University Admission System

CONTENTS

1. Introduction

2. Feasible Study

3. Existing System — Proposed System

4. Technology Used

4.1.
4.2.
4.3.
4.4.

HTML

JAVA SCRIPT
Oracle

J2EE

4.4.1. JDBC
4.4.2. Servlets
4.4.3. JSP

4.4.4. Apache Jakarta Tomcat

5. Methodology Used

6. UML Diagrams

6.1
6.2
6.3
6.4
6.5

Use Case Diagram
Sequence Diagrams
Collaboration Diagrams
Class Diagram
Deployment Diagram

7. Data Flow Diagrams

8. Physical Database Design

9. Screens

10. Testing

11. Software & Hardware Specifications

15

16

16
22

23
27

35

37

37
38
48
58
59

60

66

99

101

29
32

12. Conclusion

13. Bibliography

Abstract

Vision

Project
Specification

Function (Admin/
Finance etc)

Location

User interface
Requirements

Database
Requirements

Integration
Requirements

Preferred
Technologies

Other Details

University wants to computerize its admission process for higher
education courses.

Basic objectives are to extend their reach to geographically scattered
students, reducing time in activities, centralized data handling and
paperless admission with reduced manpower. Cost cutting, operational
efficiency, consist view of data and integration with other institutions
are other factors. Main challenges are effectively sync internal and
external operations in such a manner that job can be finished within
time limit and integration with different agencies on an agreed upon
common data format.

Selling of forms (through site and manual).

Marks & details verifications of filled forms for eligibility
checking.

Sending call letters to eligible candidates for entrance exam.
Online marks checking and merit list

Sending offer letters for short listed candidates.

Counseling, Admission and hostel allotment

Statistical reports on daily activities are highly desirable feature

Computerization Objectives

Browser based

Distributed

In this process University is interacting with different systems like
different school boards for marks verification, or individual hostel
management systems or college level student management systems.
XML would be the preferred way of all kind of inputs and outputs
between other existing systems and your admission system.

Solutions must be created using

HTML, CSS (Web Presentation)

JavaScript (Client-side Scripting)

Java (as programming language)

JDBC, JNDI, Servlets, JSP (for creating web applications)
Eclipse with My Eclipse Plug-in (IDE/Workbench)
Oracle/DB2 (Database)

Windows XP/2003 or Linux/Solaris (Operating System)
BEA Web Logic/JBoss/Web Sphere (Server Deployment)

The application should be highly secured and with different levels &
categories of access control.

1. Introduction

Purpose
The University Admission System has been developed in order to automate the complete
admission system starting from the notification to admission process. It also includes the

Statistical reports on daily activities in the admission process.

The system enables online admissions saving the time of the geographically scattered students.
It enables reducing time in activities, centralized data handling and paperless admission with
reduced manpower. It improves the operational efficiency and reduces the cost. It also provides

consist view of data and integration with other institutions for verification of marks and details.

Scope

e C(Create different system users and assign different roles with related permissions.

e The Notification will be released through online and manually.

e Students can apply online or offline.

e Verification of marks/details done by interacting with different agencies like school
boards or college management systems.

e Hall tickets will be issued for eligible candidates.

e Ranks will be generated depending upon the marks obtained for qualified candidates
and call letters will be send to short listed candidates.

e Admissions will be done online, saving the time of students.

e C(Centralized data maintained.

e The seats management will be done by the convener online and availability of seats
announced.

e Statistical reports on daily activities in the admission process will be generated.

e The system provides security through password authentication. The Administrative
staff and system administrators have their own login ids and these ids help in

maintain the integrity of the system.

Definition, Acronyms, Abbreviations

Definitions: This glossary contains the working definitions for the key concepts in the

system.

Login: This is used to authenticate the user of the system.
Administrator: A person who is responsible for working of a system.

Database: It stores the information of the entire admission system and student

details.

Notification: Gives the details of the examination, Schedule, courses, eligibility

criteria and syllabus for the examination.

Hall ticket: This card provides the unique number for each applicant and it is

used as the entrance pass for the examination. It contains the photograph of the

student also.

Rank card: Depending upon the marks obtained the results /merit list is

provided using a unique number called rank.

Admission: If the student allotted a seat it is called as admission.

Seats Management: Adding and deletion of seats to the counseling,

cancelling admissions.

Report: It is statement describing in details about the cumulative things

happened in a period.

Abbreviations

e UML Unified Modeling Language

e JSP Java Server Pages

e J2EE Java 2 Enterprise Edition

e EJB Enterprise Java Beans

e DB2 Data Base

o WAS Web Sphere Application Server

e WSAD Web Sphere Studio Application Developer

e HTTP Hyper Text Transfer Protocol

e TCP/IP Transmission Control Protocol
Acronyms

e ED.C Electronic Data Change

e D.D. Demand Draft

e OC Open Category

e SC Scheduled Castes

e B.C Backward Castes

e ST Scheduled Tribes
Overview

The Department Committee draws up a time schedule for admission and also decides on the

criteria for section and sends its recommendation to the graduation committee. Once this done,

the following procedure is to be followed.

I.

The university meets to finalize the draft advertisement, criteria for admission and

preparation of the merit list.

All application forms received by the Departments are listed in order of merit and sent to
the Admission Section. The Admission Section prepares merit list of students other than
University which after being approved by the departmental committee, is sent back to the
admission section along with the application forms for further checking by a specific

date.

The merit list is complied according to the criteria as decided by the committee and the

principles of reservation as University Rules.

After the checking of the forms by the admission committee, the committee is to meet
again to consider and finalize the merit list within a specific date. The prepared merit list

should be prominently displayed at least three days before the actual admission.

The admission section is then to proceed with the admission through counseling within

the due date.

2. Feasibility Study

Economic Feasibility

Economic feasibility attempts 2 weigh the costs of developing and implementing a new system,
against the benefits that would accrue from having the new system in place. This feasibility study

gives the top management the economic justification for the new system.

A simple economic analysis which gives the actual comparison of costs and benefits are much
more meaningful in this case. In addition, this proves to be a useful point of reference to compare
actual costs as the project progresses. There could be various types of intangible benefits on
account of automation. These could include increased customer satisfaction, improvement in
product quality better decision making timeliness of information, expediting activities, improved
accuracy of operations, better documentation and record keeping, faster retrieval of information,

better employee morale.

Operational Feasibility

Proposed project is beneficial only if it can be turned into information systems that will meet the
organizations operating requirements. Simply stated, this test of feasibility asks if the system will
work when it is developed and installed. Are there major barriers to Implementation? Here are

questions that will help test the operational feasibility of a project:

Is there sufficient support for the project from management from users? If the current system is
well liked and used to the extent that persons will not be able to see reasons for change, there

may be resistance.

Are the current business methods acceptable to the user? If they are not, Users may welcome a

change that will bring about a more operational and useful systems.
Have the user been involved in the planning and development of the project?

Early involvement reduces the chances of resistance to the system and in general and increases

the likelihood of successful project.

Since the proposed system was to help reduce the hardships encountered. In the existing manual

system, the new system was considered to be operational feasible.

Technical Feasibility

Evaluating the technical feasibility is the trickiest part of a feasibility study. This is because, .at
this point in time, not too many detailed design of the system, making it difficult to access issues
like performance, costs on (on account of the kind of technology to be deployed) etc. A number

of issues have to be considered while doing a technical analysis.

Understand the different technologies involved in the proposed system before commencing the
project we have to be very clear about what are the technologies that are to be required for the
development of the new system. Find out whether the organization currently possesses the

required technologies. Is the required technology available with the organization?

3. Existing System - Proposed System

Existing System:

The Current System is a browser which is not totally computerized especially for university
admission process. The system takes lots of time in performing different activities, and there is
no centralized data handling. There is no integration in the current system upon common data

format.

Proposed System:

The Proposed system is a browser which is completely related to internet browsing. The web
enabled information management system designed to automate the entire operations of a modern.
This system allows multi-divisional, multi-department system handling that includes various

activities.

Software Requirement Specification

Software Requirements:

Operating System

User Interface
Client-side Scripting
Programming Language
Web Applications
IDE/Workbench
Database

Server Deployment

Hardware Requirements :

Processor
Hard Disk
RAM

Windows XP/2003 or Linux/Solaris
HTML, CSS
JavaScript
Java
JDBC, JNDI, Servlets, JSP
Eclipse with MyEclipse Plug-in
Access

RetHat JBoss AS

Pentium IV
40GB
256MB

System Design

Architecture Diagram :

Web Server
prm—
o HilpServiet |
HTTP Request
Web Request e — -
Client I ¢
o HttpServiet &, Components
'Hm:- Response T
H&spunsal - /
M——
JavaBeans
Components

Authentication

Functional Description

Admin users - Has full access to all the modules of this system. Responsible for the accounts

of all students, colleges and remittances. Prepares and submits also Daily Reports, student

reports, colleges reports, etc,.

Reports:
All frequently used reports at the click of a button

All reports can be previewed, printed, exported to Excel/Word etc., or can be export to PDF,
XML, etc.

Students — Has restricted access. i.e., students have access to some of the modules only i.e.

user can see the college list and seats list of all products and can take hall ticket through online.

User Interface:
Soothing Graphical User Interface with Context Sensitive Help
Totally Menu Driven, with Keyboard Shortcuts for frequently used forms

All reports for specified period selected using calendar

Functions
e Administrator
e Student User
e User Interface

® Reports

Maintenance

Functional Description :

The following are the functional descriptions:

e Selling of forms (through site and manual).

o Marks & details verifications of filled forms for eligibility checking.
e Sending call letters to eligible candidates for entrance exam.

