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The Cantor set is a good example of an elementary fractal. The object first 
used to demonstrate fractal dimensions is actually the Cantor set. The process 
of generating this fractal is very simple. The set is generated by the iteration of 
a single operation on a line of unit length. In each iteration, the middle third 
from each lines segment of the previous set is simply removed. As the number 
of iterations increases, the number of separate line segments tends to infinity 
while the length of each segment approaches zero. Based on the construction 
of the Cantor set, we generalized this one-dimensional idea to a length other 
than 1/3, excluding the degenerate cases of 0 and 1, in the case of Sugeno 
fuzzy set.  

In set theory as Cantor defined and Zermelo and Fraenkel axiomatized, an 
object is either a member of a set or not. In fuzzy set theory this condition was 
relaxed by Lotfi A. Zadeh so an object has a degree of membership in a set, a 
number between 0 and 1. For example, the degree of membership of a person 
in the set of "tall people" is more flexible than a simple yes or no answer and 
can be a real number such as 0.70. 

The fuzzy theory is an appropriate tool for describing those phenomena that 
occur in the interaction of particles and the forces of nature because this theory 
provides a strict mathematical framework in which vague conceptual 
phenomena can be precisely studied. Therefore, fuzzy theory can be merged 
with quantum theory for describing its concepts which are difficult to explain 
by conventional logic. 
The goal of this paper is to help to close the gap between quantum theory 
concepts and the connections with string theory for nucleons, protons and 
neutrons having quarks as fundamental components and leptons  (electrons 
muons , neutrinos etc…) . 

1 . About Fuzzy Sets Theory 
 
A fuzzy sunset A of a classical set U is characterized by its membership 
function 
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If    Is the set  , then we have a crisp subset.  

Definition of -level 
 

Let A be a subset of  and , then the   level of the fuzzy subset A 

is the classical subset of   that is defined as 

for  

We are interested in on the fuzzy subsets  of   so their levels are given 
by  

= , ,  for each . We use the symbol  to 
denote the class of these fuzzy subsets 

Definition of Fuzzy measure,  

Let  be a sigma - algebra of a classical set  omega. A map 

is called a fuzzy measure such satisfies: 

a)  and b) if and then  

The definition of measure of Sugeno (1974)  considered the boundary 

conditions in a). that is a normalization of the fuzzy measure. 

 Definition of Lebesgue measure,  

Let  and . The usual Lebesgue of the -level of  is 
given by 

 

The usual Lebesgue measure is a fuzzy measure (Roman, Flores) . 



Definition of Sugeno integral 

Let  be a fuzzy measure on  . If and  , then the 

Sugeno integral of  on  with respect to the fuzzy normalized measure 
. The Sugeno integral is given by  

,  , 

Where , denote the operations sup and inf on , respectively. If 

then  

  (4) 

Remark. Consider the distribution function associated to :

, then, due to the prepositions  and 

we have  

                         (5) 

Thus, from computational point of view the fuzzy integral can be calculated 

solving the equation . 

2. The fuzzy cantor set 

In connection with our problem, is important to observe that, physically a 
point particle in space closely resembles a fuzzy point in Zadeh fuzzy set 

theory . In the usual set theory, a point either belongs or does not belong to 
a subset. But according to Zadeh’ fuzzy set theory a point can be a member of 

a subset with probabilistic or uncertain feature. a fuzzy point in the set  is 

a fuzzy subset with a membership function:   for  or



otherwise, where , where a fuzzy point  is said to have support  

and  values. The point in the set  at which   constitute the 
support of the fuzzy point. 

Here, we need a function with ,  and  so we 

choose ; this function fully satisfies the postulates of the fuzzy 
theory indicated on this section 1. 

In this context we define the function given by 

 ;  which must be a membership of a fuzzy subset  of 

whose levels are given by  

 

If is the usual Lebesgue measure on  , then the level function is 

 

Thus, the Sugeno integral is  

 

Since has a decreasing function part, we have  

          (6) 

 

Which gives the fixed point of . This numerical result between is the 
most likely for Heisenberg's principle under the fuzzy approach  



To construct this set (denoted by ), we begin with the interval  and 

remove the open set , from the closed interval  . The set of points 

that remain after this first step will be called , that is, . In 

the second step, we remove the middle of the two segments of , be what 
remains after the first two steps etc... Repeating this process, the limiting set 

 , called by us the Cantor-Sugeno set, so we have 

 

That is 

 

when  

That is, this set that we can call  Sugeno – Cantor set, ,  also, as the original 

Cantor set ,  is not empty and it is uncountable. 

Let  

Where 

, , …….. 

