

University Admission System

CONTENTS

1.​ Introduction​​ ​ ​ ​ ​ ​ 1​

2.​ Feasible Study ​ ​ ​ ​ ​ ​ ​ 2

3. Existing System – Proposed System ​ ​ 15​

4.​ Technology Used​ ​ ​ ​ ​ ​ ​ 16​

4.1.​ HTML​
4.2.​ JAVA SCRIPT
4.3.​ Oracle​ ​ ​ ​ ​ ​ ​ 16​
4.4.​ J2EE​ ​ ​ ​ ​ ​ ​ ​ 22​

4.4.1.​ JDBC​ ​ ​ ​ ​ ​ 23​
4.4.2.​ Servlets​ ​ ​ ​ ​ ​ 27​
4.4.3.​ JSP​ ​ ​ ​ ​ ​ ​ 29​
4.4.4.​ Apache Jakarta Tomcat​ ​ ​ ​ 32​

5.​ Methodology Used​​ ​ ​ ​ ​ ​ 35​

6.​ UML Diagrams​ ​ ​ ​ ​ ​ ​ 37

6.1​ Use Case Diagram​​ ​ ​ ​ ​ 37
6.2​ Sequence Diagrams​ ​ ​ ​ ​ 38
6.3​ Collaboration Diagrams​ ​ ​ ​ ​ 48
6.4​ Class Diagram​ ​ ​ ​ ​ ​ 58
6.5​ Deployment Diagram​ ​ ​ ​ ​ 59

7. Data Flow Diagrams

8.​ Physical Database Design​ ​ ​ ​ ​ 60

9.​ Screens​ ​ ​ ​ ​ ​ ​ ​ 66

10.​ Testing​ ​ ​ ​ ​ ​ ​ ​ 99

11.​ Software & Hardware Specifications​ ​ ​ ​ 101

12. Conclusion

13. Bibliography

Abstract

Vision University wants to computerize its admission process for higher
education courses.

Project
Specification

Basic objectives are to extend their reach to geographically scattered
students, reducing time in activities, centralized data handling and
paperless admission with reduced manpower. Cost cutting, operational
efficiency, consist view of data and integration with other institutions
are other factors. Main challenges are effectively sync internal and
external operations in such a manner that job can be finished within
time limit and integration with different agencies on an agreed upon
common data format.

Function (Admin/
Finance etc)

●​ Selling of forms (through site and manual).
●​ Marks & details verifications of filled forms for eligibility

checking.
●​ Sending call letters to eligible candidates for entrance exam.
●​ Online marks checking and merit list
●​ Sending offer letters for short listed candidates.
●​ Counseling, Admission and hostel allotment
●​ Statistical reports on daily activities are highly desirable feature

Location Computerization Objectives
User interface
Requirements

Browser based

Database
Requirements

Distributed

Integration
Requirements

In this process University is interacting with different systems like
different school boards for marks verification, or individual hostel
management systems or college level student management systems.
XML would be the preferred way of all kind of inputs and outputs
between other existing systems and your admission system.

Preferred
Technologies

Solutions must be created using
●​ HTML, CSS (Web Presentation)
●​ JavaScript (Client-side Scripting)
●​ Java (as programming language)
●​ JDBC, JNDI, Servlets, JSP (for creating web applications)
●​ Eclipse with My Eclipse Plug-in (IDE/Workbench)
●​ Oracle/DB2 (Database)
●​ Windows XP/2003 or Linux/Solaris (Operating System)
●​ BEA Web Logic/JBoss/Web Sphere (Server Deployment)

Other Details The application should be highly secured and with different levels &
categories of access control.

1.​ Introduction

Purpose
The University Admission System has been developed in order to automate the complete

admission system starting from the notification to admission process. It also includes the

Statistical reports on daily activities in the admission process.

The system enables online admissions saving the time of the geographically scattered students.

It enables reducing time in activities, centralized data handling and paperless admission with

reduced manpower. It improves the operational efficiency and reduces the cost. It also provides

consist view of data and integration with other institutions for verification of marks and details.

Scope

●​ Create different system users and assign different roles with related permissions.

●​ The Notification will be released through online and manually.

●​ Students can apply online or offline.

●​ Verification of marks/details done by interacting with different agencies like school

boards or college management systems.

●​ Hall tickets will be issued for eligible candidates.

●​ Ranks will be generated depending upon the marks obtained for qualified candidates

and call letters will be send to short listed candidates.

●​ Admissions will be done online, saving the time of students.

●​ Centralized data maintained.

●​ The seats management will be done by the convener online and availability of seats

announced.

●​ Statistical reports on daily activities in the admission process will be generated.

●​ The system provides security through password authentication. The Administrative

staff and system administrators have their own login ids and these ids help in

maintain the integrity of the system.

Definition, Acronyms, Abbreviations

Definitions: This glossary contains the working definitions for the key concepts in the

system.

●​ Login: This is used to authenticate the user of the system.

●​ Administrator: A person who is responsible for working of a system.

●​ Database: It stores the information of the entire admission system and student

details.

●​ Notification: Gives the details of the examination, Schedule, courses, eligibility

criteria and syllabus for the examination.

●​ Hall ticket: This card provides the unique number for each applicant and it is

used as the entrance pass for the examination. It contains the photograph of the

student also.

●​ Rank card: Depending upon the marks obtained the results /merit list is

provided using a unique number called rank.

●​ Admission: If the student allotted a seat it is called as admission.

●​ Seats Management: Adding and deletion of seats to the counseling,

cancelling admissions.

●​ Report: It is statement describing in details about the cumulative things

happened in a period.

Abbreviations

●​ UML​ ​ ​ Unified Modeling Language

●​ JSP ​ ​ ​ Java Server Pages

●​ J2EE​ ​ ​ Java 2 Enterprise Edition

●​ EJB​ ​ ​ Enterprise Java Beans

●​ DB2​ ​ ​ Data Base

●​ WAS​ ​ ​ Web Sphere Application Server

●​ WSAD​​ ​ Web Sphere Studio Application Developer

●​ HTTP​ ​ ​ Hyper Text Transfer Protocol

●​ TCP/IP​ ​ Transmission Control Protocol

​ ​

Acronyms

●​ E.D.C.​​ ​ Electronic Data Change

●​ D.D. ​ ​ ​ Demand Draft

●​ O.C ​ ​ ​ Open Category

●​ S.C​ ​ ​ Scheduled Castes

●​ B.C​ ​ ​ Backward Castes

●​ S.T.​ ​ ​ Scheduled Tribes

Overview
The Department Committee draws up a time schedule for admission and also decides on the

criteria for section and sends its recommendation to the graduation committee. Once this done,

the following procedure is to be followed.

1.​ The university meets to finalize the draft advertisement, criteria for admission and

preparation of the merit list.

2.​ All application forms received by the Departments are listed in order of merit and sent to

the Admission Section. The Admission Section prepares merit list of students other than

University which after being approved by the departmental committee, is sent back to the

admission section along with the application forms for further checking by a specific

date.

3.​ The merit list is complied according to the criteria as decided by the committee and the

principles of reservation as University Rules.

4.​ After the checking of the forms by the admission committee, the committee is to meet

again to consider and finalize the merit list within a specific date. The prepared merit list

should be prominently displayed at least three days before the actual admission.

5.​ The admission section is then to proceed with the admission through counseling within

the due date.

2.​ Feasibility Study

Economic Feasibility

Economic feasibility attempts 2 weigh the costs of developing and implementing a new system,

against the benefits that would accrue from having the new system in place. This feasibility study

gives the top management the economic justification for the new system.

A simple economic analysis which gives the actual comparison of costs and benefits are much

more meaningful in this case. In addition, this proves to be a useful point of reference to compare

actual costs as the project progresses. There could be various types of intangible benefits on

account of automation. These could include increased customer satisfaction, improvement in

product quality better decision making timeliness of information, expediting activities, improved

accuracy of operations, better documentation and record keeping, faster retrieval of information,

better employee morale.

Operational Feasibility

Proposed project is beneficial only if it can be turned into information systems that will meet the

organizations operating requirements. Simply stated, this test of feasibility asks if the system will

work when it is developed and installed. Are there major barriers to Implementation? Here are

questions that will help test the operational feasibility of a project:

Is there sufficient support for the project from management from users? If the current system is

well liked and used to the extent that persons will not be able to see reasons for change, there

may be resistance.