® Online marks checking and merit list

e Sending offer letters for short listed candidates.

e Counseling, Admission and hostel allotment

e Statistical reports on daily activities are highly desirable feature

4. E - R Diagrams & UML Diagrams

1

Subjectd

Colleges - . logindetails _ loginaudit
? sno L | UASACADEMICDET... S # laginname """:llmm /] loginid
Callegelame loginname password ¥ Loginname logindate
University S5Creq firstname passward logindesc
City s5Cyap lastname
State sscpercentage lagintype
Country ugreg loginstatus ¢ : :
ugyop regdate —— |09|npr0fl|e
ugpercentage squestionid LOUrsEs laginid
areg sanswer — CollegeMame hirthdate
gyop firstlogin Course ity
gpercentage passmodifieddate Branch state
course noaofseats cauntry
. Blzeats lacale
descipling PR .
status —\pp|:-lca.tlﬂn.li)eta|ls Scseats profilemodifieddate
niversity
- ¥ ApplicationCours
AdminAccept — -
7o Startdate :
SchduleExam Lastdate ’ — HallTickets1
b Subje allTicketha
7 subject test HallTicketh
ExamDate :) ¥ sno Laginname
; marks shame
questionbase Center 9
? questianid City b age
auet . Time Subjectl address
questiondetail .
CutTime unje
Subjedts

UML Diagrames:

The unified modeling language allows the software engineer to express an analysis model using

the modeling notation that is governed by a set of syntactic semantic and pragmatic rules.

A UML system is represented using five different views that describe the system from distinctly
different perspective. Each view is defined by a set of diagram, which is as follows.
e User Model View
1. This view represents the system from the users perspective.
ii. The analysis representation describes a usage scenario from the end-users

perspective.

e Structural model view
1. In this model the data and functionality are arrived from inside the system.

1i. This model view models the static structures.

e Behavioral Model View
It represents the dynamic of behavioral as parts of the system, depicting the
interactions of collection between various structural elements described in the

user model and structural model view.

e Implementation Model View
In this the structural and behavioral as parts of the system are represented as they

are to be built.

° Environmental Model View
In this the structural and behavioral aspects of the environment in which the system is

to be implemented are represented.

UML is specifically constructed through two different domains they are:
v/ UML Analysis modeling, this focuses on the user model and structural model views of

the system.

v/ UML design modeling, which focuses on the behavioral modeling, implementation

modeling and environmental model views.

Use case Diagrams represent the functionality of the system from a user’s point of view. Use
cases are used during requirements elicitation and analysis to represent the functionality of the

system. Use cases focus on the behavior of the system from external point of view.

Actors are external entities that interact with the system. Examples of actors include users like

administrator, bank customer ...etc., or another system like central database.

Class Di

G;} DispatchController

agram

™

ExzportController

@ doGet(in req : HitpServletRequest,in res | HEtpServletResponse] 1 void

ReportController

fr -

@ doGeat(in req

@ UIController

i HitpServletRequest,in res @ HitpServletResponse) @ woid

!

C) ExportPDF

© dofet(in req : HitpServletRequestin res ; HipServletR esponze] : void

ExportTET

!

ExportiLS

 dofet(in req HitpServletRequest i res : HitpSarvlethesponse] : vaid

 dofet(in req HitpServletRequest i res : HitpSarvlethesponse] : vaid

Pt

DateWrapper

@ =-=create=x= DateWrapper()

@ parseDratelin date : Date) : Shring

& parselratelin date :

Skring) : String

@ parseDatelin date : Date) § Shring

Pt

LoggerManager

@ ==create=>= LoggerManager(]
@ getLogger(in fle : String)l : Logger

@ writeLogInfolin e : Exception] : woid

@ writeLogSewverelin e 1 Exception’) 1 woid

@ writeLogW arninglin e : Exception] @ waoid

@ writeLogInfolin info ¢ String) @ woid

@ writeLogSewerelin severe ; String) ¢ woid

@ writeLogW arninglin warning ¢ Skring) @ woid

Pt

InitServiet

@ initin sc : ServletConfig) @ woid

Use-case Diagram

ADMINSTRAT{]\

*

N\

System

OTHER BOARDS

SEATS AND
RESERVATIONS

RESERVATIONS

RANK CARDS & HALL
TICKETS

L

£

aextendsy

aexlandss

rexiendss

e
oo >

!

Sequence Diagram

Admission Sequence

FillDetails

Checkfvailability

————

Send status

Apply Sequence

T T A

Select option

Update Database

|
|

Display form
FillForm

e o e e e e e i —————

Login Sequence

Enter Uid & Pwd

“alidate user

Seats Available Sequence

Return Validate

Update DataBase

FillDetails

Login
Enter choice
Display form

Ranks Sequence

Login

Enter Hallticket no

-:ﬂl

Generate Rankcard

CheckStatus

SendStatus

Contact Database
Send Status

——— _. |||||||||||||||||

Enter Regd.No.
Ganerate HallTicket

—_——— _. |||||||||||||||

Hall Tickets Sequence

Component Diagram

Management

_______ ==zinfrastrudure==
== application:== | SO

[

[

|

o —

[Request

v !
E JOBC

Datahase

Deployment Diagram

Database Server

Databams O

,-"'i"'-. Reguest

|
[
i
I
1
: Application Server
|
|
|

Web Server

I
i
|
I
: Client
I
i

Web Browser Swing Application

USER

Database Server

-

Keyboard Monitor

WorkStation

TCP/IP Protocaol

-é i Web Browser

HTTP/HTTPS Connection
R

Web Server

Presentation Layer

Database Interface

E

=

Data Dictionary

Loginname

password

Application Details

University
ApplicationCourse
Startdate

Lastdate

Colleges

Sno
CollegeName
University
City

State
Country

Hall Ticket

HallTicketNo

Loginname

text

text

text
text
text

text

number
text
text
text
text
text

number

text

255 N

255 N

255
255
255
255

z Z z Z

)

K
255
255
255
255
255

zZzZZ

255 FK

Login Audit

loginid text 255 FK
logindate date/time N
logindesc text 255 N
Login Details
ColumnName DataType Size Constraints
loginname text 255 pk
password text 255 N
firstname text 255 N
lastname text 255 N
logintype text 255 N
loginstatus text 255 N
regdate date/time N
squestionid number N
sanswer text 255 N
firstlogin number N
passmodifieddate date/time N
Login Profile
EEETT T T
loginid text 255 FK
birthdate date/time N
city text 255 N
state text 255 N
country text 255 N
locale text 255 N
profilemodifieddate date/time N

Marks

ID

Subjectl
Subject2
Subject3
Subject4

Question

Number
text
text
text

text

255
255
255
255

z zZ z Z

questionid

questiondetail

number

text

PK
255 N

| g
72}
-

address

number
text
number

text

5 PK

255 N

3 N

255 N

Technologies Used

HTML

HTML, an initialism of Hypertext Markup Language, is the predominant markup language for
web pages. It provides a means to describe the structure of text-based information in a document
— by denoting certain text as headings, paragraphs, lists, and so on — and to supplement that
text with interactive forms, embedded images, and other objects. HTML is written in the form of
labels (known as tags), surrounded by angle brackets. HTML can also describe, to some degree,
the appearance and semantics of a document, and can include embedded scripting language code

which can affect the behavior of web browsers and other HTML processors.

HTML is also often used to refer to content of the MIME type text/html or even more broadly as
a generic term for HTML whether in its XML-descended form (such as XHTML 1.0 and later)
or its form descended directly from SGML

Hyper Text Markup Language

Hypertext Markup Language (HTML), the languages of the World Wide Web (WWW), allows
users to produces Web pages that include text, graphics and pointer to other Web pages
(Hyperlinks).

HTML is not a programming language but it is an application of ISO Standard 8879, SGML
(Standard Generalized Markup Language), but specialized to hypertext and adapted to the Web.
The idea behind Hypertext is that instead of reading text in rigid linear structure, we can easily
jump from one point to another point. We can navigate through the information based on our
interest and preference. A markup language is simply a series of elements, each delimited with
special characters that define how text or other items enclosed within the elements should be
displayed. Hyperlinks are underlined or emphasized works that load to other documents or some
portions of the same document.

HTML can be used to display any type of document on the host computer, which can be
geographically at a different location. It is a versatile language and can be used on any platform

or desktop.

HTML provides tags (special codes) to make the document look attractive. HTML tags are not

case-sensitive. Using graphics, fonts, different sizes, color, etc., can enhance the presentation of

the document. Anything that is not a tag is part of the document itself.

Basic HTML Tags:

<l-- ->

<BIG>.......... </BIG>
<BODY>...</BODY>
<CENTER>...</CENTER>
<DD>...</DD>
<DL>...</DL>
...
<FORM>...</FORM>
<FRAME>...</FRAME>
<H#>...</H#>
<HEAD>...</HEAD>
<HR>...</HR>
<HTML>...</HTML>
<META>...</META>
<SCRIPT>...</SCRIPT>
<TABLE>...</TABLE>
<TD>...</TD>
<TR>...</TR>
<TH>...</TH>

Attributes

The attributes of an element are name-value pairs, separated by

specifies comments

Creates hypertext links

Formats text as bold

Formats text in large font.

