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Abstract 

The goal of this project is to add a new keyword to Python’s grammar by 
modifying the CPython implementation of the Python programming language. We 
investigated possible types of a const keyword and weighed the pros and cons of 
each. This section is paramount in order to make any design decision for future 
work on this const keyword. For the actual implementation, we described our 

desired syntax in the abstract syntax description language and implemented a 
const keyword in the script that generates an abstract syntax tree and the actual 
compiler script that generates bytecode. We discovered that, due to the dynamic 

state of Python, implementing optimization based on the const keyword would 
require significant changes to CPython, including numerous case-specific fixes. 

Introduction 
One of the key features of Python—and many similar languages—is dynamic typing. Because 
types are not specified by the program, they are determined at runtime instead of at compile 
time. As a result, the Python compiler is capable of limited amounts of code optimization. 
 
For this project, we modified the C implementation of Python (CPython) to include a keyword for 
declaring constant variables. This modification is based on two major goals. First of all, as a 
team we decided that we wanted to learn about compilers, and this project would help us gain 
knowledge of the steps of the compilation process. Secondly, we wanted to see what 
performance gains were possible by implementing a static typing feature in a dynamic 
language. More specifically, we wanted to know if declared constant variables decrease the 
runtime for a program. 

The CPython Compiler 
CPython (written in C) is the original, and most commonly used interpreter of Python. To compile 
Python source into Python bytecode, CPython uses a four-step process.  Initially, the source 
code is parsed into a “parse tree”.  Then, the parse tree is converted to an abstract syntax tree 
(AST) using Python’s abstract syntax definition language (ASDL).  The AST is transformed into 
a control flow graph (CFG) by creation of an intermediate bytecode representation in a graph 
structure.  The CFG is then flattened and bytecode jump instructions are calculated to replace 
the edges of the graph.   
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To make CPython recognize and compile the const keyword, we needed to tweak each step in 
the compilation process.  The parser would need to recognize const as a legal and valid 
keyword in Python’s grammar.  The AST would need an abstract syntax form of the const 
keyword (defined in the Python ASDL).  Finally, there would need to be compilation logic and 
opcodes to generate functional bytecode from the AST.   
 
The design of CPython is such that some of the required code is automatically generated. 
Nevertheless, there are some key files that must be manually modified to make the language 
recognize and respond to the new keyword. The following is a basic outline of the required 
steps for modifying the CPython compiler : 1

 
1.​ The parse-tree grammar and abstract syntax description language must be modified. 
2.​ The code that generates the AST must be modified to handle the new grammar. 
3.​ The code that creates the CFG and bytecode (the actual compilation code) must be 

modified to understand the new AST object. This includes defining the appropriate 
operations (in Python machine code) that must take place when the keyword is run, and 
error checking to make sure that the const is not used improperly in the code. 

Design 

Syntax and Behavior 
To declare a const variable, we use the following syntax: 
 
​ const var = expr 

 

where var is any previously undeclared variable and expr is any type of expression that 
evaluates at compile time. The following are examples of valid expressions: 
 

​ 10 

​ “cat” + “dog” 

 

Examples of invalid expressions are ones that could not be evaluated at compile time, such as: 
​ 1 if x < 5 else 2 
​ myfunc(x, y) 
 
Regardless of what form the expression takes, var would be assigned the value that expr 
evaluates to. Once assigned, var could not be reassigned for the lifetime of the variable. 
However, var could still be referenced like a normal variable, and it would have the same 
scope of a normal variable. 

1 Based on: http://www.python.org/dev/peps/pep-0306/ 
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Location of Const Functionality 

There are three different stages where we could implement the const functionality: 1) 
preprocessing, 2) compilation, or 3) runtime. We have decided to implement a compile-time 
constant, as this provides an interesting challenge with the possibility of performance 
enhancements.  
 
Constants that are handled in preprocessing are equivalent to macros in C. Before the code is 
compiled, the preprocessor replaces every instance of the macro with its associated value. 
 
