Fuzzy Cantor set
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The Cantor set is a good example of an elementary fractal. The object first
used to demonstrate fractal dimensions is actually the Cantor set. The process
of generating this fractal is very simple. The set is generated by the iteration of
a single operation on a line of unit length. In each iteration, the middle third
from each lines segment of the previous set is simply removed. As the number
of iterations increases, the number of separate line segments tends to infinity
while the length of each segment approaches zero. Based on the construction
of the Cantor set, we generalized this one-dimensional idea to a length other
than 1/3, excluding the degenerate cases of 0 and 1, in the case of Sugeno
fuzzy set.

In set theory as Cantor defined and Zermelo and Fraenkel axiomatized, an
object is either a member of a set or not. In fuzzy set theory this condition was
relaxed by Lotfi A. Zadeh so an object has a degree of membership in a set, a
number between 0 and 1. For example, the degree of membership of a person
in the set of "tall people" is more flexible than a simple yes or no answer and
can be a real number such as 0.70.

The fuzzy theory is an appropriate tool for describing those phenomena that
occur in the interaction of particles and the forces of nature because this theory
provides a strict mathematical framework in which vague conceptual
phenomena can be precisely studied. Therefore, fuzzy theory can be merged
with quantum theory for describing its concepts which are difficult to explain
by conventional logic.

The goal of this paper is to help to close the gap between quantum theory
concepts and the connections with string theory for nucleons, protons and
neutrons having quarks as fundamental components and leptons (electrons
muons , neutrinos etc...) .

1. About Fuzzy Sets Theory

A fuzzy sunset A of a classical set U is characterized by its membership
function
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¢,:U—[0,1]

If %4 Is the set 0.1 , then we have a crisp subset. [1-3]

Definition of ¢ -level

a [0,1]

Let A be a subset of U and ,then the @ level of the fuzzy subset A

is the classical subset of U that is defined as
[4] ={xeU:9,(x)2a}, for @ e[0.1]

We are interested in on the fuzzy subsets 4 of R so their @ levels are given
by

[A]a — [afa’a a] , a,sa, , for each “ E(O’l] . We use the symbol R, to
denote the class of these fuzzy subsets

Definition of Fuzzy measure,

Let A beasigmaO - algebra of a classical set €2 omega. A map

piA—o [O’Oo) is called a fuzzy measure such satisfies:

a) ) =0 andb)if 4B<Aand 4< B then H(A=n(4)

The definition of measure of Sugeno (1974) [4] considered the boundary
conditions “#&»=1in a). that is a normalization of the fuzzy measure.

Definition of Lebesgue measure,

Let 4€%0 gng @€ [0.1] . The usual Lebesgue “(D of the & -level of 4 is
given by

u(4) )=a,-a,

The usual Lebesgue measure is a fuzzy measure (Roman, Flores) [5.¢] .



Definition of Sugeno integral

Let # be a fuzzy measure on O%-2) | If SEF' ) ang dex , then the

Sugeno integral of / on 4 with respect to the fuzzy normalized measure *

. The Sugeno integral is given by

jfdu=ag0[aw(,4m{f2a})] ey
A B €

9 9

0,0]

Where v, ~ denote the operations sup and inf on [ , respectively. If

A=R then

[fau=]fap=v[anp{f>a}]
i ) 4)

Remark. Consider the distribution function F associated to / :
F(a)=p(AR {f >a}) (AR {f>a})>a

u(Al{f>a})<a

, then, due to the prepositions and

we have

F(oc)=J‘fd/,t=oz
4 (5)

Thus, from computational point of view the fuzzy integral can be calculated
solving the equation (@)=
2. The fuzzy cantor set

In connection with our problem, is important to observe that, physically a
point particle in space closely resembles a fuzzy point in Zadeh fuzzy set

theory [7] . In the usual set theory, a point either belongs or does not belong to
a subset. But according to Zadeh’ fuzzy set theory a point can be a member of

a subset with probabilistic or uncertain feature. a fuzzy point Piinthe set Z is

a fuzzy subset with a membership function: Hy, ()= for ¥ orx=0



otherwise, where 0<x<1_where a fuzzy point P is said to have support %o

b Mo (x)>0

and ¥ values. The point in the set Z at whic constitute the

support of the fuzzy point.