Contains all tags and text in the HTML document
Creates text

Definition of a term

Creates definition list

Formats text with a particular font

Encloses a fill-out form

Defines a particular frame in a set of frames
Creates headings of different levels(1 —6)
Contains tags that specify information about a document
Creates a horizontal rule

Contains all other HTML tags

Provides meta-information about a document
Contains client-side or server-side script

Creates a table

Indicates table data in a table

Designates a table row

Creates a heading in a table

n_n

, and written within the start

label of an element, after the element's name. The value should be enclosed in single or double

quotes, although values consisting of certain characters can be left unquoted in HTML (but not

XHTML).Leaving attribute values unquoted is considered unsafe.

Most elements take any of several common attributes: id, class, style and title. Most also take
language-related attributes: lang and dir.

The id attribute provides a document-wide unique identifier for an element. This can be used by
stylesheets to provide presentational properties, by browsers to focus attention on the specific
element or by scripts to alter the contents or presentation of an element. The class attribute
provides a way of classifying similar elements for presentation purposes. For example, an HTML
document (or a set of documents) may use the designation class="notation" to indicate that all
elements with this class value are all subordinate to the main text of the document (or
documents). Such notation classes of elements might be gathered together and presented as

footnotes on a page, rather than appearing in the place where they appear in the source HTML.

An author may use the style non-attributal codes presentational properties to a particular element.
It is considered better practice to use an element’s son- id page and select the element with a
stylesheet, though sometimes this can be too cumbersome for a simple ad hoc application of
styled properties. The title is used to attach subtextual explanation to an element. In most
browsers this title attribute is displayed as what is often referred to as a tooltip. The generic
inline span element can be used to demonstrate these various non-attributes.

The preceding displays as HTML (pointing the cursor at the abbreviation should display the title

text in most browsers).

Advantages
1 A HTML document is small and hence easy to send over the net. It is small
because it does not include formatted information.
1 HTML is platform independent.

"1 HTML tags are not case-sensitive.

JavaScript

JavaScript is a script-based programming language that was developed by Netscape
Communication Corporation. JavaScript was originally called Live Script and renamed as
JavaScript to indicate its relationship with Java. JavaScript supports the development of both
client and server components of Web-based applications. On the client side, it can be used to
write programs that are executed by a Web browser within the context of a Web page. On the
server side, it can be used to write Web server programs that can process information submitted

by a Web browser and then update the browser’s display accordingly

Even though JavaScript supports both client and server Web programming, we prefer JavaScript
at Client side programming since most of the browsers supports it. JavaScript is almost as easy to
learn as HTML, and JavaScript statements can be included in HTML documents by enclosing
the statements between a pair of scripting tags
<SCRIPTS>.. </SCRIPT>.
<SCRIPT LANGUAGE = “JavaScript™>
JavaScript statements
</SCRIPT>
Here are a few things we can do with JavaScript:
1] Validate the contents of a form and make calculations.
'] Add scrolling or changing messages to the Browser’s status line.
'] Animate images or rotate images that change when we move the mouse over
them.
71 Detect the browser in use and display different content for different browsers.
"1 Detect installed plug-ins and notify the user if a plug-in is required.

We can do much more with JavaScript, including creating entire application.

JavaScript Vs Java

JavaScript and Java are entirely different languages. A few of the most glaring differences are:

e Java applets are generally displayed in a box within the web document; JavaScript can
affect any part of the Web document itself.
e While JavaScript is best suited to simple applications and adding interactive features to

Web pages; Java can be used for incredibly complex applications.

There are many other differences but the important thing to remember is that JavaScript and
Java are separate languages. They are both useful for different things; in fact they can be used

together to combine their advantages.
Advantages

7] JavaScript can be used for Sever-side and Client-side scripting.
0 It is more flexible than VBScript.
1] JavaScript is the default scripting languages at Client-side since all the browsers

supports it.

Java Technology

Initially the language was called as “oak™ but it was renamed as “Java” in 1995. The primary
motivation of this language was the need for a platform-independent (i.e., architecture neutral)
language that could be used to create software to be embedded in various consumer electronic
devices.

e Javais a programmer’s language.

e Java is cohesive and consistent.

o Except for those constraints imposed by the Internet environment, Java gives the

programmer, full control.

e Finally, Java is to Internet programming where C was to system programming.

Importance of Java to the Internet

Java has had a profound effect on the Internet. This is because; Java expands the Universe of
objects that can move about freely in Cyberspace. In a network, two categories of objects are
transmitted between the Server and the Personal computer. They are: Passive information and
Dynamic active programs. The Dynamic, Self-executing programs cause serious problems in the
areas of Security and probability. But, Java addresses those concerns and by doing so, has

opened the door to an exciting new form of program called the Applet.

Java can be used to create two types of programs

Applications and Applets: An application is a program that runs on our Computer under the
operating system of that computer. It is more or less like one creating using C or C++. Java’s
ability to create Applets makes it important. An Applet is an application designed to be
transmitted over the Internet and executed by a Java —compatible web browser. An applet is
actually a tiny Java program, dynamically downloaded across the network, just like an image.
But the difference is, it is an intelligent program, not just a media file. It can react to the user

input and dynamically change.

Features of Java Security

Every time you that you download a “normal” program, you are risking a viral infection. Prior to
Java, most users did not download executable programs frequently, and those who did scan them
for viruses prior to execution. Most users still worried about the possibility of infecting their
systems with a virus. In addition, another type of malicious program exists that must be guarded
against. This type of program can gather private information, such as credit card numbers, bank
account balances, and passwords. Java answers both these concerns by providing a “firewall”

between a network application and your computer.

When you use a Java-compatible Web browser, you can safely download Java applets without

fear of virus infection or malicious intent.
Portability

For programs to be dynamically downloaded to all the various types of platforms connected to
the Internet, some means of generating portable executable code is needed .As you will see, the
same mechanism that helps ensure security also helps create portability. Indeed, Java’s solution

to these two problems is both elegant and efficient.
The Byte code

The key that allows the Java to solve the security and portability problems is that the output of
Java compiler is Byte code. Byte code is a highly optimized set of instructions designed to be
executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is,

in its standard form, the JVM is an interpreter for byte code.

Translating a Java program into byte code helps makes it much easier to run a program in a wide
variety of environments. The reason is, once the run-time package exists for a given system, any

Java program can run on it.

Although Java was designed for interpretation, there is technically nothing about Java that
prevents on-the-fly compilation of byte code into native code. Sun has just completed its Just In
Time (JIT) compiler for byte code. When the JIT compiler is a part of JVM, it compiles byte
code into executable code in real time, on a piece-by-piece, demand basis. It is not possible to

compile an entire Java program into executable code all at once, because Java performs various

run-time checks that can be done only at run time. The JIT compiles code, as it is needed, during

execution.
Java Virtual Machine (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual machine is an important
element of the Java technology. The virtual machine can be embedded within a web browser or
an operating system. Once a piece of Java code is loaded onto a machine, it is verified. As part of
the loading process, a class loader is invoked and does byte code verification makes sure that the
code that’s has been generated by the compiler will not corrupt the machine that it’s loaded on.
Byte code verification takes place at the end of the compilation process to make sure that is all
accurate and correct. So byte code verification is integral to the compiling and executing of Java
code.

Overall Description

Java Source Java byte code JavaVM

Java .Class
Picture showing the development process of JAVA Program
Java programming uses to produce byte codes and executes them. The first box indicates that the
Java source code is located in a. Java file that is processed with a Java compiler called javac. The
Java compiler produces a file called a. class file, which contains the byte code. The .Class file is
then loaded across the network or loaded locally on your machine into the execution

environment is the Java virtual machine, which interprets and executes the byte code.
Java Architecture

Java architecture provides a portable, robust, high performing environment for development.
Java provides portability by compiling the byte codes for the Java Virtual Machine, which is then
interpreted on each platform by the run-time environment. Java is a dynamic system, able to load

code when needed from a machine in the same room or across the planet.

Compilation of code

When you compile the code, the Java compiler creates machine code (called byte code) for a
hypothetical machine called Java Virtual Machine (JVM). The JVM is supposed to execute the
byte code. The JVM is created for overcoming the issue of portability. The code is written and

compiled for one machine and interpreted on all machines. This machine is called Java Virtual

Machine.
Hand-held High-end
devices Desktop Servers

Micro Edition Standard Edition : _
(J2ME) (J2SE) Enterprise Edition

(J2EE)

Compiling and interpreting Java Source Code

Java
Int t
PC Compiler Java n B{;'EEIB g
Source
Code Byte code
........... Macintosh Java
. Compiler —] |[(Platform (! Interpreter
........... Independe {Macintosh)
/' nt)
............ SPARC
Java
Interpreter
|Spare)

During run-time the Java interpreter tricks the byte code file into thinking that it is running on a
Java Virtual Machine. In reality this could be a Intel Pentium Windows 95 or SunSARC station
running Solaris or Apple Macintosh running system and all could receive code from any

computer through Internet and run the Applets.
Simple

Java was designed to be easy for the Professional programmer to learn and to use effectively. If
you are an experienced C++ programmer, learning Java will be even easier. Because Java
inherits the C/C++ syntax and many of the object oriented features of C++. Most of the
confusing concepts from C++ are either left out of Java or implemented in a cleaner, more
approachable manner. In Java there are a small number of clearly defined ways to accomplish a

given task.

Object-Oriented

Java was not designed to be source-code compatible with any other language. This allowed the
Java team the freedom to design with a blank slate. One outcome of this was a clean usable,
pragmatic approach to objects. The object model in Java is simple and easy to extend, while

simple types, such as integers, are kept as high-performance non-objects.
Robust

The multi-platform environment of the Web places extraordinary demands on a program,
because the program must execute reliably in a variety of systems. The ability to create robust
programs was given a high priority in the design of Java. Java is strictly typed language; it

checks your code at compile time and run time.