And 

 

is null. To show this we choose any , and  

is uncountable 



Each can be expressed as follows 

 where and  

 

does not have  with  or  so iff  

We compute the fractal dimension of the Cantor Sugeno middle-  set 

or Hausdorff dimension of ,  

 

Which be compared with the original Cantor set with Hausdorff dimensions of 
instead of ln2/ln3 = 0.6309 

The standard In measure theory, a branch of mathematics, is the Lebesgue 

measure,  is the  way of assigning a measure to subsets of k  

dimensional Euclidean space. For k = 1, 2, or 3, it coincides with measure 

of length, area, or volume respectively. 

Now we consider the value of  with respect the value 1/3 of the Cantor set. 

In the context of the Lebesque measure defined as , where  

 

Here,  and 1/3 is the interval removed for the first 

time divided by 1/3 , so that  . 

This fuzzy set is between the Cantor set and  the Smith–Volterra–Cantor set 
is topologically equivalent to the middle-thirds Cantor set. 
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Also, the quantum wave functions of subatomic particles (as leptons; 
electrons muons, baryons like the quark’s family with spin 1/2, intergalactic 

massive photons or primordial black hole ), are normalized like

.   

 

When we construct a Cantor set, whether deterministic or fuzzy, we end up 
with two Cantor sets, the zero set and the empty set, the former consists of 
infinite points, and the latter with space -time with Compton wavelength [], 
These two Cantor sets are extremely important for understanding the chiral 
standard theory of particles []. The zero set represents the quantum particle 
and its Hausdorff dimension is (0.28) . The empty set models the quantum 
wave but it also models quantum space-time itself [], its Hausdorff dimension 
is 0.72. 
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Chiral non local Maxwell Equations and Lorentz gauge 
 
Theory predicts that the Higgs boson lasts only a short time and decays into 
various types of elementary particles. Until now, their decays into different 
gauge bosons (elementary particles that carry force) had been correctly 
established. The other family of particles, the fermions, make up matter. 
According to the standard model of particle physics, fermions (such as tau 
particles, electrons, muons, and quarks) acquire mass in the same way as 
bosons, through the Brout-Englert-Higgs mechanism. Therefore, the Higgs 
boson could decay directly into bosons or fermions. 
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​ (Lorentz gauge) 
The wave equations for F and V are 
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If  ​      

 
 

 
Here we see the Lorentz equation 

 
 
 

Non local Maxwell Equations with and the chiral electron 
 
 

 

 

 

 

 

 

 

 

 

If  then 



 
 
In terms of  
 

 and  
 
 
 
 

 
 
 

From here we obtain the gauge Lorentz and the wave equation for  
 

 
And  

 
Here we can obtain the electron equation derived from the electromagnetic field. 
There exists a physical equivalency between Dirac and Maxwell theories which can be  
stated as follows. It is well known that Lorentz’ equation is the Lorentz invariant 
formed by taking the scalar product of the four-gradient and the electromagnetic 
four-potential, 

 
The scalar and vector potential ca be written in the form of carrier wave expansions 
under the chiral approach 

,       
Where we use the Pauli matrices. Here the zitterbewegung motion of the electron is 
 absent so the resultant equation is 

 
An electromagnetic contribution to the mass of the electron due to the quantum 
 radiation field associated with its motion is a well-known concept in QED. Indeed the 
 carrier-wave frequency of the electron's four-potential [] is equal to  

, which is the high frequency cut off for the quantum radiation field 
 assumed in QED atomic structure calculations. The present derivation of Dirac’s  
equation suggests that the total mass of the electron is electromagnetic in nature. This 
 result is consistent with a previous result in which the charge of the electron was  



derived from Maxwell’s equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Velocity Gauge of electromagnetic theory and the dark energy 
 
 
Here, it is shown that the Lorentz and coulomb gauges are limiting cases of the velocity 
gauge. The free -space wave equations for the potential fields from the Maxwell’equations 
are: 
 
 

                                                          (1) 

                                (2) 
In order to separate these coupled equations a gauge must be chosen. The Lorentz gauge is  
 

 
And the Coulomb gauge is  
 

 
Here we define the velocity gauge  

 

If  we have the Lorentz gauge and if , the Coulomb gauge is obtained. 𝑢 = 𝑐
The wave equations (1) and (2) are generalized to 



​ ​ ​ ​ ​ ​ (3) 

​ ​ ​ ​ (4) 

Here we can see that the propagation speed of the vector potential is  while the  

propagation is  . 
Taking the gradient of (3) and the partial time derivative of (4) we get 
 

​ ​ ​ ​ ​ (5) 

​ ​ ​ (6) 
Adding equations (5) and (6) we have 
 

​ ​ ​ (7) 

Note that all terms containing disappear. Now using  in (7)  
We obtain 
 

 
The wave equation for the electric field, showing propagation at speed c. 

The scalar potential with , has produced a vector potential as required   

physically by the measured electric field  propagating at c. It is easy to show that  

the magnetic field propagates at c.  Taking the curl of (4), the wave equation for  
in free space   
​  

 

But , and , so the wave equation for is 

 
 
 
 



 
 