Here, we need a function S with f(O=0 7(1)=0 5p4 Jon ) =1 g0 \ye
choose /() =4x(1=x) . this function fully satisfies the postulates of the fuzzy

theory indicated on this section 1.

In this context we define the function f(X)=0,:Q> [0’1]

Jx)=4x(1=x) . f(*) which must be a membership of a fuzzy subset F of

given by

whose @~ levels are given by

1-V1-a 1+\/§}

[F]a:{xem :4x(1—x)2a}:{ 5 5

If M is the usual Lebesgue measure on Q=0 | then the level function £ (@) s

1+\/1—a 1—\/1—05
F@=u(Fl)= 5 5 V=@

Thus, the Sugeno integral is

Ifdu: sup [a/\mJ

o ae[O,l]

Since (@) has a decreasing function part, we have

J5-1

[fdp=0=F() === —=0.61803
Q

(6)

Which gives the fixed point of # (@) This numerical result between [0.1] is the

most likely for Heisenberg's principle under the fuzzy approach



To construct this set (denoted by C’), we begin with the interval [0.1] and

2
¢ ’a) , from the closed interval [0.1] . The set of points

¢’ =[0.a 0 [a.1]

remove the open set (

S
that remain after this first step will be called G , that 1s, .In

the second step, we remove the middle of the two segments of o , be what
remains after the first two steps etc... Repeating this process, the limiting set
G, , called by us the Cantor-Sugeno set, so we have
a(l-a)+2a’(1-a)+2*a’(1-a)+2a’ (1-a) +...

That is

a(l-a)[1+20” +2%a* +...|=a(l-a) Yy (1+2'a’") = §

limS=a(l-a)/(1-2a*)—>1
n—»w ( ) ( ) When n —» 0

That is, this set that we can call Sugeno — Cantor set, C* | also, as the original

Cantor set C, C° is not empty and it is uncountable.

N
G,

==

CS =
Let n

Where

cs=[01] € =[0.07]0[a.1]

And

CS>CS5>CS.. .CF = (2a°)"

Ing

n32(a*) <en=|——mo—
@) ‘an(az)”

S
€ is null. To show this we choose any ¢€>0 and

C® is uncountable



0,1

Each * <™l can be expressed as follows

_ = 2\n
x=Yb,(a®) b, ={0,1,2...}

n=1 Where n X = (0, bl’b25b3"')a2

and

1=>"2(a?)" =(0,22222....) ,
n=1

5 s . = = S .
G does not have x° with %=1 or =1 5o xeC" iff Vb, €10,2}

a(l-a)

We compute the fractal dimension of the Cantor Sugeno middle- set

S
or Hausdorff dimension of € ,

DimC® =lim,,, n2" /In(1/a’) =2/Ina* =0.72

Which be compared with the original Cantor set with Hausdorff dimensions of
instead of In2/In3 = 0.6309

The standard In measure theory, a branch of mathematics, is the Lebesgue
measure, is the way of assigning a measure to subsets of £
dimensional Euclidean space. For k =1, 2, or 3, it coincides with measure

of length, area, or volume respectively.

Now we consider the value of @ with respect the value 1/3 of the Cantor set.

M} =1

In the context of the Lebesque measure defined as ~ 4 where

a(l-a)=0.6180x0.382=0.236 ,14 1/3 is the interval removed for the first

Here,
N -1 — ~
time divided by 1/3 , so that a=0.708 M;=1-a=~03

This fuzzy set is between the Cantor set and the Smith—Volterra—Cantor set
is topologically equivalent to the middle-thirds Cantor set.


https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Length
https://en.wikipedia.org/wiki/Area
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Homeomorphism
https://en.wikipedia.org/wiki/Cantor_set

