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Introduction 

 

The ever-increasing global population demands more food, and with limited supply of crops, the 

agricultural industry needs a revolution to fulfill the demands. Precision agriculture is nowadays the name 

given to technological developments for assessing and responding to local variations and emergencies in 

crop health on farms. It involves collecting, interpreting and acting on data which has potential to be 

automatized with robotic systems. Satellites or robots (especially UAVs or ground robots) are used to 

collect such images over farm lands. With the help of such data, farmers can take smart decisions and act 

ahead of time. Since agricultural fields have complex topologies and different constraints, the problem of 

optimized path routing of these swarms is important to be tackled. A current research area is improving 

this automation, in particular managing robot swarms for precision agriculture. 

 



This problem statement could be mapped to the Multi-agent pathfinding domain.  

 

Multi-agent pathfinding is to find the paths for multiple agents from their current locations to their target 

locations without colliding with each other, while at the same time optimizing a cost function, such as the 

sum of the path lengths of all agents. It is a generalization of pathfinding. These path-planning problems 

are NP-hard. This means that the solution space grows very rapidly with the problem size, and there is no 

efficient algorithm for finding an exact optimal solution. Therefore in general it is best to search for an 

approximate best solution. At present, there exist several algorithms for multi-agent path planning 

problems, like the Nearest Neighbor Algorithm, Ant Colony Optimization, Conflict Based Search, A*, 

Bellman-Held-Karp, etc. However, such algorithms are typically incomplete; in other words, not proven 

to produce a solution within polynomial time. We plan to explain and use the Conflict Based Search 

algorithm to solve the Multi-agent path-finding problem.  

 

Problem Modelling 

 

The swarm agents used can be Unmanned Aerial Vehicles (UAVs) or Ground Robots. To formulate the 

problem, we need to keep in mind that ground robots are subject to facing obstacles in their path, whereas 

UAVs are not. Therefore,  in general, it is best to search in a grid world with obstacles (for ground robots), 

so that it can be easily generalized to a no-object continuous world model (UAVs). ​

 

 
Continuous World vs Grid world with Obstacles​

Black squares represent trees, black round labels represent crops in a line, while blue labels in the left bottom of the field represent the agent’s initial position. 



Each point on the 2D plane has a unique position (x, y). Agents are modeled as point particles too. Their 

state is given by their current 2D position (x, y) and their linear velocity υ, which is uniform for all agents. 

The agents always started at position (0, 0), where they had to return afterward. Each state is defined as 

the agent’s location (x, y) at some point in time t. 

 

Some of the following assumptions were made to further confine the scope of the problem: 

 

1. Number of agents: One up to five agents can be employed. 

2. Agent types: There is only one type of agent, i.e. ground robot. 

3. Origin: The agents start at a common location. 

4. Destination: All agents must return to their start locations. 

5. Scenario: The field layout and Points of Interest (POI) do not change, which is typical for an 

agricultural field on a typical day or even week. 

6. Observability: Global, i.e. the field layout and all the POIs are known in advance. 

7. Space: Agents can move freely in a two-dimensional space. 

8. Interactions: The time needed for performing agriculture-related tasks at each interest point (e.g. 

pruning, spraying, crop collection, taking photos, etc.) is ignored. Interactions between agents (i.e. 

collisions) are also ignored. 

 

Now, we shall briefly look at the Conflict Based Search (CBS) algorithm. 

 

Conflict-Based Search (CBS) Algorithm 

 

CBS is a two-level algorithm that converts the problem into the single ‘joint agent’ model. At the high 

level, a search is performed on a Conflict Tree (CT) which is a tree based on conflicts between individual 

agents. Each node in the CT represents a set of constraints on the motion of the agents. At the low level, 

fast single-agent searches are performed to satisfy the constraints imposed by the high-level CT node. In 

many cases, this two-level formulation enables CBS to examine fewer states than A* while still 

maintaining optimality. Single-agent pathfinding is the problem of finding a path between two vertices in 

a graph. Solving pathfinding problems optimally is commonly done with search algorithms based on the 

A* algorithm. Such algorithms perform a best-first search that is guided by f(n) = g(n) + h(n), where g(n) 

is the cost of the shortest known path from the start state to state n and h(n) is a heuristic function 

estimating the cost from n to the nearest goal state. If the heuristic function h is admissible, meaning that 



it never overestimates the shortest path from n to the goal, then A* (and other algorithms that are guided 

by the same cost function) are guaranteed to find an optimal path from the start state to a goal state, if one 

exists.  

 

The following definitions will be used in our remaining discussion: 

 

• We use the term path only in the context of a single agent and use the term solution to denote a set of k 

paths for the given set of k agents.  

