intent to have language-specific rules live in a language-specific repository
e Proposals:
o all new/updated rules will live in rules_python
o existing rules will be migrated to rules_python over time

Bazel documentation is improved for Python
e Feedback:
o It's not immediately obvious that Bazel supports Python
o Please show how to include a PyPI dependency in a build
e Proposals:
o Bazel.build doesn’t highlights Python support and features Python-specific documentation
o An example repository showcases pure Python and C extension module examples

https://github.com/bazelbuild/rules_python/issues/14
https://github.com/bazelbuild/rules_python/issues/49
https://github.com/bazelbuild/rules_python/issues/56
mailto:dududko@gmail.com
https://github.com/bazelbuild/rules_python/pull/61
https://github.com/bazelbuild/rules_docker/issues/260
https://groups.google.com/forum/#!topic/bazel-sig-python/SeFh79UA4YQ

Phase 2
Objective: Bazel supports common Python ecosystem tools (“Bazel is nice to use for Python developers”)

Key results
e Features
o Bazel builds can use and include non-host Python interpreters
o Bazel can package for, and publish to, PyPI
o Bazel can output multiple Python binaries (e.g., by specifying python2 and python3 in something
like py_runtime())
Bazel produces manylinux{1,2} binaries, Windows binaries, and macOS binaries
Bazel can build CLIF, Protocol Buffers, gRPC, Google Cloud Client Libraries (some of these
potentially after phase 2)
e Integrations
o Bazel supports the following Python static analysis tools:
m Coverage
m Pytest
e Bonus for user-configurable test runner (as input to build)
e Bonus for support of pytest’s coverage plugin.
Pyflakes
Pylint
Pycodestyle
Pydocstyle
Pytype (potentially phase 3)

mypy

For additional consideration
The list of objectives beyond phase 2 is still to be defined. ltems under consideration include:
e Feature parity for Python developers who use Windows
e Hermetic PAR files
o Q:isthis solved via non-host Python interpreters? Or is there additional work?
Better cross-compilation support
Make native py_library rules accessible from Skylark (evan.jones@bluecore.com)

o Notably, the import attribute is not accessible. This would make it possible for Skylark rules to
depend on py_library "correctly” (maybe). This might also be completely useless, if the "path
forward" is "get rid of the native py_library rules". However, | suspect there may be a very long
transition period where both sets of rules exist, so this would make it possible to be compatible:
https://github.com/bazelbuild/bazel/issues/2617

e Bazel REPL mode

o "l want the same as pants repl or sbt console or lein repl or stack ghci which is a language level
repl for interacting with the code you have written.” (this is ~attaching stdin to a bazel run
process)

o PEX supports "interpreter" binaries which act like a Python interpreter with the given
dependencies: e.g. with no args: interactive prompt; with an arg: run that script. Its very useful to
provide a "packaged environment" that can be used with arbitrary scripts, or poked at for
debugging. https://pex.readthedocs.io/en/stable/buildingpex.html#specifying-entry-points

mailto:evan.jones@bluecore.com
https://github.com/bazelbuild/bazel/issues/1394
https://github.com/bazelbuild/bazel/issues/1394
https://pex.readthedocs.io/en/stable/buildingpex.html#specifying-entry-points

e |DE integration, e.g. PyCharm

	[Public] Roadmap Proposal: Bazel + Python
	Roadmap
	Phase 1
	Bazel can build executables from pure Python (2 or 3) code on Linux, macOS and Windows
	Bazel can build executables with C extension modules on Linux and macOS
	Bazel allows PyPI dependencies to be included in a build
	Bazel output can target Docker containers
	Bazel Python support is moved out of Bazel core and into rules_python
	Bazel documentation is improved for Python

	Phase 2
	For additional consideration