Are the current business methods acceptable to the user? If they are not, Users may welcome a

change that will bring about a more operational and useful systems.

Have the user been involved in the planning and development of the project?

Early involvement reduces the chances of resistance to the system and in general and increases

the likelihood of successful project.

Since the proposed system was to help reduce the hardships encountered. In the existing manual

system, the new system was considered to be operational feasible.

Technical Feasibility

Evaluating the technical feasibility is the trickiest part of a feasibility study. This is because, .at

this point in time, not too many detailed design of the system, making it difficult to access issues

like performance, costs on (on account of the kind of technology to be deployed) etc. A number

of issues have to be considered while doing a technical analysis.

Understand the different technologies involved in the proposed system before commencing the

project we have to be very clear about what are the technologies that are to be required for the

development of the new system. Find out whether the organization currently possesses the

required technologies. Is the required technology available with the organization?

3.​ Existing System - Proposed System

 ​ ​

Existing System:

The Current System is a browser which is not totally computerized especially for university

admission process. The system takes lots of time in performing different activities, and there is

no centralized data handling. There is no integration in the current system upon common data

format.

 ​ ​ ​
Proposed System:

The Proposed system is a browser which is completely related to internet browsing. The web

enabled information management system designed to automate the entire operations of a modern.

This system allows multi-divisional, multi-department system handling that includes various

activities.

Software Requirement Specification
 ​

Software Requirements:

Operating System​ ​ ​ :​ ​ Windows XP/2003 or Linux/Solaris

User Interface​​ ​ :​ ​ HTML, CSS

Client-side Scripting​ ​ :​ ​ JavaScript

Programming Language​ ​ :​ ​ Java

Web Applications​ ​ ​ :​ ​ JDBC, JNDI, Servlets, JSP

IDE/Workbench​ ​ ​ :​ ​ Eclipse with MyEclipse Plug-in

Database​ ​ ​ ​ :​ ​ Access

Server Deployment​ ​ ​ :​ ​ RetHat JBoss AS

Hardware Requirements :

Processor​ ​ ​ ​ :​ ​ Pentium IV

Hard Disk​ ​ ​ ​ :​ ​ 40GB

RAM​ ​ ​ ​ ​ :​ ​ 256MB

System Design
 ​ ​

Architecture Diagram :

Authentication
Functional Description

Admin users - Has full access to all the modules of this system. Responsible for the accounts

of all students, colleges and remittances. Prepares and submits also Daily Reports, student

reports, colleges reports, etc,.

Reports:
All frequently used reports at the click of a button

All reports can be previewed, printed, exported to Excel/Word etc., or can be export to PDF,

XML, etc.

Students – Has restricted access. i.e., students have access to some of the modules only i.e.

user can see the college list and seats list of all products and can take hall ticket through online.

User Interface:
Soothing Graphical User Interface with Context Sensitive Help

Totally Menu Driven, with Keyboard Shortcuts for frequently used forms

All reports for specified period selected using calendar

Functions
●​ Administrator

●​ Student User

●​ User Interface​

●​ Reports​

Maintenance
Functional Description :
The following are the functional descriptions:

●​ Selling of forms (through site and manual).

●​ Marks & details verifications of filled forms for eligibility checking.

●​ Sending call letters to eligible candidates for entrance exam.

●​ Online marks checking and merit list

●​ Sending offer letters for short listed candidates.

●​ Counseling, Admission and hostel allotment

●​ Statistical reports on daily activities are highly desirable feature

 ​ ​

4.​ E - R Diagrams & UML Diagrams

UML Diagrams:

The unified modeling language allows the software engineer to express an analysis model using

the modeling notation that is governed by a set of syntactic semantic and pragmatic rules.

A UML system is represented using five different views that describe the system from distinctly

different perspective. Each view is defined by a set of diagram, which is as follows.

●​ User Model View

i.​ This view represents the system from the users perspective.

ii.​ The analysis representation describes a usage scenario from the end-users

perspective.

●​ Structural model view

i.​ In this model the data and functionality are arrived from inside the system.

ii.​ This model view models the static structures.

●​ Behavioral Model View

It represents the dynamic of behavioral as parts of the system, depicting the

interactions of collection between various structural elements described in the

user model and structural model view.

●​ Implementation Model View

In this the structural and behavioral as parts of the system are represented as they

are to be built.

●​ Environmental Model View

In this the structural and behavioral aspects of the environment in which the system is

to be implemented are represented.

UML is specifically constructed through two different domains they are:

✔​ UML Analysis modeling, this focuses on the user model and structural model views of

the system.

✔​ UML design modeling, which focuses on the behavioral modeling, implementation

modeling and environmental model views.

Use case Diagrams represent the functionality of the system from a user’s point of view. Use

cases are used during requirements elicitation and analysis to represent the functionality of the

system. Use cases focus on the behavior of the system from external point of view.

Actors are external entities that interact with the system. Examples of actors include users like

administrator, bank customer …etc., or another system like central database.

Class Diagram

​

Use-case Diagram

Sequence Diagram

Admission Sequence

Apply Sequence

Login Sequence

Seats Available Sequence

Ranks Sequence

Hall Tickets Sequence

Component Diagram

Deployment Diagram

Data Dictionary

ColumnName DataType Size Constraints

Loginname text 255 N

password text 255 N

Application Details

ColumnName DataType Size Constraints

University text 255 N

ApplicationCourse text 255 N

Startdate text 255 N

Lastdate text 255 N

Colleges

ColumnName DataType Size Constraints
Sno number PK
CollegeName text 255 N
University text 255 N
City text 255 N
State text 255 N
Country text 255 N

Hall Ticket

ColumnName DataType Size Constraints

HallTicketNo number FK

Loginname text 255 FK

Login Audit

ColumnName DataType Size Constraints
loginid text 255 FK
logindate date/time N
logindesc text 255 N

Login Details

ColumnName DataType Size Constraints
loginname text 255 pk
password text 255 N
firstname text 255 N
lastname text 255 N
logintype text 255 N
loginstatus text 255 N
regdate date/time N
squestionid number N
sanswer text 255 N
firstlogin number N
passmodifieddate date/time N

Login Profile

ColumnName DataType Size Constraints
loginid text 255 FK
birthdate date/time N
city text 255 N
state text 255 N
country text 255 N
locale text 255 N
profilemodifieddate date/time N

Marks

ColumnName DataType Size Constraints

ID Number 10 PK

Subject1 text 255 N

Subject2 text 255 N

Subject3 text 255 N

Subject4 text 255 N

Question

ColumnName DataType Size Constraints

questionid number PK

questiondetail text 255 N

Test

ColumnName DataType Size Constraints
sno number 5 PK
sname text 255 N
age number 3 N
address text 255 N

​

Technologies Used

HTML
HTML, an initialism of Hypertext Markup Language, is the predominant markup language for

web pages. It provides a means to describe the structure of text-based information in a document

— by denoting certain text as headings, paragraphs, lists, and so on — and to supplement that

text with interactive forms, embedded images, and other objects. HTML is written in the form of

labels (known as tags), surrounded by angle brackets. HTML can also describe, to some degree,

the appearance and semantics of a document, and can include embedded scripting language code

which can affect the behavior of web browsers and other HTML processors.

HTML is also often used to refer to content of the MIME type text/html or even more broadly as

a generic term for HTML whether in its XML-descended form (such as XHTML 1.0 and later)

or its form descended directly from SGML

Hyper Text Markup Language

Hypertext Markup Language (HTML), the languages of the World Wide Web (WWW), allows

users to produces Web pages that include text, graphics and pointer to other Web pages

(Hyperlinks).

HTML is not a programming language but it is an application of ISO Standard 8879, SGML

(Standard Generalized Markup Language), but specialized to hypertext and adapted to the Web.

The idea behind Hypertext is that instead of reading text in rigid linear structure, we can easily

jump from one point to another point. We can navigate through the information based on our

interest and preference. A markup language is simply a series of elements, each delimited with

special characters that define how text or other items enclosed within the elements should be

displayed. Hyperlinks are underlined or emphasized works that load to other documents or some

portions of the same document.