Java virtually eliminates the problems of memory management and de-allocation, which is
completely automatic. In a well-written Java program, all run time errors can —and should —be

managed by your program.

Java Database Connectivity

What Is JDBC?

JDBC 1is a Java API for executing SQL statements. (As a point of interest, JDBC is a
trademarked name and is not an acronym; nevertheless, JDBC is often thought of as standing for
Java Database Connectivity. It consists of a set of classes and interfaces written in the Java
programming language. JDBC provides a standard API for tool/database developers and makes it
possible to write database applications using a pure Java API.

Using JDBC, it is easy to send SQL statements to virtually any relational database. One can write
a single program using the JDBC API, and the program will be able to send SQL statements to
the appropriate database. The combinations of Java and JDBC lets a programmer write it once
and run it anywhere.

What Does JDBC Do?

Simply put, JDBC makes it possible to do three things:
1] Establish a connection with a database
11 Send SQL statements

[1 Process the results.

JDBC versus ODBC and other APIs

At this point, Microsoft's ODBC (Open Database Connectivity) API is that probably the most
widely used programming interface for accessing relational databases. It offers the ability to
connect to almost all databases on almost all platforms.

So why not just use ODBC from Java? The answer is that you can use ODBC from Java, but this
is best done with the help of JDBC in the form of the JDBC-ODBC Bridge, which we will cover
shortly. The question now becomes "Why do you need JDBC?" There are several answers to this

question:

1. ODBC is not appropriate for direct use from Java because it uses a C interface. Calls
from Java to native C code have a number of drawbacks in the security, implementation,
robustness, and automatic portability of applications.

2. A literal translation of the ODBC C API into a Java API would not be desirable. For

example, Java has no pointers, and ODBC makes copious use of them, including the

notoriously error-prone generic pointer "void *". You can think of JDBC as ODBC
translated into an object-oriented interface that is natural for Java programmers.

3. ODBC is hard to learn. It mixes simple and advanced features together, and it has
complex options even for simple queries. JDBC, on the other hand, was designed to keep
simple things simple while allowing more advanced capabilities where required.

4. A Java API like JDBC is needed in order to enable a "pure Java" solution. When ODBC
is used, the ODBC driver manager and drivers must be manually installed on every client
machine. When the JDBC driver is written completely in Java, however, JDBC code is
automatically installable, portable, and secure on all Java platforms from network
computers to mainframes.

Two-tier and Three-tier Models

The JDBC API supports both two-tier and three-tier models for database access.

In the two-tier model, a Java applet or application talks directly to the database. This requires a
JDBC driver that can communicate with the particular database management system being
accessed. A user's SQL statements are delivered to the database, and the results of those
statements are sent back to the user. The database may be located on another machine to which
the user is connected via a network. This is referred to as a client/server configuration, with the
user's machine as the client, and the machine housing the database as the server. The network can
be an Intranet, which, for example, connects employees within a corporation, or it can be the

Internet.

JAVA
Application Client machine
JDBC DEMS-proprietary protocol

Database server
DEMS

Java applet or
Htmlbrowser | (vjjent machine (GUI)
HTTP, RMI, or CORBA calls
Application
Berver (Java) . .
JDBC Server machine (business
DEMS- 1
S pmpfgiﬁar protoco
Database server
DEMS

In the three-tier model, commands are sent to a "middle tier" of services, which then send SQL
statements to the database. The database processes the SQL statements and sends the results back
to the middle tier, which then sends them to the user. MIS directors find the three-tier model very
attractive because the middle tier makes it possible to maintain control over access and the kinds
of updates that can be made to corporate data. Another advantage is that when there is a middle
tier, the user can employ an easy-to-use higher-level API which is translated by the middle tier
into the appropriate low-level calls. Finally, in many cases the three-tier architecture can provide

performance advantages.

Until now the middle tier has typically been written in languages such as C or C++, which offer
fast performance. However, with the introduction of optimizing compilers that translate Java
byte code into efficient machine-specific code, it is becoming practical to implement the middle
tier in Java. This is a big plus, making it possible to take advantage of Java's robustness,
multithreading, and security features. JDBC is important to allow database access from a Java

middle tier.

Database Specific APls

> Database
Server

Workstation

Presentation, business and data model processing logic into client
application

Server is typically a database server

Client sends SQL statements, retrieves raw data

JDBC Driver Types

The JDBC drivers that we are aware of at this time fit into one of four categories:

JDBC-ODBC bridge plus ODBC driver
Native-API partly-Java driver
JDBC-Net pure Java driver

0 T I N B

Native-protocol pure Java driver

JDBC-ODBC Bridge

If possible, use a Pure Java JDBC driver instead of the Bridge and an ODBC driver. This
completely eliminates the client configuration required by ODBC. It also eliminates the potential
that the Java VM could be corrupted by an error in the native code brought in by the Bridge (that
is, the Bridge native library, the ODBC driver manager library, the ODBC driver library, and the
database client library).

What Is the JDBC- ODBC Bridge?

The JDBC-ODBC Bridge is a JDBC driver, which implements JDBC operations by
translating them into ODBC operations. To ODBC it appears as a normal application
program. The Bridge implements JDBC for any database for which an ODBC driver is

available. The Bridge is implemented as the

Sun.jdbc.odbe Java package and contains a native library used to access ODBC. The Bridge

is a joint development of Innersole and Java Soft.

JDBC connectivity

The JDBC provides database-independent connectivity between the J2EE platform and a wide

range of tabular data sources. JDBC technology allows an Application Component Provider to:

O O 0o g o

Perform connection and authentication to a database server

Manager transactions

Move SQL statements to a database engine for preprocessing and execution
Execute stored procedures

Inspect and modify the results from Select statements

Database:

A database management system (DBMS) is computer software designed for the purpose of
managing databases, a large set of structured data, and run operations on the data requested by
numerous users. Typical examples of DBMSs include Oracle, DB2, Microsoft Access, Microsoft
SQL Server, Firebird, PostgreSQL, MySQL, SQLite, FileMaker and Sybase Adaptive Server
Enterprise. DBMSs are typically used by Database administrators in the creation of Database
systems. Typical examples of DBMS use include accounting, human resources and customer

support systems.

Originally found only in large companies with the computer hardware needed to support large
data sets, DBMSs have more recently emerged as a fairly standard part of any company back

office.

Description

A DBMS is a complex set of software programs that controls the organization, storage,

management, and retrieval of data in a database. A DBMS includes:

v/ A modeling language to define the schema of each database hosted in the DBMS, according
to the DBMS data model.

e The four most common types of organizations are the hierarchical, network, relational
and object models. Inverted lists and other methods are also used. A given database
management system may provide one or more of the four models. The optimal
structure depends on the natural organization of the application's data, and on the
application's requirements (which include transaction rate (speed), reliability,
maintainability, scalability, and cost).

e The dominant model in use today is the ad hoc one embedded in SQL, despite the
objections of purists who believe this model is a corruption of the relational model,
since it violates several of its fundamental principles for the sake of practicality and
performance. Many DBMSs also support the Open Database Connectivity API that

supports a standard way for programmers to access the DBMS.

v Data structures (fields, records, files and objects) optimized to deal with very large
amounts of data stored on a permanent data storage device (which implies relatively slow

access compared to volatile main memory).

v A database query language and report writer to allow users to interactively interrogate the
database, analyze its data and update it according to the users privileges on data.

e It also controls the security of the database.

e Data security prevents unauthorized users from viewing or updating the database.
Using passwords, users are allowed access to the entire database or subsets of it
called subschemas. For example, an employee database can contain all the data about
an individual employee, but one group of users may be authorized to view only
payroll data, while others are allowed access to only work history and medical data.

e If the DBMS provides a way to interactively enter and update the database, as well as
interrogate it, this capability allows for managing personal databases. However, it
may not leave an audit trail of actions or provide the kinds of controls necessary in a
multi-user organization. These controls are only available when a set of application

programs are customized for each data entry and updating function.

v A transaction mechanism, that ideally would guarantee the ACID properties, in order to
ensure data integrity, despite concurrent user accesses (concurrency control), and faults (fault
tolerance).

e [t also maintains the integrity of the data in the database.

e The DBMS can maintain the integrity of the database by not allowing more than one
user to update the same record at the same time. The DBMS can help prevent
duplicate records via unique index constraints; for example, no two customers with
the same customer numbers (key fields) can be entered into the database. See ACID

properties for more information (Redundancy avoidance).

The DBMS accepts requests for data from the application program and instructs the operating

system to transfer the appropriate data.

When a DBMS is used, information systems can be changed much more easily as the
organization's information requirements change. New categories of data can be added to the

database without disruption to the existing system.

Organizations may use one kind of DBMS for daily transaction processing and then move the
detail onto another computer that uses another DBMS better suited for random inquiries and
analysis. Overall systems design decisions are performed by data administrators and systems

analysts. Detailed database design is performed by database administrators.

Database servers are specially designed computers that hold the actual databases and run only the
DBMS and related software. Database servers are usually multiprocessor computers, with RAID
disk arrays used for stable storage. Connected to one or more servers via a high-speed channel,
hardware database accelerators are also used in large volume transaction processing

environments.

DBMSs are found at the heart of most database applications. Sometimes DBMSs are built
around a private multitasking kernel with built-in networking support although nowadays these

functions are left to the operating system.