A compile time constant, unlike a preprocessor macro, is an actual variable stored in the stack. 
Only one copy of the constant is stored in memory, unlike a preprocessor macro which is 
duplicated every time it is referenced by the code. Compile time constants must have 
non-dynamic values -- i.e. they must have values that can be calculated at compile time. 
 
A runtime constant is similar to a compile time constant; however, the value for a runtime 
constant can be dynamic. An example helps to clarify: 
 

const x = 3 

const y = "Allen Downey" 

 
These could be compile time constants because the compiler can easily tell that x stores a 
integer of value 3 and y stores a string representation of "Allen Downey".  Contrast that example 
with this: 
 

const z = a * func (b) 

 
The compiler doesn't know what a * func (b) is without running the program, so this must be a 
runtime constant. 
 
In choosing how to implement const functionality, we examined a) how challenging it would be 
to implement and b) the opportunities for performance optimization. While preprocessor macros 
make code easier to read, and improve the performance of the code by placing literals wherever 
they are used, but they are not as interesting from a project standpoint because all the work to 
implement them would be in the preprocessor code, and we would not need to touch the other 
parts of the compiler. Runtime or compile time constants also both present the opportunity for 
performance enhancements.  We decided that we wanted to implement a const keyword for 
basic, non-dynamic assignment statements.  Because such constants can be handled at 
compile time, we would just need to modify the compiler. 
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Optimizations 
Though we did not have enough time after implementing the functionality for a constant 
keyword, we had originally planned to build in some optimizations using variables declared 
constant.  We researched different compiler optimizations (especially in the area of data-flow 
optimizations—optimizations related to how data flow through a program during run-time), and 
decided to implement constant folding and, if possible, (because we were optimistic) constant 
propagation.  Constant folding is an optimization technique where the compiler simplifies 
expressions assigned to constants because it knows they will not change.  These simplifications 
might be arithmetic of literals or string concatenation. 
 
For example, if the compiler reads the statements 
 
​ const x = 10 * 20 * 30 

​ const y = “cat” + “dog” 

 
It can “fold” these expressions like so: 
 

const x = 6000 

const y = “catdog” 

 
Interestingly, we learned that the CPython compiler already does folding of literals and basic 
variables (e.g., not variables assigned to function return statements).  We learned by using 
Python’s disassembler module to disassemble some Python bytecode.  We learned that for 
every line that included basic arithmetic or string concatenation, the compiler had a single store 
instruction that stored the result of the operation. 
 
Constant propagation involves substituting known constants throughout the code during compile 
time to simplify it.  Here’s an example from Wikipedia: 
 

const x = 14 

y = 7 - x / 2 

return y * (28 / x + 2) 

 
We propagate x to get 
 

const x = 14 

y = 7 - 14 / 2 

return y * (28 / 14 + 2) 

 
Then by folding these expressions, we get 
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const x = 14 

y = 0 

return 0 

 
If our compiler was really smart, it would remove the constant and y altogether.  Constant 
propagation and folding are often used together iteratively to simplify the code.  We will start 
with constant folding because it is a simpler execution, and time permitting, we will move on to 
implement constant propagation. 
 
An important note: constant folding can occur without the use of a const keyword.  If upon 
inspection of the CPython compiler we discover that constant folding already occurs, we will 
instead go straight to implementing constant propagation. 
 
Ultimately, the decision of which optimization and type of constant should depend on the 
expected use of the keyword. Specifically, if the keyword will be used in multiple arithmetic 
operations, one should implement folding. If these arithmetic operations will be compiled once 
and run multiple times, a compile-time constant should be used. Such a constant would speeds 
up the runtime because the interpreter runs less instructions while the program is running, but 
compilation time increases.  

Implementation 

Parsing and Grammar 
CPython defines its grammar in a simple grammar syntax file that is then auto-generated into a 
multiple C scripts that control the functionality of Python. Therefore, by adding a simple addition 
to this grammar file, one can flesh out make additions to multiple files and right near a hundred 
lines of code. 
 