HTML can be used to display any type of document on the host computer, which can be

geographically at a different location. It is a versatile language and can be used on any platform

or desktop.

HTML provides tags (special codes) to make the document look attractive. HTML tags are not

case-sensitive. Using graphics, fonts, different sizes, color, etc., can enhance the presentation of

the document. Anything that is not a tag is part of the document itself.

Basic HTML Tags:

<! -- -->​ specifies comments

<A>……….​ Creates hypertext links

……….​ Formats text as bold

<BIG>……….</BIG> ​ Formats text in large font.

<BODY>…</BODY> ​ Contains all tags and text in the HTML document

<CENTER>...</CENTER> ​ Creates text

<DD>…</DD>​ Definition of a term

<DL>...</DL>​ ​Creates definition list

… ​ Formats text with a particular font

<FORM>...</FORM>​ Encloses a fill-out form

<FRAME>...</FRAME> ​ Defines a particular frame in a set of frames

<H#>…</H#>​ Creates headings of different levels(1 – 6)

<HEAD>...</HEAD> ​ Contains tags that specify information about a document

<HR>...</HR>​ Creates a horizontal rule

<HTML>…</HTML> ​ Contains all other HTML tags

<META>...</META>​ Provides meta-information about a document

<SCRIPT>…</SCRIPT> ​ Contains client-side or server-side script

<TABLE>…</TABLE> ​ Creates a table

<TD>…</TD>​ Indicates table data in a table

<TR>…</TR>​ Designates a table row

<TH>…</TH>​ Creates a heading in a table

Attributes
The attributes of an element are name-value pairs, separated by "=", and written within the start

label of an element, after the element's name. The value should be enclosed in single or double

quotes, although values consisting of certain characters can be left unquoted in HTML (but not

XHTML).Leaving attribute values unquoted is considered unsafe.

Most elements take any of several common attributes: id, class, style and title. Most also take

language-related attributes: lang and dir.

The id attribute provides a document-wide unique identifier for an element. This can be used by

stylesheets to provide presentational properties, by browsers to focus attention on the specific

element or by scripts to alter the contents or presentation of an element. The class attribute

provides a way of classifying similar elements for presentation purposes. For example, an HTML

document (or a set of documents) may use the designation class="notation" to indicate that all

elements with this class value are all subordinate to the main text of the document (or

documents). Such notation classes of elements might be gathered together and presented as

footnotes on a page, rather than appearing in the place where they appear in the source HTML.

An author may use the style non-attributal codes presentational properties to a particular element.

It is considered better practice to use an element’s son- id page and select the element with a

stylesheet, though sometimes this can be too cumbersome for a simple ad hoc application of

styled properties. The title is used to attach subtextual explanation to an element. In most

browsers this title attribute is displayed as what is often referred to as a tooltip. The generic

inline span element can be used to demonstrate these various non-attributes.

The preceding displays as HTML (pointing the cursor at the abbreviation should display the title

text in most browsers).

Advantages
�​ A HTML document is small and hence easy to send over the net. It is small

because it does not include formatted information.

�​ HTML is platform independent.

�​ HTML tags are not case-sensitive.

JavaScript

JavaScript is a script-based programming language that was developed by Netscape

Communication Corporation. JavaScript was originally called Live Script and renamed as

JavaScript to indicate its relationship with Java. JavaScript supports the development of both

client and server components of Web-based applications. On the client side, it can be used to

write programs that are executed by a Web browser within the context of a Web page. On the

server side, it can be used to write Web server programs that can process information submitted

by a Web browser and then update the browser’s display accordingly

Even though JavaScript supports both client and server Web programming, we prefer JavaScript

at Client side programming since most of the browsers supports it. JavaScript is almost as easy to

learn as HTML, and JavaScript statements can be included in HTML documents by enclosing

the statements between a pair of scripting tags

<SCRIPTS>.. </SCRIPT>.

<SCRIPT LANGUAGE = “JavaScript”>

JavaScript statements

</SCRIPT>

Here are a few things we can do with JavaScript:

�​ Validate the contents of a form and make calculations.

�​ Add scrolling or changing messages to the Browser’s status line.

�​ Animate images or rotate images that change when we move the mouse over

them.

�​ Detect the browser in use and display different content for different browsers.

�​ Detect installed plug-ins and notify the user if a plug-in is required.

We can do much more with JavaScript, including creating entire application.

JavaScript Vs Java

JavaScript and Java are entirely different languages. A few of the most glaring differences are:

●​ Java applets are generally displayed in a box within the web document; JavaScript can

affect any part of the Web document itself.

●​ While JavaScript is best suited to simple applications and adding interactive features to

Web pages; Java can be used for incredibly complex applications.

There are many other differences but the important thing to remember is that JavaScript and

Java are separate languages. They are both useful for different things; in fact they can be used

together to combine their advantages.

Advantages

�​ JavaScript can be used for Sever-side and Client-side scripting.

�​ It is more flexible than VBScript.

�​ JavaScript is the default scripting languages at Client-side since all the browsers

supports it.

Java Technology

Initially the language was called as “oak” but it was renamed as “Java” in 1995. The primary

motivation of this language was the need for a platform-independent (i.e., architecture neutral)

language that could be used to create software to be embedded in various consumer electronic

devices.

●​ Java is a programmer’s language.

●​ Java is cohesive and consistent.

●​ Except for those constraints imposed by the Internet environment, Java gives the

programmer, full control.

●​ Finally, Java is to Internet programming where C was to system programming.

Importance of Java to the Internet

Java has had a profound effect on the Internet. This is because; Java expands the Universe of

objects that can move about freely in Cyberspace. In a network, two categories of objects are

transmitted between the Server and the Personal computer. They are: Passive information and

Dynamic active programs. The Dynamic, Self-executing programs cause serious problems in the

areas of Security and probability. But, Java addresses those concerns and by doing so, has

opened the door to an exciting new form of program called the Applet.

Java can be used to create two types of programs

Applications and Applets: An application is a program that runs on our Computer under the

operating system of that computer. It is more or less like one creating using C or C++. Java’s

ability to create Applets makes it important. An Applet is an application designed to be

transmitted over the Internet and executed by a Java –compatible web browser. An applet is

actually a tiny Java program, dynamically downloaded across the network, just like an image.

But the difference is, it is an intelligent program, not just a media file. It can react to the user

input and dynamically change.

Features of Java Security

Every time you that you download a “normal” program, you are risking a viral infection. Prior to

Java, most users did not download executable programs frequently, and those who did scan them

for viruses prior to execution. Most users still worried about the possibility of infecting their

systems with a virus. In addition, another type of malicious program exists that must be guarded

against. This type of program can gather private information, such as credit card numbers, bank

account balances, and passwords. Java answers both these concerns by providing a “firewall”

between a network application and your computer.

When you use a Java-compatible Web browser, you can safely download Java applets without

fear of virus infection or malicious intent.

Portability

For programs to be dynamically downloaded to all the various types of platforms connected to

the Internet, some means of generating portable executable code is needed .As you will see, the

same mechanism that helps ensure security also helps create portability. Indeed, Java’s solution

to these two problems is both elegant and efficient.

The Byte code

The key that allows the Java to solve the security and portability problems is that the output of

Java compiler is Byte code. Byte code is a highly optimized set of instructions designed to be

executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is,

in its standard form, the JVM is an interpreter for byte code.

Translating a Java program into byte code helps makes it much easier to run a program in a wide

variety of environments. The reason is, once the run-time package exists for a given system, any

Java program can run on it.

Although Java was designed for interpretation, there is technically nothing about Java that

prevents on-the-fly compilation of byte code into native code. Sun has just completed its Just In

Time (JIT) compiler for byte code. When the JIT compiler is a part of JVM, it compiles byte

code into executable code in real time, on a piece-by-piece, demand basis. It is not possible to

compile an entire Java program into executable code all at once, because Java performs various

run-time checks that can be done only at run time. The JIT compiles code, as it is needed, during

execution.

Java Virtual Machine (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual machine is an important

element of the Java technology. The virtual machine can be embedded within a web browser or

an operating system. Once a piece of Java code is loaded onto a machine, it is verified. As part of

the loading process, a class loader is invoked and does byte code verification makes sure that the

code that’s has been generated by the compiler will not corrupt the machine that it’s loaded on.