Also, the quantum wave functions ¥ (¥) of subatomic particles (as leptons;
electrons muons, baryons like the quark’s family with spin 1/2, intergalactic

massive photons or primordial black hole [8.9] ), are normalized like

JuGow = (dx=1

When we construct a Cantor set, whether deterministic or fuzzy, we end up
with two Cantor sets, the zero set and the empty set, the former consists of
infinite points, and the latter with space -time with Compton wavelength [],
These two Cantor sets are extremely important for understanding the chiral
standard theory of particles []. The zero set represents the quantum particle
and its Hausdorff dimension is (0.28) . The empty set models the quantum
wave but it also models quantum space-time itself [], its Hausdorff dimension
1s 0.72.
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Chiral non local Maxwell Equations and Lorentz gauge

Theory predicts that the Higgs boson lasts only a short time and decays into
various types of elementary particles. Until now, their decays into different
gauge bosons (elementary particles that carry force) had been correctly
established. The other family of particles, the fermions, make up matter.
According to the standard model of particle physics, fermions (such as tau
particles, electrons, muons, and quarks) acquire mass in the same way as
bosons, through the Brout-Englert-Higgs mechanism. Therefore, the Higgs
boson could decay directly into bosons or fermions.
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The wave equations for F and V are
) A ) A A A
VIF +0" e F =—pty (J + BV xJ )
VIV +o’ueV =-ple,

A A
] (/+BVxJ)=0

A n
VF+o’ue,F =o'/’ =k



R g0 W W W i B
VxD=-—D, VxH=——H, VXE=-—F, VxB=——B,
If 2p 2B = 2p 2p
— ENBNHND
M 1 [
VxF=——F,
2pB

Here we see the Lorentz equation
W
V-F+iouel =0

Non local Maxwell Equations with E=iB and the chiral electron
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From here we obtain the gauge Lorentz and the wave equation for 4
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Here we can obtain the electron equation derived from the electromagnetic field.
There exists a physical equivalency between Dirac and Maxwell theories which can be
stated as follows. It is well known that Lorentz’ equation is the Lorentz invariant
formed by taking the scalar product of the four-gradient and the electromagnetic
four-potential,

N
(lg Vj (D, A) V. A—igdb 0
c ot c* ot

The scalar and vector potential ca be written in the form of carrier wave expansions
under the chiral approach

w . w 1§y
D = D(r,1)e" A=0,00

Where we use the Pauli matrices. Here the zitterbewegung motion of the electron is
absent so the resultant equation is

(6,E-0co p)P=mc’c,d

An electromagnetic contribution to the mass of the electron due to the quantum
radiation field associated with its motion is a well-known concept in QED. Indeed the
carrier-wave frequency of the electron's four-potential [] is equal to

mc® /1 , which is the high frequency cut off for the quantum radiation field

assumed in QED atomic structure calculations. The present derivation of Dirac’s
equation suggests that the total mass of the electron is electromagnetic in nature. This
result is consistent with a previous result in which the charge of the electron was



derived from Maxwell’s equations.

Velocity Gauge of electromagnetic theory and the dark energy

Here, it is shown that the Lorentz and coulomb gauges are limiting cases of the velocity
gauge. The free -space wave equations for the potential fields from the Maxwell’equations
are:
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In order to separate these coupled equations a gauge must be chosen. The Lorentz gauge is
i
V-A- izg =0
c” ot
And the Coulomb gauge is
V-A=0
Here we define the velocity gauge
10
u- ot

Ifu = ¢ we have the Lorentz gauge and if ¥ = % | the Coulomb gauge is obtained.
The wave equations (1) and (2) are generalized to
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Here we can see that the propagation speed of the vector potential is ¢ while the

propagation is ¥ .
Taking the gradient of (3) and the partial time derivative of (4) we get

, 1 6°
u- ot (5)
N 2 5 K 2
VA A () v
ot ¢ ot ot ¢ u ot (6)

Adding equations (5) and (6) we have

(7
X o U
E=——A4-VO

Note that all terms containing ¥ > € disappear. Now using ot in (7)

We obtain

K 2 [f
V°E - iza—z E=0
c” ot

The wave equation for the electric field, showing propagation at speed c.
The scalar potential @ with ¥ > ¢  has produced a vector potential as required

physically by the measured electric field £ propagating at c. It is easy to show that

the magnetic field propagates at c. Taking the curl of (4), the wave equation for 4
in free space
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But B=Vx4 and VXVO =0 g5 the wave equation for B is
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