  
 

We added our const keyword to the definition of the expression statement because all 
assignment statements are expression statements. Therefore, we were able to implement 
expr_stmt’s already existing infrastructure to handle any const assignment. It is also important to 
note that with this const definition, a legal const assignment must contain a ‘=’ or the compiler 
will throw an error. Additionally, a const statement can only be used to assign a value to a name 
(only a variable). 

The Const Bit 
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Memory management in python is handled by two data structures: the arena and symtables. 
The arena keeps track of all the variables that are in use, all of the references to each variable, 
and information about that variable (type, scope, etc.). The arena is primarily dealt with in the 
runtime environment, so we did not deal with it at all.  
 
Symtables keep track of all the variables used in a namespace, and determines how they are 
used. The symtable divides the code into blocks—which is a collection of code that contains a 
group of variables (i.e. a function, a for loop, etc). For each variable that is used in a block of 
code, the symtable knows how it is used (is it being assigned to, or just read) and the scope of 
the variable (was it defined inside or outside the block). The purpose of the symtable is for the 
compiler to check that no variables are used in illegal ways—i.e. that the line x += 1 is not run 
before x is defined, or that del y is not called if y is a defined outside the block’s scope. To 
keep track of which variables were consts, we decided to add additional information to the 
variables in the symtable. 
 
CPython utilizes flags that are bit-mapped to mark and recognize variables. To earmark any 
variables declared as const (and therefore should not be reassigned), we utilized this flag 
system. Each variable in the symtable contains an integer flag. Every bit of the flag is used to 
describe the scope and operations performed on the variable. Many of the lower bits were taken 
to earmark global assignments, local assignment, function parameter assignment, etc. For our 
const bit, we assigned the 15th bit to be 1 if the variables was a constant, and 0 otherwise. This 
bit choice was made because it was significantly above any known bit assignments and thus 
would not rewrite any pre-assigned bits. The const bit is shown below: 
 

 
 

When a variable is declared as a const (regardless if this statement is legal or not), we store the 
variable in the symtable with the const bit turned on. If we are then referring to the variable later 
in the scope, we will recognize that it was declared const. 
 
The one problem with this implementation is that it does not notice variables that were defined 
outside the scope. The symtable knows all the variables that are used in the block, but if a 
variable was defined outside the block (i.e. a global or a closure variable), then the symtable 
won’t know how the variable was used before. Thus it is hard with our approach to tell if 
variables defined outside the scope are constant variables or not. We’ll talk more about this in 
the discussion section. 

The Compile-Time Decision-Maker 
 
All name operations (ensuring that no variables are referenced before assignment, making sure 
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that variables are assigned the proper scope, etc) occur at compile time. Every time a variable 
name is referenced, the compiler looks up the variable the symtable. In particular, the compiler 
looks up the scope of the variable and the type of operation that is going to be performed on the 
variable. 
 
We took advantage of this pre-existing structure to implement extra case statements that 
checked the const bit to determine if actions were legal. If the const bit is 0, it is safe to assign 
that variable. If the bit is 1, the compiler throws an error because the compiler is trying to 
reassign a const. Although cumbersome, this is the most effective method of keeping a const 
variable safe. 

Discussion 
In most situations, our const keyword had the desired functionality. In certain cases, we ran into 
limitations of working with a dynamic language, so we were not able to get the desired 
functionality. In addition, our implementation decreased performance a little because of the 
additional checking that had to be performed. We will discuss how we could potentially address 
this with code optimization. 
 
Our implementation worked the best when we were defining and using const variables in the 
same scope. For example, the compiler threw an error for this function (trying to reassign a 
variable that has been declared const): 
 

def a(): 
    ​ ​ const x = 6 
    ​ ​ x = 5 
 
Similarly, the compiler would not compile this function (trying to make an already declared 
variable a const) 
 
​ def b(): 
    ​ ​ y = 8 
    ​ ​ const y = 3 
 
Once declared, const variables would function as normal variables -- with the exception that 
they could not be assigned to. For example this function worked as expected: 
 
​ def c(x): 
    ​ ​ const z = 3 
    ​ ​ return x + z 
 
In simple situations like the ones above, we had the desired functionality. However, there were 
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many cases where our const statement didn’t work. Here are some problems that we noticed 
with our implementation: 
 
1) Does not work at top-level namespace. When we attempted to create a const variable at 
the top-level namespace (i.e. just typing code into the interpreter), the compiler did not throw an 
error when we tried reassigning it. At the top-level namespace, the python symtable uses a new 
block for each line of execution. A block refers to a group of code that shares a collection of 
variables. Since each line is viewed as its own block, python determines at runtime (not compile 
time) if variable names have been defined. Therefore we were not able to implement 
compile-time const functionality at this level. 
 