Byte code verification takes place at the end of the compilation process to make sure that is all

accurate and correct. So byte code verification is integral to the compiling and executing of Java

code.

Overall Description

Picture showing the development process of JAVA Program

Java programming uses to produce byte codes and executes them. The first box indicates that the

Java source code is located in a. Java file that is processed with a Java compiler called javac. The

Java compiler produces a file called a. class file, which contains the byte code. The .Class file is

then loaded across the network or loaded locally on your machine into the execution

environment is the Java virtual machine, which interprets and executes the byte code.

Java Architecture

Java architecture provides a portable, robust, high performing environment for development.

Java provides portability by compiling the byte codes for the Java Virtual Machine, which is then

interpreted on each platform by the run-time environment. Java is a dynamic system, able to load

code when needed from a machine in the same room or across the planet.

Compilation of code

When you compile the code, the Java compiler creates machine code (called byte code) for a

hypothetical machine called Java Virtual Machine (JVM). The JVM is supposed to execute the

byte code. The JVM is created for overcoming the issue of portability. The code is written and

compiled for one machine and interpreted on all machines. This machine is called Java Virtual

Machine.

Compiling and interpreting Java Source Code

During run-time the Java interpreter tricks the byte code file into thinking that it is running on a

Java Virtual Machine. In reality this could be a Intel Pentium Windows 95 or SunSARC station

running Solaris or Apple Macintosh running system and all could receive code from any

computer through Internet and run the Applets.

Simple

Java was designed to be easy for the Professional programmer to learn and to use effectively. If

you are an experienced C++ programmer, learning Java will be even easier. Because Java

inherits the C/C++ syntax and many of the object oriented features of C++. Most of the

confusing concepts from C++ are either left out of Java or implemented in a cleaner, more

approachable manner. In Java there are a small number of clearly defined ways to accomplish a

given task.

Object-Oriented

Java was not designed to be source-code compatible with any other language. This allowed the

Java team the freedom to design with a blank slate. One outcome of this was a clean usable,

pragmatic approach to objects. The object model in Java is simple and easy to extend, while

simple types, such as integers, are kept as high-performance non-objects.

Robust

The multi-platform environment of the Web places extraordinary demands on a program,

because the program must execute reliably in a variety of systems. The ability to create robust

programs was given a high priority in the design of Java. Java is strictly typed language; it

checks your code at compile time and run time.

Java virtually eliminates the problems of memory management and de-allocation, which is

completely automatic. In a well-written Java program, all run time errors can –and should –be

managed by your program.

Java Database Connectivity

What Is JDBC?

JDBC is a Java API for executing SQL statements. (As a point of interest, JDBC is a

trademarked name and is not an acronym; nevertheless, JDBC is often thought of as standing for

Java Database Connectivity. It consists of a set of classes and interfaces written in the Java

programming language. JDBC provides a standard API for tool/database developers and makes it

possible to write database applications using a pure Java API.

Using JDBC, it is easy to send SQL statements to virtually any relational database. One can write

a single program using the JDBC API, and the program will be able to send SQL statements to

the appropriate database. The combinations of Java and JDBC lets a programmer write it once

and run it anywhere.

What Does JDBC Do?

Simply put, JDBC makes it possible to do three things:

�​ Establish a connection with a database

�​ Send SQL statements

�​ Process the results.

JDBC versus ODBC and other APIs

At this point, Microsoft's ODBC (Open Database Connectivity) API is that probably the most

widely used programming interface for accessing relational databases. It offers the ability to

connect to almost all databases on almost all platforms.

So why not just use ODBC from Java? The answer is that you can use ODBC from Java, but this

is best done with the help of JDBC in the form of the JDBC-ODBC Bridge, which we will cover

shortly. The question now becomes "Why do you need JDBC?" There are several answers to this

question:

1.​ ODBC is not appropriate for direct use from Java because it uses a C interface. Calls

from Java to native C code have a number of drawbacks in the security, implementation,

robustness, and automatic portability of applications.

2.​ A literal translation of the ODBC C API into a Java API would not be desirable. For

example, Java has no pointers, and ODBC makes copious use of them, including the

notoriously error-prone generic pointer "void *". You can think of JDBC as ODBC

translated into an object-oriented interface that is natural for Java programmers.

3.​ ODBC is hard to learn. It mixes simple and advanced features together, and it has

complex options even for simple queries. JDBC, on the other hand, was designed to keep

simple things simple while allowing more advanced capabilities where required.

4.​ A Java API like JDBC is needed in order to enable a "pure Java" solution. When ODBC

is used, the ODBC driver manager and drivers must be manually installed on every client

machine. When the JDBC driver is written completely in Java, however, JDBC code is

automatically installable, portable, and secure on all Java platforms from network

computers to mainframes.

Two-tier and Three-tier Models

The JDBC API supports both two-tier and three-tier models for database access.

In the two-tier model, a Java applet or application talks directly to the database. This requires a

JDBC driver that can communicate with the particular database management system being

accessed. A user's SQL statements are delivered to the database, and the results of those

statements are sent back to the user. The database may be located on another machine to which

the user is connected via a network. This is referred to as a client/server configuration, with the

user's machine as the client, and the machine housing the database as the server. The network can

be an Intranet, which, for example, connects employees within a corporation, or it can be the

Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which then send SQL

statements to the database. The database processes the SQL statements and sends the results back

to the middle tier, which then sends them to the user. MIS directors find the three-tier model very

attractive because the middle tier makes it possible to maintain control over access and the kinds

of updates that can be made to corporate data. Another advantage is that when there is a middle

tier, the user can employ an easy-to-use higher-level API which is translated by the middle tier

into the appropriate low-level calls. Finally, in many cases the three-tier architecture can provide

performance advantages.

Until now the middle tier has typically been written in languages such as C or C++, which offer

fast performance. However, with the introduction of optimizing compilers that translate Java

byte code into efficient machine-specific code, it is becoming practical to implement the middle

tier in Java. This is a big plus, making it possible to take advantage of Java's robustness,

multithreading, and security features. JDBC is important to allow database access from a Java

middle tier.

JDBC Driver Types

The JDBC drivers that we are aware of at this time fit into one of four categories:

�​ JDBC-ODBC bridge plus ODBC driver

�​ Native-API partly-Java driver

�​ JDBC-Net pure Java driver

�​ Native-protocol pure Java driver

JDBC-ODBC Bridge

If possible, use a Pure Java JDBC driver instead of the Bridge and an ODBC driver. This

completely eliminates the client configuration required by ODBC. It also eliminates the potential

that the Java VM could be corrupted by an error in the native code brought in by the Bridge (that

is, the Bridge native library, the ODBC driver manager library, the ODBC driver library, and the

database client library).

What Is the JDBC- ODBC Bridge?

The JDBC-ODBC Bridge is a JDBC driver, which implements JDBC operations by

translating them into ODBC operations. To ODBC it appears as a normal application

program. The Bridge implements JDBC for any database for which an ODBC driver is

available. The Bridge is implemented as the

Sun.jdbc.odbc Java package and contains a native library used to access ODBC. The Bridge

is a joint development of Innersole and Java Soft.

JDBC connectivity

The JDBC provides database-independent connectivity between the J2EE platform and a wide

range of tabular data sources. JDBC technology allows an Application Component Provider to:

�​ Perform connection and authentication to a database server

�​ Manager transactions

�​ Move SQL statements to a database engine for preprocessing and execution

�​ Execute stored procedures

�​ Inspect and modify the results from Select statements

Database:
A database management system (DBMS) is computer software designed for the purpose of

managing databases, a large set of structured data, and run operations on the data requested by

numerous users. Typical examples of DBMSs include Oracle, DB2, Microsoft Access, Microsoft

SQL Server, Firebird, PostgreSQL, MySQL, SQLite, FileMaker and Sybase Adaptive Server

Enterprise. DBMSs are typically used by Database administrators in the creation of Database

systems. Typical examples of DBMS use include accounting, human resources and customer

support systems.

Originally found only in large companies with the computer hardware needed to support large

data sets, DBMSs have more recently emerged as a fairly standard part of any company back

office.