• A constraint is a tuple  where the agent  is prohibited from occupying vertex v at time step t.  (𝑎
𝑖
, 𝑣, 𝑡) 𝑎

𝑖

During the course of the algorithm, agents will be associated with constraints. A consistent path for agent 

ai is a path that satisfies all its constraints. Likewise, a consistent solution is a solution that is made up of 

paths, such that the path for any agent  is consistent with the constraints of .  𝑎
𝑖

𝑎
𝑖

• A conflict is a tuple  where agent ai and agent aj occupy the vertex v at time point t. A  (𝑎
𝑖
, 𝑎

𝑗
, 𝑣, 𝑡)

solution (of k paths) is valid if all its paths have no conflicts. A consistent solution can be invalid if, 

despite the fact that the individual paths are consistent with the constraints associated with their agents, 

these paths still have conflicts.  

 

The key idea of CBS is to grow a set of constraints and find paths that are consistent with these 

constraints. If these paths have conflicts and are thus invalid, the conflicts are resolved by adding new 

constraints. CBS works on two levels. At the high level, conflicts are found and constraints are added. 

The low level finds paths for individual agents that are consistent with the new constraints.  

Next, we describe each part of this process in more detail. 

 
The Constraint Tree (CT) 

 
At the high level, CBS searches for a tree called the constraint tree (CT). Each node N in the CT consists 

of : 

 

1. A set of constraints ( ). Each of these constraints belongs to a single agent. The root of the 𝑁
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

CT contains an empty set of constraints. The child of a node in the CT inherits the constraints of the 

parent and adds one new constraint for one agent.  



2. A solution ( ), a set of k paths, and one path for each agent. The path for the agent  must be 𝑁
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑎
𝑖

consistent with the constraints of . Such paths are found by the low-level search.  𝑎
𝑖

3. The total cost ( ) of the current solution (summed over all the single-agent path costs). This cost is 𝑁
𝑐𝑜𝑠𝑡

referred to as the f-value of node N. 

 

Node N in the CT is a goal node when N’s solution is valid, i.e., the set of paths for all agents has no 

conflicts. The high level performs a best-first search on the CT where nodes are ordered by their costs. In 

our implementation, ties are broken in favor of CT nodes whose associated solution contains fewer 

conflicts. Further ties were broken in a FIFO manner. 

 

 

Processing a node in the CT 

 

Given the list of constraints for node N of the CT, the low-level search is invoked. The low-level search 

(described in detail below) returns one shortest path for each agent, , that is consistent with all the 𝑎
𝑖

constraints associated with  in node N. Once a consistent path has been found for each agent (with 𝑎
𝑖

respect to its own constraints) these paths are then validated with respect to the other agents. The 

validation is performed by iterating through all time steps and matching the locations reserved by all 

agents. If no two agents plan to be at the same location at the same time, this CT node N is declared as the 

goal node, and the current solution ( ) that contains this set of paths is returned. If, however, while 𝑁
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

performing the validation, a conflict  is found for two or more agents  and , the 𝐶 =  (𝑎
𝑖
, 𝑎

𝑗
, 𝑣, 𝑡) 𝑎

𝑖
𝑎

𝑗

validation halts and the node is declared a non-goal node. 

 

Resolving a conflict  

 

Given a non-goal CT node N whose solution  includes a conflict  we know that 𝑁
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐶
𝑛
 =  (𝑎

𝑖
, 𝑎

𝑗
, 𝑣, 𝑡)

in any valid solution, at most one of the conflicting agents (  and ) may occupy vertex v at time t. 𝑎
𝑖

𝑎
𝑗

Therefore, at least one of the constraints  or  must be added to the set of constraints in (𝑎
𝑖
, 𝑣, 𝑡) (𝑎

𝑗
, 𝑣, 𝑡)

. To guarantee optimality, both possibilities are examined and node N is split into two children. 𝑁
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Both children inherit the set of constraints from N. The left child resolves the conflict by adding the 



constraint  and the right child adds the constraint . Note that for a given CT node N, one (𝑎
𝑖
, 𝑣, 𝑡) (𝑎

𝑗
, 𝑣, 𝑡)

does not have to save all its cumulative constraints. Instead, it can save only its latest constraint and 

extract the other constraints by traversing the path from N to the root via its ancestors. Similarly, with the 

exception of the root node, the low-level search should only be performed for agent  which is associated 𝑎
𝑖

with the newly added constraint. The paths of other agents remain the same as no new constraints are 

added for them. In conflicts of k > 2 agents, it may be the case that while performing the validation 

between the different paths a k-agent conflict is found for k > 2. There are two ways to handle such 

k-agent conflicts. We can generate k children, each of which adds a constraint to k−1 agents (i.e., each 

child allows only one agent to occupy the conflicting vertex v at time t). Or, an equivalent formalization is 

to only focus on the first two agents that are found to conflict, and only branch according to their conflict. 