SQL

Structured Query Language (SQL) is the language used to manipulate relational databases. SQL

is tied very closely with the relational model.

In the relational model, data is stored in structures called relations or tables.

SQL statements are issued for the purpose of:

Data definition: Defining tables and structures in the database (DDL used to create, alter and

drop schema objects such as tables and indexes).

Data manipulation: Used to manipulate the data within those schema objects (DML

Inserting, Updating, Deleting the data, and Querying the Database).

A schema is a collection of database objects that can include: tables, views, indexes and

sequences

List of SQL statements that can be issued against an Oracle database schema are:

e ALTER - Change an existing table, view or index definition (DDL)

e AUDIT - Track the changes made to a table (DDL)

e COMMENT - Add a comment to a table or column in a table (DDL)

e COMMIT - Make all recent changes permanent (DML - transactional)

e CREATE - Create new database objects such as tables or views (DDL)

e DELETE - Delete rows from a database table (DML)

e DROP - Drop a database object such as a table, view or index (DDL)

e GRANT - Allow another user to access database objects such as tables or views (DDL)
e INSERT - Insert new data into a database table (DML)

e No AUDIT - Turn off the auditing function (DDL)

e REVOKE - Disallow a user access to database objects such as tables and views (DDL)
e ROLLBACK - Undo any recent changes to the database (DML - Transactional)

e SELECT - Retrieve data from a database table (DML)

e TRUNCATE - Delete all rows from a database table (can not be rolled back) (DML)
e UPDATE - Change the values of some data items in a database table (DML)

SERVLETS

Introduction

The Java web server is JavaSoft's own web Server. The Java web server is just a part of a larger
framework, intended to provide you not just with a web server, but also with tools. To build
customized network servers for any Internet or Intranet client/server system. Servlets are to a

web server, how applets are to the browser.
About Servlets

Servlets provide a Java-based solution used to address the problems currently associated with
doing server-side programming, including inextensible scripting solutions, platform-specific
APIs, and incomplete interfaces.

Servlets are objects that conform to a specific interface that can be plugged into a Java-based
server. Servlets are to the server-side what applets are to the client-side - object byte codes that
can be dynamically loaded off the net. They differ from applets in that they are faceless objects
(without graphics or a GUI component). They serve as platform independent, dynamically
loadable, pluggable helper byte code objects on the server side that can be used to dynamically

extend server-side functionality.

For example, an HTTP Servlets can be used to generate dynamic HTML content. When you use

Servlets to do dynamic content you get the following advantages:

1 They’re faster and cleaner than CGI scripts
1 They use a standard API (the Servlets API)
"] They provide all the advantages of Java (run on a variety of servers without

needing to be rewritten).

Attractiveness of Servlets
There are many features of Servlets that make them easy and attractive to use. These include:
11 Easily configured using the GUI-based Admin tool
(1 Can be loaded and invoked from a local disk or remotely across the network.
11 Can be linked together, or chained, so that one Servlets can call another Servlets,

or several Servlets in sequence.

1 Can be called dynamically from within HTML pages, using server-side include
tags.
1 Are secure - even when downloading across the network, the Servlets security

model and Servlets sandbox protect your system from unfriendly behavior.

Advantages of the Servlet API
One of the great advantages of the Servlet API is protocol independence. It assumes nothing
about:

e The protocol being used to transmit on the net

e How it is loaded

e The server environment it will be running in

These qualities are important, because it allows the Servlet API to be embedded in many
different kinds of servers. There are other advantages to the Servlet API as well. These include:
e It’s extensible - you can inherit all your functionality from the base classes made
available to you.

e [t’s simple, small, and easy to use.
Features of Servlets:

e Servlets are persistent. Servlet are loaded only by the web server and can maintain
services between requests.

e Servlets are fast. Since Servlets only need to be loaded once, they offer much better
performance over their CGI counterparts.

e Servlets are platform independent.

e Servlets are extensible. Java is a robust, object-oriented programming language,
which easily can be extended to suit your needs

e Servlets are secure.

e Servlets can be used with a variety of clients.

e Web components
— Servlets or JSP pages
— JavaBeans (optional)

Web Tier

Web Browser

Web Pages,

Applets, and /

Optional Jav:';itnann JSP Pages JavaBeans Bue
Components Serviets Components u _?-.ﬂesg
Application Client (Optional) ier
cation n

and Optional

JavaBeans
Components

J2EE Server

Loading Servlets:

Servlets can be loaded from three places

From a directory that is on the CLASSPATH. The CLASSPATH of the JavaWebServer

includes service root/classes/ which is where the system classes reside.

From the <SERVICE ROOT /Servlets/ directory. This is *not* in the server’s class path. A
class loader is used to create Servlets from this directory. New Servlets can be added - existing

Servlets can be recompiled and the server will notice these changes.

From a remote location, for this a code base like http: // nine.eng / classes / foo / is required in
addition to the Servlets class name. Refer to the admin GUI docs on Servlet section to see how to

set this up.

Loading Remote Servlets

Remote Servlets can be loaded by:

1. Configuring the Admin Tool to setup automatic loading of remote Servlets
2. Setting up server side include tags in. shtml files

3. Defining a filter chain configuration
Invoking Servlets

A Servlet invoker is a Servlet that invokes the "service" method on a named Servlet. If the
Servlet is not loaded in the server, then the invoker first loads the Servlet (either from local disk
or from the network) and the then invokes the "service" method. Also like applets, local Servlets
in the server can be identified by just the class name. In other words, if a Servlet name is not
absolute, it is treated as local.

A client can invoke Servlets in the following ways:

e The client can ask for a document that is served by the Servlet.

e The client (browser) can invoke the Servlet directly using a URL, once it has been
mapped using the Servlet Aliases section of the admin GUI.

e The Servlet can be invoked through server side include tags.

e The Servlet can be invoked by placing it in the Servlets/ directory.

e The Servlet can be invoked by using it in a filter chain.

Java Server Pages (JSP)

Java server Pages is a simple, yet powerful technology for creating and maintaining
dynamic-content web pages. Based on the Java programming language, Java Server Pages
offers proven portability, open standards, and a mature re-usable component model .The Java
Server Pages architecture enables the separation of content generation from content
presentation. This separation not eases maintenance headaches; it also allows web team
members to focus on their areas of expertise. Now, web page designer can concentrate on
layout, and web application designers on programming, with minimal concern about

impacting each other’s work.

http://../administration/servlet_alias.html
http://ssinclude.html

Features of JSP

Portability:

Java Server Pages files can be run on any web server or web-enabled application server that
provides support for them. Dubbed the JSP engine, this support involves recognition,
translation, and management of the Java Server Page lifecycle and its interaction

components.
Components

It was mentioned earlier that the Java Server Pages architecture can include reusable Java
components. The architecture also allows for the embedding of a scripting language directly
into the Java Server Pages file. The components current supported include Java Beans, and

Servlets.
Processing

A Java Server Pages file is essentially an HTML document with JSP scripting or tags. The
Java Server Pages file has a JSP extension to the server as a Java Server Pages file. Before
the page is served, the Java Server Pages syntax is parsed and processed into a Servlet on the
server side. The Servlet that is generated outputs real content in straight HTML for

responding to the client.
Access Models:

A Java Server Pages file may be accessed in at least two different ways. A client’s request
comes directly into a Java Server Page. In this scenario, suppose the page accesses reusable
Java Bean components that perform particular well-defined computations like accessing a
database. The result of the Beans computations, called result sets is stored within the Bean as
properties. The page uses such Beans to generate dynamic content and present it back to the

client.

In both of the above cases, the page could also contain any valid Java code. Java Server

Pages architecture encourages separation of content from presentation.

EJB Application

[

1
-

Container

Applicatio
n Client

Web
Web- Server
Client

Steps in the execution of a JSP Application:

1.

The client sends a request to the web server for a JSP file by giving the name of the JSP

file within the form tag of a HTML page.

This request is transferred to the JavaWebServer. At the server side JavaWebServer

receives the request and if it is a request for a jsp file server gives this request to the JSP

engine.

JSP engine is program which can under stands the tags of the jsp and then it converts
those tags into a Servlet program and it is stored at the server side. This Servlet is loaded
in the memory and then it is executed and the result is given back to the JavaWebServer

and then it is transferred back to the result is given back to the JavaWebServer and then it

1s transferred back to the client.

Database Server
(RDBMS)

Legacy Systems

Eclipse IDE

Eclipse is an open-source software framework written primarily in Java. In its default form it is
an Integrated Development Environment (IDE) for Java developers, consisting of the Java
Development Tools (JDT) and the Eclipse Compiler for Java (ECJ). Users can extend its
capabilities by installing plug-ins written for the Eclipse software framework, such as
development toolkits for other programming languages, and can write and contribute their own

plug-in modules. Language packs are available for over a dozen languages.

Architecture

The basis for Eclipse is the Rich Client Platform (RCP). The following components constitute
the rich client platform:
v OSGi - a standard bundling framework
v/ Core platform - boot Eclipse, run plug-ins
v the Standard Widget Toolkit (SWT) - a portable widget toolkit
v JFace - viewer classes to bring model view controller programming to SWT, file buffers,
text handling, text editors

v the Eclipse Workbench - views, editors, perspectives, wizards

Eclipse's widgets are implemented by a widget toolkit for Java called SWT, unlike most Java
applications, which use the Java standard Abstract Window Toolkit (AWT) or Swing. Eclipse's
user interface also leverages an intermediate GUI layer called JFace, which simplifies the

construction of applications based on SWT.