Description

A DBMS is a complex set of software programs that controls the organization, storage,

management, and retrieval of data in a database. A DBMS includes:

✔​ A modeling language to define the schema of each database hosted in the DBMS, according

to the DBMS data model.

●​ The four most common types of organizations are the hierarchical, network, relational

and object models. Inverted lists and other methods are also used. A given database

management system may provide one or more of the four models. The optimal

structure depends on the natural organization of the application's data, and on the

application's requirements (which include transaction rate (speed), reliability,

maintainability, scalability, and cost).

●​ The dominant model in use today is the ad hoc one embedded in SQL, despite the

objections of purists who believe this model is a corruption of the relational model,

since it violates several of its fundamental principles for the sake of practicality and

performance. Many DBMSs also support the Open Database Connectivity API that

supports a standard way for programmers to access the DBMS.

✔​ Data structures (fields, records, files and objects) optimized to deal with very large

amounts of data stored on a permanent data storage device (which implies relatively slow

access compared to volatile main memory).

✔​ A database query language and report writer to allow users to interactively interrogate the

database, analyze its data and update it according to the users privileges on data.

●​ It also controls the security of the database.

●​ Data security prevents unauthorized users from viewing or updating the database.

Using passwords, users are allowed access to the entire database or subsets of it

called subschemas. For example, an employee database can contain all the data about

an individual employee, but one group of users may be authorized to view only

payroll data, while others are allowed access to only work history and medical data.

●​ If the DBMS provides a way to interactively enter and update the database, as well as

interrogate it, this capability allows for managing personal databases. However, it

may not leave an audit trail of actions or provide the kinds of controls necessary in a

multi-user organization. These controls are only available when a set of application

programs are customized for each data entry and updating function.

✔​ A transaction mechanism, that ideally would guarantee the ACID properties, in order to

ensure data integrity, despite concurrent user accesses (concurrency control), and faults (fault

tolerance).

●​ It also maintains the integrity of the data in the database.

●​ The DBMS can maintain the integrity of the database by not allowing more than one

user to update the same record at the same time. The DBMS can help prevent

duplicate records via unique index constraints; for example, no two customers with

the same customer numbers (key fields) can be entered into the database. See ACID

properties for more information (Redundancy avoidance).

The DBMS accepts requests for data from the application program and instructs the operating

system to transfer the appropriate data.

When a DBMS is used, information systems can be changed much more easily as the

organization's information requirements change. New categories of data can be added to the

database without disruption to the existing system.

Organizations may use one kind of DBMS for daily transaction processing and then move the

detail onto another computer that uses another DBMS better suited for random inquiries and

analysis. Overall systems design decisions are performed by data administrators and systems

analysts. Detailed database design is performed by database administrators.

Database servers are specially designed computers that hold the actual databases and run only the

DBMS and related software. Database servers are usually multiprocessor computers, with RAID

disk arrays used for stable storage. Connected to one or more servers via a high-speed channel,

hardware database accelerators are also used in large volume transaction processing

environments.

DBMSs are found at the heart of most database applications. Sometimes DBMSs are built

around a private multitasking kernel with built-in networking support although nowadays these

functions are left to the operating system.

SQL

Structured Query Language (SQL) is the language used to manipulate relational databases. SQL

is tied very closely with the relational model.

In the relational model, data is stored in structures called relations or tables.

SQL statements are issued for the purpose of:

Data definition: Defining tables and structures in the database (DDL used to create, alter and

drop schema objects such as tables and indexes).

Data manipulation: Used to manipulate the data within those schema objects (DML

Inserting, Updating, Deleting the data, and Querying the Database).

A schema is a collection of database objects that can include: tables, views, indexes and

sequences

List of SQL statements that can be issued against an Oracle database schema are:

●​ ALTER - Change an existing table, view or index definition (DDL)

●​ AUDIT - Track the changes made to a table (DDL)

●​ COMMENT - Add a comment to a table or column in a table (DDL)

●​ COMMIT - Make all recent changes permanent (DML - transactional)

●​ CREATE - Create new database objects such as tables or views (DDL)

●​ DELETE - Delete rows from a database table (DML)

●​ DROP - Drop a database object such as a table, view or index (DDL)

●​ GRANT - Allow another user to access database objects such as tables or views (DDL)

●​ INSERT - Insert new data into a database table (DML)

●​ No AUDIT - Turn off the auditing function (DDL)

●​ REVOKE - Disallow a user access to database objects such as tables and views (DDL)

●​ ROLLBACK - Undo any recent changes to the database (DML - Transactional)

●​ SELECT - Retrieve data from a database table (DML)

●​ TRUNCATE - Delete all rows from a database table (can not be rolled back) (DML)

●​ UPDATE - Change the values of some data items in a database table (DML)

SERVLETS

Introduction

The Java web server is JavaSoft's own web Server. The Java web server is just a part of a larger

framework, intended to provide you not just with a web server, but also with tools. To build

customized network servers for any Internet or Intranet client/server system. Servlets are to a

web server, how applets are to the browser.

About Servlets

Servlets provide a Java-based solution used to address the problems currently associated with

doing server-side programming, including inextensible scripting solutions, platform-specific

APIs, and incomplete interfaces.

Servlets are objects that conform to a specific interface that can be plugged into a Java-based

server. Servlets are to the server-side what applets are to the client-side - object byte codes that

can be dynamically loaded off the net. They differ from applets in that they are faceless objects

(without graphics or a GUI component). They serve as platform independent, dynamically

loadable, pluggable helper byte code objects on the server side that can be used to dynamically

extend server-side functionality.

For example, an HTTP Servlets can be used to generate dynamic HTML content. When you use

Servlets to do dynamic content you get the following advantages:

�​ They’re faster and cleaner than CGI scripts

�​ They use a standard API (the Servlets API)

�​ They provide all the advantages of Java (run on a variety of servers without

needing to be rewritten).

Attractiveness of Servlets

There are many features of Servlets that make them easy and attractive to use. These include:

�​ Easily configured using the GUI-based Admin tool

�​ Can be loaded and invoked from a local disk or remotely across the network.

�​ Can be linked together, or chained, so that one Servlets can call another Servlets,

or several Servlets in sequence.

�​ Can be called dynamically from within HTML pages, using server-side include

tags.

�​ Are secure - even when downloading across the network, the Servlets security

model and Servlets sandbox protect your system from unfriendly behavior.

Advantages of the Servlet API

One of the great advantages of the Servlet API is protocol independence. It assumes nothing

about:

●​ The protocol being used to transmit on the net

●​ How it is loaded

●​ The server environment it will be running in

These qualities are important, because it allows the Servlet API to be embedded in many

different kinds of servers. There are other advantages to the Servlet API as well. These include:

●​ It’s extensible - you can inherit all your functionality from the base classes made

available to you.

●​ It’s simple, small, and easy to use.

 Features of Servlets:

●​ Servlets are persistent. Servlet are loaded only by the web server and can maintain

services between requests.

●​ Servlets are fast. Since Servlets only need to be loaded once, they offer much better

performance over their CGI counterparts.

●​ Servlets are platform independent.

●​ Servlets are extensible. Java is a robust, object-oriented programming language,

which easily can be extended to suit your needs

●​ Servlets are secure.

●​ Servlets can be used with a variety of clients.

Loading Servlets:

Servlets can be loaded from three places

From a directory that is on the CLASSPATH. The CLASSPATH of the JavaWebServer

includes service root/classes/ which is where the system classes reside.

From the <SERVICE_ROOT /Servlets/ directory. This is *not* in the server’s class path. A

class loader is used to create Servlets from this directory. New Servlets can be added - existing

Servlets can be recompiled and the server will notice these changes.

From a remote location, for this a code base like http: // nine.eng / classes / foo / is required in

addition to the Servlets class name. Refer to the admin GUI docs on Servlet section to see how to

set this up.

Loading Remote Servlets

Remote Servlets can be loaded by:

1.​ Configuring the Admin Tool to setup automatic loading of remote Servlets

2.​ Setting up server side include tags in. shtml files

3.​ Defining a filter chain configuration

Invoking Servlets

A Servlet invoker is a Servlet that invokes the "service" method on a named Servlet. If the

Servlet is not loaded in the server, then the invoker first loads the Servlet (either from local disk

or from the network) and the then invokes the "service" method. Also like applets, local Servlets

in the server can be identified by just the class name. In other words, if a Servlet name is not

absolute, it is treated as local.