2) Global/closure const variables aren’t always recognized. As an example, let’s examine 
the following function: 
 
​ const z = 5 

def d(): 

 ​ global z 

 ​ z += 1 

 ​ return z 

 
Because we define z as a constant, the desired behavior we’d like to see from this function is 
that an error would be thrown when we try to reassign z inside the function. However, when we 
ran this function, no error was thrown. Again, this has to do with how the simtable deals with 
global variables. Python recognizes that z will not be defined in the local namespace; however it 
does not look up how/where z was defined until runtime. Therefore we cannot check during 
compile-time how z is defined. 
 
We believe that these limitations stem from the fact that Python is a dynamic language. Key to 
Python’s philosophy is the idea that many decisions are made at runtime. As a result, it is not 
entirely possible to keep track of which variables have been used at a given point during the 
compilation process. This is made especially difficult with global variables and closure variables. 
If we are dealing with variables that are only defined and used in a local scope, than our 
implementation will work since decisions will all be made during compile time. However, as soon 
as we start mixing scopes, we end up trying to fight the fundamental principles of python. 
 
While it would be possible to modify the runtime code of python to achieve const functionality in 
all situations, this would not be ideal. Firstly, we chose to do a compile-time implementation, and 
a runtime implementation would require modifying different parts of CPython. In addition, 
checking at runtime would not be ideal for performance at all. This sort of implementation would 
produce the desired functionality, but it would not be practical or applicable at all. 

Effects on Performance 
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With implementation of a const bit, storing and checking for const variables did impact (although 
minimally) the performance of CPython. To verify this, we ran a script with numerous simple 
arithmetic calculations—one version with local variables and the other with const variables— 
multiple times and graphed the results. A graph of the cumulative distribution function 
distribution is shown below. 
 

 
 
As is evident, the performance of the const variable is slightly less than the local variable. This 
makes sense because the const bit does have to be assigned and checked. However, this lag is 
barely noticeable; the maximum lag is only 0.001 ms. We did not implement folding and 
propagation optimizations, so we would want to measure the performance after optimizations 
before deciding how useful the const functionality is. 
 
 

Conclusion 
In doing the project, we were exposed to the main steps that CPython uses to compile Python 
source into Python bytecode.  We tweaked the Python grammar so the parser recognizes the 
const keyword and modified the compiler so the keyword would have the desired functionality. 
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We were able to implement const functionality for variables that were defined and used in a 
single scope. However, the functionality did not work when using global or closure const 
variables, and we did not implement optimizations. 
 
In theory, the use of const enables the compiler to perform operations at compile-time and thus 
avoid extra instructions during runtime. However, because we weren’t able to get the const 
functionality to work in every case, we were not able to implement optimizations. As a result, we 
made python run slightly slower because of the additional steps it was taking to check over 
const variables. 

Future Work 
 
There are a number of different optimizations possible using a compile time constant keyword. 
We chose to implement one such optimization but future work on our project would involve 
increasing the functionality of the keyword.  For example, we could optimize the CPython 
compiler by implementing constant folding and constant propagation.  Going further, we could 
implement sparse conditional constant propagation, which provides a more efficient and 
accurate way of propagating a constant through the code’s instructions by making use a code 
form known as static single assignment (SSA) form (which basically means that the each 
variable in the code is only assigned once).  We could also optimize for factoring out 
invariants—for example, if a constant is assigned inside a loop, it can be moved outside the 
loop, since it will not change over iterations. 
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