Eclipse employs plug-ins in order to provide all of its functionality on top of (and including) the
rich client platform, in contrast to some other applications where functionality is typically hard
coded. This plug-in mechanism is a lightweight software componentry framework. In addition to
allowing Eclipse to be extended using other programming languages such as C and Python, the
plug-in framework allows Eclipse to work with typesetting languages like LaTeX, networking
applications such as telnet, and database management systems. The plug-in architecture supports
writing any desired extension to the environment, such as for configuration management. Java

and CVS support is provided in the Eclipse SDK.

The key to the seamless integration of tools with Eclipse is the plugin. With the exception of a

small run-time kernel, everything in Eclipse is a plug-in. This means that a plug-in you develop
integrates with Eclipse in exactly the same way as other plug-ins; in this respect, all features are

created equal.

The Eclipse SDK includes the Eclipse Java Development Tools, offering an IDE with a built-in
incremental Java compiler and a full model of the Java source files. This allows for advanced
refactoring techniques and code analysis. The IDE also makes use of a workspace, in this case a
set of metadata over a flat filespace allowing external file modifications as long as the
corresponding workspace "resource" is refreshed afterwards. The Visual Editor project allows

interfaces to be created interactively, hence allowing Eclipse to be used as a RAD tool.

The following is a list of notable projects and plugins for the Eclipse IDE.

These projects are maintained by the Eclipse community and hosted by the Eclipse Foundation.
1. Core projects

Rich Client Platform (Platform) is the core framework that all other Eclipse projects are built on.

Java Development Tools (JDT) provides support for core Java SE. This includes a standalone

fast incremental compiler.

Tools projects

C/C++ Development Tools (CDT) adds support for C/C++ syntax highlighting, code formatting,
debugger integration and project structures. Unlike the JDT project, the CDT project does not

add a compiler and relies on an external tool chain.

Graphical Editing Framework (GEF) allows developers to build standalone graphical tools.
Example use include circuit diagram design tools, activity diagram editors and WYSIWYG

document editors.

Web projects

J2EE Standard Tools (JST) extends the core JDT to include support for Java EE projects. This
includes EJBs, JSPs and Servlets.

PHP Development Tools (PDT)

Web Standard Tools (WST) adds standards compliant web development tools. These tools
include editors for XML, HTML and CSS.

Modelling projects

Eclipse Modeling Framework (EMF) a modeling framework and code generation facility for
building tools and other applications based on a structured data model, from a model

specification described in XMI.

Graphical Modeling Framework (GMF) is a generative component and runtime infrastructure for

developing graphical editors based on EMF and GEF.
Other projects

Test and Performance Tools Platform (TPTP) which provides a platform that allows software
developers to build test and performance tools, such as debuggers, profilers and benchmarking

applications.

Business Intelligence and Reporting Tools Project (BIRT), an Eclipse-based open source

reporting system for web applications, especially those based on Java EE.

Applications Server

An application server is a software engine that delivers applications to client computers or
devices, typically through the Internet and using the Hypertext Transfer Protocol. Application
servers are distinguished from web servers by the extensive use of server-side dynamic content

and frequent integration with database engines.
Common features

Application server products typically bundle middleware to enable applications to
intercommunicate with dependent applications, like web servers, database management systems,
and chart programs. Some application servers also provide an API, making them operating
system independent. Portals are a common application server mechanism by which a single point

of entry is provided to multiple devices.

Java application servers

J2EE Server

Web Browser Serviet JSP Page

Web Container

Application
Client

Application Enterprise Enterprise
Client - Bean Bean

Container
, E.JB Container
Client 9

Java EE Servers

Following the success of the Java platform, the term application server sometimes refers to a
Java Platform--Enterprise Edition (J2EE) or Java EE 5 application server. Among the better
known Java Enterprise Edition application servers are WebLogic Server (BEA), JBoss (Red
Hat), WebSphere (IBM), JRun (Adobe), Apache Geronimo (Apache Foundation, based on IBM
WebSphere), Oracle OC4J (Oracle Corporation), Sun Java System Application Server (Sun

Microsystems) and Glassfish Application Server (based on Sun Java System Application Server).

JOnAS application server was the first open source application server to have achieved official
compliance with the Java Enterprise Specification. BEA delivered the first Java EE 5 certified

application server followed by Sun Microsystems' reference implementation GlassFish.

The Web modules are servlets and JavaServer Pages, and business logic is built into Enterprise
JavaBeans (EJB-3 and later). The Hibernate project offers an EJB-3 container implementation
for the JBoss Application server. Tomcat from Apache and JOnAS from ObjectWeb are typical

of containers into which these modules can be put.

A Java Server Page (JSP) is a servlet from Java that executes in a Web container—the Java
equivalent of CGI scripts. JSPs are a way to create HTML pages by embedding references to the
server logic within the page. HTML coders and Java programmers can work side by side by
referencing each other's code from within their own. JavaBeans are the independent class

components of the Java architecture from Sun Microsystems.

The application servers mentioned above mainly serve Web applications. Some application
servers target networks other than the Web: Session Initiation Protocol servers, for instance,

target telephony networks.

JBOSS

JBoss Application Server (or JBoss AS) is a free software / open source Java EE-based
application server. Because it is Java-based, JBoss AS is cross-platform, usable on any operating

system that Java supports.
Environment

JBoss AS 4.0 is a J2EE 1.4 application server, with embedded Tomcat 5.5. Any JVM between
1.4 and 1.5 is supported. JBoss can run on numerous operating systems including Windows, Mac

OS X, many POSIX platforms, and others, as long as a suitable JVM is present.

JBoss AS 4.2 is also a J2EE 1.4 application server, but EJB 3 is deployed by default. It requires
JDK 5. Tomcat 6 is bundled with it.

Next JBoss AS 5 will be Java EE 5 application server.
Product features
e (lustering
e Failover (including sessions)
e [oad balancing
e Distributed caching (using JBoss Cache, a standalone product)
e Distributed deployment (farming)

e Enterprise JavaBeans version 3

SCREENS

Login page

&1 e | Haiiles by Fras Gas Taiulbiies - sieiosuii st ol ey

Fil= Edit jew Favorites Tools Help

@Back -~) - [¥] [» O search o7 Favories @‘ﬁv = - [L2 i
Address |@ http: ({192,168, 1.1:8080/U45/ B = @ M

home university status examschdule logout

loginform

Uzarnams |ash0k |

Password |uu.| |

Forgot Password ?......

Mawusersign Up ! ...]
|
a 11 (e |

7} Matural Beauties by .., ol B9, 7izpM

&1 iy B e i Froo Csg Tanubies - pllerosufn gizipzs Booloyay

File Edit View Favorites Tools Help

QBack ~ O - [¥] & G ﬁSearch ﬁFavorites @‘@' & = - LJ E 6
Address |a hkbp: 192,165, 1. 1: 3050/UAS! AdminYiew. jsprstabus='Welcome =2 0ashok _il &0 @ T

home viewstudents universites COLITSES seats log

Weleome to the Administrator

—_—
| | | | | # Internet

: ol 2P, 7igPmM

ANEtimalBe Ut Es g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay

File Edit View Favorites Tools Help

QBack -~ & - [¥] 2] ﬁ ﬁSearch ﬁFavorites @‘ﬁ' & = - L Eﬁ

Address |a hktp: 192,165, 1. 1: 3050 /UAS! Adminkiew, jsp?status="Nelcome%:20ashok

home

Weleome to the &

ashok

AN EEBEINTes g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay

File Edit View Favorites Tools Help

QBack ~ O - [¥] & ﬁ pSearch ﬁFavorites @‘@' & = - L Eﬁ

Address |ﬂ htbp: /1192, 168, 1. 1:8080/UAS Viewregistr ations1 . jsp

ashok

Total Registar Students
| b e R et ST]

AN EEBEINTes g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay

File Edit View Favorites Tools Help E
QBack ~ O - [¥] & ﬁ 7 search <7 Favorites @‘@v & =R E i

Address |ﬂ http: /1192,168,1.1:8080/UAS Viewacceptedregistrations. jsp = [@

Welcome to the Administrator

lashok

Selected Students

AN EEBEINTes g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay

File Edit View Favorites Tools Help n
QBack ~ O - [¥] & ﬁ D search < Favorites 4 ‘ @v & =R E i
Address |ﬂ http:192.168,1.1:8080/UAS/RegectedShudent. jsp = [@ v

home viewstudents universites COLITSES seats logoud

come to the Administrator

ok

REGECTEDSTUDENTS

2} Matural Beauties by ? '# 7120 PM

AN EEBEINTes g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay

File Edit View Favorites Tools Help E
QBack ~ O - [¥] & ﬁ D search < Favorites 4 ‘ @v & =R E i
Address |ﬂ http:192.168,1.1:8080/UAS/RegectedShudent. jsp = [@ v

home viewstudents universites COLITSES seats logoud

come to the Administrator

ok

REGECTEDSTUDENTS

AN EEBEINTes g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay

Fle Edt View Favortes Tools Help ax
Qeack = 0 [®) 2] b O search < Favories e‘@v 2 EB-U&L
Address | @] http:{192.168.1.1:5080/UAS/CheckCollege jsp = o % o
[~]
home viewstudents universites COUISES seats log

colleges

CoEgENGmEN <<

ol HE, 721Pm

& sl R i U iy psiies, st smpiing uags - sliefosofn [ienes S lupay

Fle Edt View Favortes Tools Help o~
Qeack = 0 [®) 2] b O search < Favories e‘@v 2 EB-U&L
Address | @] http:{192.168.1. 1:50B0/LAS AdminviewUniverskys. sp = e % -
[~]
home viewstudents universites COUISES seats log

university
details

ol HE, 72zpPm

AN EEBEINTes g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay

File Edit View Favorites Tools Help E
QBack ~ O - [¥] & ﬁ 7 search <7 Favorites @‘@v & =R E i