A client can invoke Servlets in the following ways:

●​ The client can ask for a document that is served by the Servlet.

●​ The client (browser) can invoke the Servlet directly using a URL, once it has been

mapped using the Servlet Aliases section of the admin GUI.

●​ The Servlet can be invoked through server side include tags.

●​ The Servlet can be invoked by placing it in the Servlets/ directory.

●​ The Servlet can be invoked by using it in a filter chain.

Java Server Pages (JSP)

Java server Pages is a simple, yet powerful technology for creating and maintaining

dynamic-content web pages. Based on the Java programming language, Java Server Pages

offers proven portability, open standards, and a mature re-usable component model .The Java

Server Pages architecture enables the separation of content generation from content

presentation. This separation not eases maintenance headaches; it also allows web team

members to focus on their areas of expertise. Now, web page designer can concentrate on

layout, and web application designers on programming, with minimal concern about

impacting each other’s work.

http://../administration/servlet_alias.html
http://ssinclude.html

Features of JSP

Portability:

Java Server Pages files can be run on any web server or web-enabled application server that

provides support for them. Dubbed the JSP engine, this support involves recognition,

translation, and management of the Java Server Page lifecycle and its interaction

components.

Components

It was mentioned earlier that the Java Server Pages architecture can include reusable Java

components. The architecture also allows for the embedding of a scripting language directly

into the Java Server Pages file. The components current supported include Java Beans, and

Servlets.

Processing

A Java Server Pages file is essentially an HTML document with JSP scripting or tags. The

Java Server Pages file has a JSP extension to the server as a Java Server Pages file. Before

the page is served, the Java Server Pages syntax is parsed and processed into a Servlet on the

server side. The Servlet that is generated outputs real content in straight HTML for

responding to the client.

Access Models:

A Java Server Pages file may be accessed in at least two different ways. A client’s request

comes directly into a Java Server Page. In this scenario, suppose the page accesses reusable

Java Bean components that perform particular well-defined computations like accessing a

database. The result of the Beans computations, called result sets is stored within the Bean as

properties. The page uses such Beans to generate dynamic content and present it back to the

client.

In both of the above cases, the page could also contain any valid Java code. Java Server

Pages architecture encourages separation of content from presentation.

Steps in the execution of a JSP Application:

1.​ The client sends a request to the web server for a JSP file by giving the name of the JSP

file within the form tag of a HTML page.

2.​ This request is transferred to the JavaWebServer. At the server side JavaWebServer

receives the request and if it is a request for a jsp file server gives this request to the JSP

engine.

3.​ JSP engine is program which can under stands the tags of the jsp and then it converts

those tags into a Servlet program and it is stored at the server side. This Servlet is loaded

in the memory and then it is executed and the result is given back to the JavaWebServer

and then it is transferred back to the result is given back to the JavaWebServer and then it

is transferred back to the client.

Eclipse IDE

Eclipse is an open-source software framework written primarily in Java. In its default form it is

an Integrated Development Environment (IDE) for Java developers, consisting of the Java

Development Tools (JDT) and the Eclipse Compiler for Java (ECJ). Users can extend its

capabilities by installing plug-ins written for the Eclipse software framework, such as

development toolkits for other programming languages, and can write and contribute their own

plug-in modules. Language packs are available for over a dozen languages.

Architecture

The basis for Eclipse is the Rich Client Platform (RCP). The following components constitute

the rich client platform:

✔​ OSGi - a standard bundling framework

✔​ Core platform - boot Eclipse, run plug-ins

✔​ the Standard Widget Toolkit (SWT) - a portable widget toolkit

✔​ JFace - viewer classes to bring model view controller programming to SWT, file buffers,

text handling, text editors

✔​ the Eclipse Workbench - views, editors, perspectives, wizards

Eclipse's widgets are implemented by a widget toolkit for Java called SWT, unlike most Java

applications, which use the Java standard Abstract Window Toolkit (AWT) or Swing. Eclipse's

user interface also leverages an intermediate GUI layer called JFace, which simplifies the

construction of applications based on SWT.

Eclipse employs plug-ins in order to provide all of its functionality on top of (and including) the

rich client platform, in contrast to some other applications where functionality is typically hard

coded. This plug-in mechanism is a lightweight software componentry framework. In addition to

allowing Eclipse to be extended using other programming languages such as C and Python, the

plug-in framework allows Eclipse to work with typesetting languages like LaTeX, networking

applications such as telnet, and database management systems. The plug-in architecture supports

writing any desired extension to the environment, such as for configuration management. Java

and CVS support is provided in the Eclipse SDK.

The key to the seamless integration of tools with Eclipse is the plugin. With the exception of a

small run-time kernel, everything in Eclipse is a plug-in. This means that a plug-in you develop

integrates with Eclipse in exactly the same way as other plug-ins; in this respect, all features are

created equal.

The Eclipse SDK includes the Eclipse Java Development Tools, offering an IDE with a built-in

incremental Java compiler and a full model of the Java source files. This allows for advanced

refactoring techniques and code analysis. The IDE also makes use of a workspace, in this case a

set of metadata over a flat filespace allowing external file modifications as long as the

corresponding workspace "resource" is refreshed afterwards. The Visual Editor project allows

interfaces to be created interactively, hence allowing Eclipse to be used as a RAD tool.

The following is a list of notable projects and plugins for the Eclipse IDE.

These projects are maintained by the Eclipse community and hosted by the Eclipse Foundation.

1.​ Core projects

Rich Client Platform (Platform) is the core framework that all other Eclipse projects are built on.

Java Development Tools (JDT) provides support for core Java SE. This includes a standalone

fast incremental compiler.

Tools projects

C/C++ Development Tools (CDT) adds support for C/C++ syntax highlighting, code formatting,

debugger integration and project structures. Unlike the JDT project, the CDT project does not

add a compiler and relies on an external tool chain.

Graphical Editing Framework (GEF) allows developers to build standalone graphical tools.

Example use include circuit diagram design tools, activity diagram editors and WYSIWYG

document editors.

Web projects

J2EE Standard Tools (JST) extends the core JDT to include support for Java EE projects. This

includes EJBs, JSPs and Servlets.

PHP Development Tools (PDT)

Web Standard Tools (WST) adds standards compliant web development tools. These tools

include editors for XML, HTML and CSS.

Modelling projects

Eclipse Modeling Framework (EMF) a modeling framework and code generation facility for

building tools and other applications based on a structured data model, from a model

specification described in XMI.

Graphical Modeling Framework (GMF) is a generative component and runtime infrastructure for

developing graphical editors based on EMF and GEF.

Other projects

Test and Performance Tools Platform (TPTP) which provides a platform that allows software

developers to build test and performance tools, such as debuggers, profilers and benchmarking

applications.

Business Intelligence and Reporting Tools Project (BIRT), an Eclipse-based open source

reporting system for web applications, especially those based on Java EE.

Applications Server

An application server is a software engine that delivers applications to client computers or

devices, typically through the Internet and using the Hypertext Transfer Protocol. Application

servers are distinguished from web servers by the extensive use of server-side dynamic content

and frequent integration with database engines.

Common features

Application server products typically bundle middleware to enable applications to

intercommunicate with dependent applications, like web servers, database management systems,

and chart programs. Some application servers also provide an API, making them operating

system independent. Portals are a common application server mechanism by which a single point

of entry is provided to multiple devices.

Java application servers

Java EE Servers

Following the success of the Java platform, the term application server sometimes refers to a

Java Platform--Enterprise Edition (J2EE) or Java EE 5 application server. Among the better

known Java Enterprise Edition application servers are WebLogic Server (BEA), JBoss (Red

Hat), WebSphere (IBM), JRun (Adobe), Apache Geronimo (Apache Foundation, based on IBM

WebSphere), Oracle OC4J (Oracle Corporation), Sun Java System Application Server (Sun

Microsystems) and Glassfish Application Server (based on Sun Java System Application Server).

JOnAS application server was the first open source application server to have achieved official

compliance with the Java Enterprise Specification. BEA delivered the first Java EE 5 certified

application server followed by Sun Microsystems' reference implementation GlassFish.