This leaves further conflicts for deeper levels of the tree. This is illustrated in the Figure below. The top 

tree represents a variant of CT where k-way branching is allowed for a single conflict that includes 

k-agents for the case where k=3. Each new successor adds k−1 (=2) new constraints (on all agents but 

one). The bottom tree presents a binary CT for the same problem. Note that the bottom middle state is a 

duplicate state, and if duplicate detection is not applied there will be two occurrences of this node instead 

of one. As can be seen, the size of the deepest layer in both trees is identical. The complexity of the two 

approaches is similar, as they both will end up with k nodes, each with k−1 new constraints. For 

simplicity, we implemented and described only the second option. 

 

 

 



 where two agents “swap” locations (  moves from v1 to v2 while  moves from  to (𝑎
𝑖
, 𝑎

𝑗
, 𝑣

1
, 𝑣

2
, 𝑡) 𝑎

𝑖
𝑎

𝑗
𝑣

2
𝑣

1

) between time step t to time step t+1. An edge constraint is defined as , where agent  is (𝑎
𝑖
, 𝑣

1
, 𝑣

2
, 𝑡) 𝑎

𝑖

prohibited from starting to move along the edge from  to  at time step t (and reaching  at time step 𝑣
1

𝑣
2

𝑣
2

t+1). When applicable, edge conflicts are treated by the high level in the same manner as vertex conflicts. 

 

When validating the two-agent solution given by the two individual paths, a conflict is found when both 

agents arrive at vertex D at time step 2. This creates a conflict . As a result, the root is (𝑎
1
, 𝑎

2
, 𝐷, 2)

declared as a non-goal, and two children are generated in order to resolve the conflict. The left child adds 

the constraint  while the right child adds the constraint . The low-level search is now (𝑎
1
, 𝐷, 2) (𝑎

2
, 𝐷, 2)

invoked (line 23) for the left child to find an optimal path that also satisfies the new constraint. For this, 

 must wait one time step either at  or at  and the path  is returned for . The path 𝑎
1

𝐴
1

𝑆
1

〈𝑆
1
, 𝐴

1
, 𝐴

1
, 𝐷, 𝐺

1
〉 𝑎

1

for  ,  remains unchanged in the left child. The total cost for the left child is now 7. In a 𝑎
2
〈𝑆

2
, 𝐵

1
, 𝐷, 𝐺

2
〉

similar way, the right child is generated, also with a cost of 7. Both children are inserted into OPEN. In 

the next iteration of the while loop, the left child is chosen for expansion, and the underlying paths are 

validated. Since no conflicts exist, the left child is declared a goal node and its solution is returned as an 

optimal solution. 

 

 

Low level: Find paths for CT nodes 

 

The low-level search is given an agent, , and the set of constraints associated with . It performs a 𝑎
𝑖

𝑎
𝑖

search in the underlying graph to find an optimal path for agent  that satisfies all its constraints while 𝑎
𝑖

completely ignores the other agents. The search space for the low-level search has two dimensions: the 

spatial dimension and the time dimension. Any single-agent pathfinding algorithm can be used to find the 

path for agent , while verifying that the constraints are satisfied. We implemented the low-level search 𝑎
𝑖

of CBS with A* which handled the constraints as follows. Whenever a state (v,t) is generated where v is a 

location and t a time step and there exists a constraint  in the current CT (high-level) node, this (𝑎
1
, 𝑣, 𝑡)

state is discarded. The heuristic we used is the shortest path in the spatial dimension, ignoring other agents 

and constraints. Duplicate state detection and pruning (DD) speeds up the low-level procedure. Unlike 

single-agent pathfinding, the low-level state space also includes the time dimension and dynamic 



‘obstacles’ caused by constraints. Therefore, two states are considered duplicates if both the position of ai 

and the time step are identical in both states. 

 

Discussion​

 

The implementation of the above can be found here: https://github.com/jainaviral898/mapp-cbs-aifa​

 

Although the situations studied are static in the sense that the agents know the overall plan in advance, 

they can become dynamic (particularly) in the case of UAVs whose POIs are based on daily remote 

sensing observations, leading to precision agriculture. As a result, making the most use of path-planning 

algorithms is critical, and the time it takes for them to execute has an impact on the practicality of any 

option.​

In future work, we can spend more time on the implementation of other multi-agent path planning 

algorithms in order to make a more fair judgment of our methods. Furthermore, we can take into account 

the actual limits of UAVs (e.g., maximum flying time) and ground robots (e.g., maximum distance 

traveled in a number of hours). For UAVs and ground robots, this will necessitate the adoption of more 

realistic physical models. Finally, a dynamic scenario can be investigated in which the agents have no 

prior knowledge of the area and must combine their ad-hoc knowledge to solve the optimization issue in 

the most efficient manner feasible. 
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