Address |a htkp: /192,168, 1,1:8080/UA5/DeleteCallege jsp

colleges

&) | | | | | |) Internet |

Edit View

ANEtimalBe Ut Es g Froo Cog Toubies - plleyosufn [pizrnas Sonluyay
File

Favorites Tools Help

QBack ~ O - [¥] & ﬁ 7 search <7 Favorites @‘@' & = - 0D E ©
Address |a http: 192,168, 1. 1:6080/UAS DeleteCallzge. jsp

colleges

| | DeleteCaolleges |

¥ Matural Beauties by ...

ol HY, 7zzpm

€1) [ainrs Healiles Uy Froz Css Taiioluizs - sieiosoi lpisrnst Eeoluizy

File Edit ‘iew Favorites Tools Help #
QsBak ~ &) - [¢) [@ @0 O search 5% Favorites e‘@v @ B-UER®B
Address |@ http: /192,168, 1.1:8080{UAS ProcessColleges.jsp (= [% -
home viewstudents universites COLITSES seats log
colleges
Colleges Regesitration
Canceled Successful
]

ol HO, 7z3PM

"E»Natural Hesibijzs by Frazs Cos Tapnulaizs - silefusufn [nizinz Bluray

File Edt View Favorites Tools Help L
QBack -) - [¥] [(n SO search v Favorites £ ‘ G- & - O @@
Address |@ http:/i192.168.1.1:8080{UAS/AddCourses. jsp B co % =
[~]
home viewstudents universites COUTSeES seats log
AddCoursest Details
Processing Details

Weleome to the Administrator Issue HallTickets

ashok

&1 uiuyal HesUilas by Fres Cag Toolies - sierosofi lisrnet Boloyay

File Edit ‘iew Favorites Tools Help

QBack -) - [¥] [(n O search <7 Favorites @‘@v =N - O @@
Address |@ http:ff192.168.1.1:8080/UA5Processing. jsp Go % -

home viewstudents universites COUrses seats

Welcome to the Administrator

ashok

Selectad Students

ol HE, 727 pM

€1) [ainr | Hualilos by Fras Css Tagioliss - sieiosof lpisrnet Beoloisy

File Edit ‘jew Fawvorites Tools Help ”
@Back -~) - [¥] [& O search <7 Favoriees @‘@v = - [2 i

Address |a http: 192,168, 1. 1:6080/UA435) InsertHall Ticket . jsp

home viewstudents universites seats log
Welcome to the Administrator
ashok
&l | | | | | | # Internet |

ol HO, 7z7pm

£) faiiral BaaUiles by Fras Gos Teiobiies - shioiosoft loiernet Beolora)

File Edit ‘iew Favorites Tools Help n
QBack -) - [¥] [(n SO search v Favorites £ ‘ G- & - O @@
Address |@ http:ff192.168.1.1:8080/UAS ProcessYiewColleges. jsprrale=admin Go % -

home viewstudents universites 0OUTSeS seats log

ashok

Collagallame | ADICOLLEGES |

YWiewCourses

&) | | | | | | & Internet |

E) / 7} Matural Beauties by ... 1] -] y @, 727 M

£) faiiral BaaUiles by Fras Gos Teiobiies - shioiosoft loiernet Beolora)

File Edit ‘iew Favorites Tools Help a
QBack -) - [¥] [(n SO search v Favorites £ ‘ G- & - O @@
Address |@ http:ff192.168.1.1:8080/UAS View ollegeCourses. jsp?eollegename=AaDICOLLEGES&send=YiewCourses Go % -

home viewstudents universites 0OUTSeS seats log

Weleome to the Administrator

ashaolk
Collegellame (Course Branch Noofseats BECSeats SCseats
|&DICOLLEGES [B.Tech T las lzo 1o
|ADICOLLEGES [B-TECH |EEE lao las 1z

&) | | | | | | & Internet |

E (%) / 7} Matural Beauties by ... 1] -] ? @, 7z PH

€1) it | Heaiiog Uy Fras Gss Taiuliisg - sheiosuit lnisrnst elyisy

File= Edit \jew Favorites Tools Help H
Qeak - O - [F & ﬁ 7 search < Favorites e‘@v & -~ [E i

Address |a hkkp: 192,165, 1. 1:8050/UAS Viewall Zolleges. jspProle=admin

home viewstudents universites COUISES seats log

Welcome to the Administrator

ashok

[~
@ | | | | | |) Internet |
) ol B9, 7zzpm

Testing

TESTING

Software Testing is the process used to help identify the correctness, completeness, security, and
quality of developed computer software. Testing is a process of technical investigation,
performed on behalf of stakeholders, that is intended to reveal quality-related information about
the product with respect to the context in which it is intended to operate. This includes, but is not
limited to, the process of executing a program or application with the intent of finding errors.
Quality is not an absolute; it is value to some person. With that in mind, testing can never
completely establish the correctness of arbitrary computer software; testing furnishes a criticism
or comparison that compares the state and behaviour of the product against a specification. An
important point is that software testing should be distinguished from the separate discipline of
Software Quality Assurance (SQA), which encompasses all business process areas, not just

testing.

There are many approaches to software testing, but effective testing of complex products is
essentially a process of investigation, not merely a matter of creating and following routine
procedure. One definition of testing is "the process of questioning a product in order to evaluate
it", where the "questions" are operations the tester attempts to execute with the product, and the
product answers with its behavior in reaction to the probing of the tester[citation needed].
Although most of the intellectual processes of testing are nearly identical to that of review or
inspection, the word testing is connoted to mean the dynamic analysis of the product—putting
the product through its paces. Some of the common quality attributes include capability,
reliability, efficiency, portability, maintainability, compatibility and usability. A good test is
sometimes described as one which reveals an error; however, more recent thinking suggests that
a good test is one which reveals information of interest to someone who matters within the

project community.

Introduction

In general, software engineers distinguish software faults from software failures. In case of a
failure, the software does not do what the user expects. A fault is a programming error that may
or may not actually manifest as a failure. A fault can also be described as an error in the
correctness of the semantic of a computer program. A fault will become a failure if the exact

computation conditions are met, one of them being that the faulty portion of computer software

executes on the CPU. A fault can also turn into a failure when the software is ported to a
different hardware platform or a different compiler, or when the software gets extended.
Software testing is the technical investigation of the product under test to provide stakeholders

with quality related information.

Software testing may be viewed as a sub-field of Software Quality Assurance but typically exists
independently (and there may be no SQA areas in some companies). In SQA, software process
specialists and auditors take a broader view on software and its development. They examine and
change the software engineering process itself to reduce the amount of faults that end up in the
code or deliver faster.

Regardless of the methods used or level of formality involved the desired result of testing is a
level of confidence in the software so that the organization is confident that the software has an
acceptable defect rate. What constitutes an acceptable defect rate depends on the nature of the
software. An arcade video game designed to simulate flying an airplane would presumably have
a much higher tolerance for defects than software used to control an actual airliner.

A problem with software testing is that the number of defects in a software product can be very
large, and the number of configurations of the product larger still. Bugs that occur infrequently
are difficult to find in testing. A rule of thumb is that a system that is expected to function
without faults for a certain length of time must have already been tested for at least that length of
time. This has severe consequences for projects to write long-lived reliable software.

A common practice of software testing is that it is performed by an independent group of testers
after the functionality is developed but before it is shipped to the customer. This practice often
results in the testing phase being used as project buffer to compensate for project delays. Another
practice is to start software testing at the same moment the project starts and it is a continuous
process until the project finishes.

Another common practice is for test suites to be developed during technical support escalation
procedures. Such tests are then maintained in regression testing suites to ensure that future

updates to the software don't repeat any of the known mistakes.

It is commonly believed that the earlier a defect is found the cheaper it is to fix it.

Time Detected

System Post-Release

Time Introduced Requirements Architecture Construction

Test
Requirements 1 3 5-10 10 10-100
Architecture - 1 10 15 25-100
Construction - - 1 10 10-25

In counterpoint, some emerging software disciplines such as extreme programming and the agile
software development movement, adhere to a "test-driven software development" model. In this
process unit tests are written first, by the programmers (often with pair programming in the
extreme programming methodology). Of course these tests fail initially; as they are expected to.
Then as code is written it passes incrementally larger portions of the test suites. The test suites
are continuously updated as new failure conditions and corner cases are discovered, and they are

integrated with any regression tests that are developed.

Unit tests are maintained along with the rest of the software source code and generally integrated
into the build process (with inherently interactive tests being relegated to a partially manual build

acceptance process).