The Web modules are servlets and JavaServer Pages, and business logic is built into Enterprise

JavaBeans (EJB-3 and later). The Hibernate project offers an EJB-3 container implementation

for the JBoss Application server. Tomcat from Apache and JOnAS from ObjectWeb are typical

of containers into which these modules can be put.

A Java Server Page (JSP) is a servlet from Java that executes in a Web container—the Java

equivalent of CGI scripts. JSPs are a way to create HTML pages by embedding references to the

server logic within the page. HTML coders and Java programmers can work side by side by

referencing each other's code from within their own. JavaBeans are the independent class

components of the Java architecture from Sun Microsystems.

The application servers mentioned above mainly serve Web applications. Some application

servers target networks other than the Web: Session Initiation Protocol servers, for instance,

target telephony networks.

JBOSS

JBoss Application Server (or JBoss AS) is a free software / open source Java EE-based

application server. Because it is Java-based, JBoss AS is cross-platform, usable on any operating

system that Java supports.

Environment

JBoss AS 4.0 is a J2EE 1.4 application server, with embedded Tomcat 5.5. Any JVM between

1.4 and 1.5 is supported. JBoss can run on numerous operating systems including Windows, Mac

OS X, many POSIX platforms, and others, as long as a suitable JVM is present.

JBoss AS 4.2 is also a J2EE 1.4 application server, but EJB 3 is deployed by default. It requires

JDK 5. Tomcat 6 is bundled with it.

Next JBoss AS 5 will be Java EE 5 application server.

Product features

●​ Clustering

●​ Failover (including sessions)

●​ Load balancing

●​ Distributed caching (using JBoss Cache, a standalone product)

●​ Distributed deployment (farming)

●​ Enterprise JavaBeans version 3

SCREENS

Login page

Testing

​

TESTING

Software Testing is the process used to help identify the correctness, completeness, security, and

quality of developed computer software. Testing is a process of technical investigation,

performed on behalf of stakeholders, that is intended to reveal quality-related information about

the product with respect to the context in which it is intended to operate. This includes, but is not

limited to, the process of executing a program or application with the intent of finding errors.

Quality is not an absolute; it is value to some person. With that in mind, testing can never

completely establish the correctness of arbitrary computer software; testing furnishes a criticism

or comparison that compares the state and behaviour of the product against a specification. An

important point is that software testing should be distinguished from the separate discipline of

Software Quality Assurance (SQA), which encompasses all business process areas, not just

testing.

There are many approaches to software testing, but effective testing of complex products is

essentially a process of investigation, not merely a matter of creating and following routine

procedure. One definition of testing is "the process of questioning a product in order to evaluate

it", where the "questions" are operations the tester attempts to execute with the product, and the

product answers with its behavior in reaction to the probing of the tester[citation needed].

Although most of the intellectual processes of testing are nearly identical to that of review or

inspection, the word testing is connoted to mean the dynamic analysis of the product—putting

the product through its paces. Some of the common quality attributes include capability,

reliability, efficiency, portability, maintainability, compatibility and usability. A good test is

sometimes described as one which reveals an error; however, more recent thinking suggests that

a good test is one which reveals information of interest to someone who matters within the

project community.

Introduction
In general, software engineers distinguish software faults from software failures. In case of a

failure, the software does not do what the user expects. A fault is a programming error that may

or may not actually manifest as a failure. A fault can also be described as an error in the

correctness of the semantic of a computer program. A fault will become a failure if the exact

computation conditions are met, one of them being that the faulty portion of computer software

executes on the CPU. A fault can also turn into a failure when the software is ported to a

different hardware platform or a different compiler, or when the software gets extended.

Software testing is the technical investigation of the product under test to provide stakeholders

with quality related information.

Software testing may be viewed as a sub-field of Software Quality Assurance but typically exists

independently (and there may be no SQA areas in some companies). In SQA, software process

specialists and auditors take a broader view on software and its development. They examine and

change the software engineering process itself to reduce the amount of faults that end up in the

code or deliver faster.

Regardless of the methods used or level of formality involved the desired result of testing is a

level of confidence in the software so that the organization is confident that the software has an

acceptable defect rate. What constitutes an acceptable defect rate depends on the nature of the

software. An arcade video game designed to simulate flying an airplane would presumably have

a much higher tolerance for defects than software used to control an actual airliner.

A problem with software testing is that the number of defects in a software product can be very

large, and the number of configurations of the product larger still. Bugs that occur infrequently

are difficult to find in testing. A rule of thumb is that a system that is expected to function

without faults for a certain length of time must have already been tested for at least that length of

time. This has severe consequences for projects to write long-lived reliable software.

A common practice of software testing is that it is performed by an independent group of testers

after the functionality is developed but before it is shipped to the customer. This practice often

results in the testing phase being used as project buffer to compensate for project delays. Another

practice is to start software testing at the same moment the project starts and it is a continuous

process until the project finishes.

Another common practice is for test suites to be developed during technical support escalation

procedures. Such tests are then maintained in regression testing suites to ensure that future

updates to the software don't repeat any of the known mistakes.

It is commonly believed that the earlier a defect is found the cheaper it is to fix it.

 Time Detected

Time Introduced Requirements Architecture Construction
System

Test

Post-Release

Requirements 1 3 5-10 10 10-100

Architecture - 1 10 15 25-100

Construction - - 1 10 10-25

In counterpoint, some emerging software disciplines such as extreme programming and the agile

software development movement, adhere to a "test-driven software development" model. In this

process unit tests are written first, by the programmers (often with pair programming in the

extreme programming methodology). Of course these tests fail initially; as they are expected to.

Then as code is written it passes incrementally larger portions of the test suites. The test suites

are continuously updated as new failure conditions and corner cases are discovered, and they are

integrated with any regression tests that are developed.

Unit tests are maintained along with the rest of the software source code and generally integrated

into the build process (with inherently interactive tests being relegated to a partially manual build

acceptance process).

The software, tools, samples of data input and output, and configurations are all referred to

collectively as a test harness.

History

The separation of debugging from testing was initially introduced by Glenford J. Myers in his

1978 book the "Art of Software Testing". Although his attention was on breakage testing it

illustrated the desire of the software engineering community to separate fundamental

development activities, such as debugging, from that of verification. Drs. Dave Gelperin and

William C. Hetzel classified in 1988 the phases and goals in software testing as follows: until

1956 it was the debugging oriented period, where testing was often associated to debugging:

there was no clear difference between testing and debugging. From 1957-1978 there was the

demonstration oriented period where debugging and testing was distinguished now - in this

period it was shown, that software satisfies the requirements. The time between 1979-1982 is

announced as the destruction oriented period, where the goal was to find errors. 1983-1987 is

classified as the evaluation oriented period: intention here is that during the software lifecycle a

product evaluation is provided and measuring quality. From 1988 on it was seen as prevention

oriented period where tests were to demonstrate that software satisfies its specification, to detect

faults and to prevent faults. Dr. Gelperin chaired the IEEE 829-1988 (Test Documentation

Standard) with Dr. Hetzel writing the book "The Complete Guide of Software Testing". Both

works were pivotal in to today's testing culture and remain a consistent source of reference. Dr.

Gelperin and Jerry E. Durant also went on to develop High Impact Inspection Technology that

builds upon traditional Inspections but utilizes a test driven additive.

White-box and black-box testing

To meet Wikipedia's quality standards, this section may require cleanup.​

Please discuss this issue on the talk page, and/or replace this tag with a more specific message.

White box and black box testing are terms used to describe the point of view a test engineer takes

when designing test cases. Black box being an external view of the test object and white box

being an internal view. Software testing is partly intuitive, but largely systematic. Good testing

involves much more than just running the program a few times to see whether it works.

Thorough analysis of the program under test, backed by a broad knowledge of testing techniques

and tools are prerequisites to systematic testing. Software Testing is the process of executing

software in a controlled manner; in order to answer the question “Does this software behave as

specified?” Software testing is used in association with Verification and Validation. Verification

is the checking of or testing of items, including software, for conformance and consistency with

an associated specification. Software testing is just one kind of verification, which also uses

techniques as reviews, inspections, walk-through. Validation is the process of checking what has

been specified is what the user actually wanted.

●​ Validation: Are we doing the right job?

●​ Verification: Are we doing the job right?

In order to achieve consistency in the Testing style, it is imperative to have and follow a set of

testing principles. This enhances the efficiency of testing within SQA team members and thus

contributes to increased productivity. The purpose of this document is to provide overview of the

testing, plus the techniques.

At SDEI, 3 levels of software testing is done at various SDLC phases

●​ Unit Testing: in which each unit (basic component) of the software is tested to verify that

the detailed design for the unit has been correctly implemented

●​ Integration testing: in which progressively larger groups of tested software components

corresponding to elements of the architectural design are integrated and tested until the

software works as a whole.

●​ System testing: in which the software is integrated to the overall product and tested to

show that all requirements are met

A further level of testing is also done, in accordance with requirements:

●​ Acceptance testing: upon which the acceptance of the complete software is based. The

clients often do this.

●​ Regression testing: is used to refer the repetition of the earlier successful tests to ensure

that changes made in the software have not introduced new bugs/side effects.

In recent years the term grey box testing has come into common usage. The typical grey box

tester is permitted to set up or manipulate the testing environment, like seeding a database, and

can view the state of the product after his actions, like performing a SQL query on the database

to be certain of the values of columns. It is used almost exclusively of client-server testers or

others who use a database as a repository of information, but can also apply to a tester who has to

manipulate XML files (DTD or an actual XML file) or configuration files directly. It can also be

used of testers who know the internal workings or algorithm of the software under test and can

write tests specifically for the anticipated results. For example, testing a data warehouse

implementation involves loading the target database with information, and verifying the

correctness of data population and loading of data into the correct tables.

Test levels

●​ Unit testing tests the minimal software component and sub-component or modules by the

programmers.

●​ Integration testing exposes defects in the interfaces and interaction between integrated

components (modules).

●​ Functional testing tests the product according to programmable work.

●​ System testing tests an integrated system to verify/validate that it meets its requirements.

●​ Acceptance testing testing can be conducted by the client. It allows the end-user or

customer or client to decide whether or not to accept the product. Acceptance testing may

be performed after the testing and before the implementation phase. See also

Development stage

o​ Alpha testing is simulated or actual operational testing by potential

users/customers or an independent test team at the developers' site. Alpha testing

is often employed for off-the-shelf software as a form of internal acceptance

testing, before the software goes to beta testing.

o​ Beta testing comes after alpha testing. Versions of the software, known as beta

versions, are released to a limited audience outside of the company. The software

is released to groups of people so that further testing can ensure the product has

few faults or bugs. Sometimes, beta versions are made available to the open

public to increase the feedback field to a maximal number of future users.

It should be noted that although both Alpha and Beta are referred to as testing it is in fact use

emersion. The rigors that are applied are often unsystematic and many of the basic tenets of

testing process are not used. The Alpha and Beta period provides insight into environmental and

utilization conditions that can impact the software.

After modifying software, either for a change in functionality or to fix defects, a regression test

re-runs previously passing tests on the modified software to ensure that the modifications haven't

unintentionally caused a regression of previous functionality. Regression testing can be

performed at any or all of the above test levels. These regression tests are often automated.

Test cases, suites, scripts and scenarios

A test case is a software testing document, which consists of event, action, input, output,

expected result and actual result. Clinically defined (IEEE 829-1998) a test case is an input and

an expected result. This can be as pragmatic as 'for condition x your derived result is y', whereas

other test cases described in more detail the input scenario and what results might be expected. It

can occasionally be a series of steps (but often steps are contained in a separate test procedure

that can be exercised against multiple test cases, as a matter of economy) but with one expected

result or expected outcome. The optional fields are a test case ID, test step or order of execution

number, related requirement(s), depth, test category, author, and check boxes for whether the test

is automatable and has been automated. Larger test cases may also contain prerequisite states or

steps, and descriptions. A test case should also contain a place for the actual result. These steps

can be stored in a word processor document, spreadsheet, database or other common repository.

In a database system, you may also be able to see past test results and who generated the results

and the system configuration used to generate those results. These past results would usually be

stored in a separate table.

The term test script is the combination of a test case, test procedure and test data. Initially the

term was derived from the byproduct of work created by automated regression test tools. Today,

test scripts can be manual, automated or a combination of both.

The most common term for a collection of test cases is a test suite. The test suite often also

contains more detailed instructions or goals for each collection of test cases. It definitely contains

a section where the tester identifies the system configuration used during testing. A group of test

cases may also contain prerequisite states or steps, and descriptions of the following tests.

Collections of test cases are sometimes incorrectly termed a test plan. They might correctly be

called a test specification. If sequence is specified, it can be called a test script, scenario or

procedure.

A sample testing cycle

Although testing varies between organizations, there is a cycle to testing:

1.​ Requirements Analysis: Testing should begin in the requirements phase of the software

development life cycle.

During the design phase, testers work with developers in determining what aspects of a

design are testable and under what parameter those tests work.

2.​ Test Planning: Test Strategy, Test Plan(s), Test Bed creation.

3.​ Test Development: Test Procedures, Test Scenarios, Test Cases, Test Scripts to use in

testing software.

4.​ Test Execution: Testers execute the software based on the plans and tests and report any

errors found to the development team.

5.​ Test Reporting: Once testing is completed, testers generate metrics and make final reports

on their test effort and whether or not the software tested is ready for release.

6.​ Retesting the Defects

Not all errors or defects reported must be fixed by a software development team. Some may be

caused by errors in configuring the test software to match the development or production

environment. Some defects can be handled by a workaround in the production environment.

Others might be deferred to future releases of the software, or the deficiency might be accepted

by the business user. There are yet other defects that may be rejected by the development team

(of course, with due reason) if they deem it inappropriate to be called a defect.

Limitations and Scope for Future Enhancements:

Limitations of the system:

●​ Only the permanent employees can access the system.

●​ System works in all platforms and its compatible environments.

●​ Advanced techniques are not used to check the authorization.

Future Enhancements

It is not possible to develop a system that makes all the requirements of the user. User

requirements keep changing as the system is being used. Some of the future enhancements that

can be done to this system are:

●​ As the technology emerges, it is possible to upgrade the system and can be adaptable to

desired environment.

●​ Because it is based on object-oriented design, any further changes can be easily

adaptable.

●​ Based on the future security issues, security can be improved using emerging

technologies.

●​ Attendance module can be added

●​ sub admin module can be added

Project Summary

The University Admission System has been developed in order to automate the complete

admission system starting from the notification to admission process. It also includes the

Statistical reports on daily activities in the admission process.

This application software has been computed successfully and was also tested successfully by

taking “test cases”. It is user friendly, and has required options, which can be utilized by the user

to perform the desired operations.

​ The software is developed using Java as front end and Oracle as back end in Windows

environment. The goals that are achieved by the software are:

✔​ Instant access.

✔​ Improved productivity.

✔​ Optimum utilization of resources.

✔​ Efficient management of records.

✔​ Simplification of the operations.

✔​ Less processing time and getting required information.

✔​ User friendly.

✔​ Portable and flexible for further enhancement.

References

Core Java™ 2 Volume I – Fundamentals 7th Edition -​ Cay S. Hortsman

Pearson Education – Sun Microsystems ​ Gary Cornell

Core Java™ 2 Volume II – Advanced -​ Cay S. Hortsman

Pearson Education – Sun Microsystems ​ Gary Cornell

Head First Servlets & JSP -​ Eric Freeman

O’Reilly – SPD ​ Elisabeth Freeman

The Book of JavaScript 2nd Edition -​ thau

SPD

Effective Java – Programming Language Guide -​ Joshua Bloch

Pearson Education – Sun Microsystems

Java Database Best Practices -​ George Reese

O’Reilly – SPD

JBoss – A Developers Notebook -​ Norman Richards

O’Reilly – SPD ​ Sam Griffith

	Importance of Java to the Internet
	
	Java can be used to create two types of programs
	Features of Java Security
	Portability
	The Byte code
	Java Virtual Machine (JVM)
	
	
	Java Architecture
	Compilation of code
	History
	White-box and black-box testing
	Test levels
	Test cases, suites, scripts and scenarios
	A sample testing cycle