The software, tools, samples of data input and output, and configurations are all referred to

collectively as a test harness.
History

The separation of debugging from testing was initially introduced by Glenford J. Myers in his
1978 book the "Art of Software Testing". Although his attention was on breakage testing it
illustrated the desire of the software engineering community to separate fundamental
development activities, such as debugging, from that of verification. Drs. Dave Gelperin and
William C. Hetzel classified in 1988 the phases and goals in software testing as follows: until
1956 it was the debugging oriented period, where testing was often associated to debugging:
there was no clear difference between testing and debugging. From 1957-1978 there was the
demonstration oriented period where debugging and testing was distinguished now - in this
period it was shown, that software satisfies the requirements. The time between 1979-1982 is
announced as the destruction oriented period, where the goal was to find errors. 1983-1987 is

classified as the evaluation oriented period: intention here is that during the software lifecycle a

product evaluation is provided and measuring quality. From 1988 on it was seen as prevention
oriented period where tests were to demonstrate that software satisfies its specification, to detect
faults and to prevent faults. Dr. Gelperin chaired the IEEE 829-1988 (Test Documentation
Standard) with Dr. Hetzel writing the book "The Complete Guide of Software Testing". Both
works were pivotal in to today's testing culture and remain a consistent source of reference. Dr.
Gelperin and Jerry E. Durant also went on to develop High Impact Inspection Technology that

builds upon traditional Inspections but utilizes a test driven additive.

White-box and black-box testing

To meet Wikipedia's quality standards, this section may require cleanup.

Please discuss this issue on the talk page, and/or replace this tag with a more specific message.

White box and black box testing are terms used to describe the point of view a test engineer takes
when designing test cases. Black box being an external view of the test object and white box
being an internal view. Software testing is partly intuitive, but largely systematic. Good testing
involves much more than just running the program a few times to see whether it works.
Thorough analysis of the program under test, backed by a broad knowledge of testing techniques
and tools are prerequisites to systematic testing. Software Testing is the process of executing
software in a controlled manner; in order to answer the question “Does this software behave as
specified?” Software testing is used in association with Verification and Validation. Verification
is the checking of or testing of items, including software, for conformance and consistency with
an associated specification. Software testing is just one kind of verification, which also uses
techniques as reviews, inspections, walk-through. Validation is the process of checking what has

been specified is what the user actually wanted.

e Validation: Are we doing the right job?
e Verification: Are we doing the job right?

In order to achieve consistency in the Testing style, it is imperative to have and follow a set of
testing principles. This enhances the efficiency of testing within SQA team members and thus
contributes to increased productivity. The purpose of this document is to provide overview of the

testing, plus the techniques.

At SDEI, 3 levels of software testing is done at various SDLC phases

e Unit Testing: in which each unit (basic component) of the software is tested to verify that
the detailed design for the unit has been correctly implemented

e Integration testing: in which progressively larger groups of tested software components
corresponding to elements of the architectural design are integrated and tested until the
software works as a whole.

e System testing: in which the software is integrated to the overall product and tested to

show that all requirements are met
A further level of testing is also done, in accordance with requirements:

e Acceptance testing: upon which the acceptance of the complete software is based. The
clients often do this.
e Regression testing: is used to refer the repetition of the earlier successful tests to ensure

that changes made in the software have not introduced new bugs/side effects.

In recent years the term grey box testing has come into common usage. The typical grey box
tester is permitted to set up or manipulate the testing environment, like seeding a database, and
can view the state of the product after his actions, like performing a SQL query on the database
to be certain of the values of columns. It is used almost exclusively of client-server testers or
others who use a database as a repository of information, but can also apply to a tester who has to
manipulate XML files (DTD or an actual XML file) or configuration files directly. It can also be
used of testers who know the internal workings or algorithm of the software under test and can
write tests specifically for the anticipated results. For example, testing a data warchouse
implementation involves loading the target database with information, and verifying the

correctness of data population and loading of data into the correct tables.

Test levels

e Unit testing tests the minimal software component and sub-component or modules by the
programmers.

e Integration testing exposes defects in the interfaces and interaction between integrated
components (modules).

e Functional testing tests the product according to programmable work.

e System testing tests an integrated system to verify/validate that it meets its requirements.

e Acceptance testing testing can be conducted by the client. It allows the end-user or
customer or client to decide whether or not to accept the product. Acceptance testing may
be performed after the testing and before the implementation phase. See also
Development stage

o Alpha testing is simulated or actual operational testing by potential
users/customers or an independent test team at the developers' site. Alpha testing
is often employed for off-the-shelf software as a form of internal acceptance
testing, before the software goes to beta testing.

o Beta testing comes after alpha testing. Versions of the software, known as beta
versions, are released to a limited audience outside of the company. The software
is released to groups of people so that further testing can ensure the product has
few faults or bugs. Sometimes, beta versions are made available to the open

public to increase the feedback field to a maximal number of future users.

It should be noted that although both Alpha and Beta are referred to as testing it is in fact use
emersion. The rigors that are applied are often unsystematic and many of the basic tenets of
testing process are not used. The Alpha and Beta period provides insight into environmental and

utilization conditions that can impact the software.

After modifying software, either for a change in functionality or to fix defects, a regression test
re-runs previously passing tests on the modified software to ensure that the modifications haven't
unintentionally caused a regression of previous functionality. Regression testing can be

performed at any or all of the above test levels. These regression tests are often automated.

Test cases, suites, scripts and scenarios

A test case is a software testing document, which consists of event, action, input, output,
expected result and actual result. Clinically defined (IEEE 829-1998) a test case is an input and
an expected result. This can be as pragmatic as 'for condition x your derived result is y', whereas
other test cases described in more detail the input scenario and what results might be expected. It
can occasionally be a series of steps (but often steps are contained in a separate test procedure
that can be exercised against multiple test cases, as a matter of economy) but with one expected
result or expected outcome. The optional fields are a test case ID, test step or order of execution
number, related requirement(s), depth, test category, author, and check boxes for whether the test
is automatable and has been automated. Larger test cases may also contain prerequisite states or
steps, and descriptions. A test case should also contain a place for the actual result. These steps
can be stored in a word processor document, spreadsheet, database or other common repository.
In a database system, you may also be able to see past test results and who generated the results
and the system configuration used to generate those results. These past results would usually be

stored in a separate table.

The term test script is the combination of a test case, test procedure and test data. Initially the
term was derived from the byproduct of work created by automated regression test tools. Today,

test scripts can be manual, automated or a combination of both.

The most common term for a collection of test cases is a test suite. The test suite often also
contains more detailed instructions or goals for each collection of test cases. It definitely contains
a section where the tester identifies the system configuration used during testing. A group of test

cases may also contain prerequisite states or steps, and descriptions of the following tests.

Collections of test cases are sometimes incorrectly termed a test plan. They might correctly be
called a test specification. If sequence is specified, it can be called a test script, scenario or

procedure.
A sample testing cycle

Although testing varies between organizations, there is a cycle to testing:

1. Requirements Analysis: Testing should begin in the requirements phase of the software

development life cycle.

During the design phase, testers work with developers in determining what aspects of a

design are testable and under what parameter those tests work.

2. Test Planning: Test Strategy, Test Plan(s), Test Bed creation.

3. Test Development: Test Procedures, Test Scenarios, Test Cases, Test Scripts to use in
testing software.

4. Test Execution: Testers execute the software based on the plans and tests and report any
errors found to the development team.

5. Test Reporting: Once testing is completed, testers generate metrics and make final reports
on their test effort and whether or not the software tested is ready for release.

6. Retesting the Defects

Not all errors or defects reported must be fixed by a software development team. Some may be
caused by errors in configuring the test software to match the development or production
environment. Some defects can be handled by a workaround in the production environment.
Others might be deferred to future releases of the software, or the deficiency might be accepted
by the business user. There are yet other defects that may be rejected by the development team

(of course, with due reason) if they deem it inappropriate to be called a defect.

Limitations and Scope for Future Enhancements:

Limitations of the system:
) Only the permanent employees can access the system.
° System works in all platforms and its compatible environments.

° Advanced techniques are not used to check the authorization.

Future Enhancements

It is not possible to develop a system that makes all the requirements of the user. User
requirements keep changing as the system is being used. Some of the future enhancements that

can be done to this system are:

e As the technology emerges, it is possible to upgrade the system and can be adaptable to
desired environment.

e Because it is based on object-oriented design, any further changes can be easily
adaptable.

e Based on the future security issues, security can be improved using emerging
technologies.

e Attendance module can be added

sub admin module can be added

Project Summary

The University Admission System has been developed in order to automate the complete
admission system starting from the notification to admission process. It also includes the

Statistical reports on daily activities in the admission process.

This application software has been computed successfully and was also tested successfully by
taking “test cases”. It is user friendly, and has required options, which can be utilized by the user

to perform the desired operations.

The software is developed using Java as front end and Oracle as back end in Windows

environment. The goals that are achieved by the software are:

Instant access.

Improved productivity.

Optimum utilization of resources.

Efficient management of records.

Simplification of the operations.

Less processing time and getting required information.

User friendly.

SR S X X X <X X<«

Portable and flexible for further enhancement.

References

Core Java™ 2 Volume I — Fundamentals 7" Edition

Pearson Education — Sun Microsystems

Core Java™ 2 Volume II — Advanced

Pearson Education — Sun Microsystems

Head First Servlets & JSP
O’Reilly — SPD

The Book of JavaScript 2™ Edition
SPD

Effective Java — Programming Language Guide

Pearson Education — Sun Microsystems

Java Database Best Practices

O’Reilly — SPD

JBoss — A Developers Notebook
O’Reilly — SPD

Cay S. Hortsman
Gary Cornell

Cay S. Hortsman
Gary Cornell

Eric Freeman

Elisabeth Freeman

thau

Joshua Bloch

George Reese

Norman Richards

Sam Griffith

	Importance of Java to the Internet
	
	Java can be used to create two types of programs
	Features of Java Security
	Portability
	The Byte code
	Java Virtual Machine (JVM)
	
	
	Java Architecture
	Compilation of code
	History
	White-box and black-box testing
	Test levels
	Test cases, suites, scripts and scenarios
	A sample testing cycle

