
 
some may need Rstudio Cloud! 
https://posit.cloud/ 

Command-line 
Bootcamp 
The following document has been adapted from the Command-line Bootcamp by Keith 
Bradnam licensed via Creative Commons Attribution 4.0 International License. The 
original content has been substantially reworked, abbreviated and simplified. 

 

Introduction 
This ‘bootcamp’ is intended to provide the reader with a basic overview of essential 
Unix/Linux commands that will allow them to navigate a file system and move, copy, edit 
files. It will also introduce a brief overview of some ‘power’ commands in Unix. It was 
originally developed as part of a Bioinformatics Core Workshop taught at UC Davis 
(Using the Linux Command-Line for Analysis of High Throughput Sequence Data). 

Why Unix? 
The Unix operating system has been around since 1969. Back then there was no such 
thing as a graphical user interface. You typed everything. It may seem archaic to use a 
keyboard to issue commands today, but it’s much easier to automate keyboard tasks 
than mouse tasks. There are several variants of Unix (including Linux), though the 
differences do not matter much for most basic functions. 

http://korflab.ucdavis.edu/bootcamp.html
http://www.keithbradnam.com/
http://www.keithbradnam.com/
http://bioinformatics.ucdavis.edu/
http://training.bioinformatics.ucdavis.edu/docs/2015/06/june-2015-workshop/index.html
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Linux


Increasingly, the raw output of biological research exists as in silico data, usually in the 
form of large text files. Unix is particularly suited to working with such files and has 
several powerful (and flexible) commands that can process your data for you. The real 
strength of learning Unix is that most of these commands can be combined in an almost 
unlimited fashion. So if you can learn just five Unix commands, you will be able to do a 
lot more than just five things. 

Typeset Conventions 
Command-line examples that you are meant to type into a terminal window will be 
shown in a box with a fixed-width font, e.g. 

$ ls -lrh 

 

Sometimes the accompanying text will include a reference to a Unix command. Any 
such text will also be in a fixed-width, boxed font. E.g. 

Type the pwd command again. 

From time to time this documentation will contain web links to pages that will help you 
find out more about certain Unix commands. Usually, the first mention of a command or 
function will be a hyperlink to Wikipedia. Important or critical points will be styled like so: 

This is an important point! 

 

1. The Terminal 
A terminal is the common name for the program that does two main things. It allows you 
to type input to the computer (i.e. run programs, move/view files etc.) and it allows you 
to see output from those programs. All Unix machines will have a terminal program 
available. 

Open the terminal application. You should now see something that looks like the 
following: 

http://en.wikipedia.org/wiki/Hyperlink


 
Terminal application 

 

# connect over ssh 

ssh dbobo@huxley-master.pcc.amnh.org 

 

if you're using putty: 



 

 

 

There will be many situations where it will be useful to have multiple terminals open and 
it will be a matter of preference as to whether you want to have multiple windows, or 
one window with multiple tabs (there are typically keyboard shortcuts for switching 
between windows, or moving between tabs). 

 

For MacOS, I recommend iTerm2. 

For Windows I recommend PuTTy (for SSH connections) 

 

2. Your first Unix command 
It’s important to note that you will always be inside a single directory when using the 
terminal. The default behavior is that when you open a new terminal you start in your 



own home directory (containing files and directories that only you can modify). To see 
what files and directories are in our home directory, we need to use the ls command. 
This command lists the contents of a directory. If we run the ls command we should see 
something like: 

$ ls 

project.Rproj 

$ 

 

There are four things that you should note here: 

1.​ You will probably see different output to what is shown here, it depends on your 
computer setup. Don’t worry about that for now. 

2.​ The /cloud/project$ that you see is the Unix command prompt. In this case, it 
contains the path of the current  /cloud/project. Note that the command prompt 
might not look the same on different Unix systems. In this case, the $ sign marks 
the end of the prompt. 

3.​ The output of the ls command lists one thing. In this case, it is the configuration 
file for your Rstudio project. You can ignore this for now. 

4.​ After the ls command finishes it produces a new command prompt, ready for you 
to type your next command. 

 

 

3: The Unix tree 
Looking at directories from within a Unix terminal can often seem confusing. But bear in 
mind that these directories are exactly the same type of folders that you can see if you 
use any graphical file browser. From the root level (/) there are usually a dozen or so 
directories. You can treat the root directory like any other, e.g. you can list its contents: 

$ ls /​
bin   dev   initrd.img      lib64       mnt   root  software  tmp  vmlinuz​
boot  etc   initrd.img.old  lost+found  opt   run   srv       usr  vmlinuz.old​
data  home  lib             media       proc  sbin  sys       var 

You might notice some of these names appearing in different colors. Many Unix 
systems will display files and directories differently by default. Other colors may be used 

http://en.wikipedia.org/wiki/Ls
http://en.wikipedia.org/wiki/Command_line_interface


for special types of files. When you log in to a computer you are working with your files 
in your home directory, and this is often inside a directory called ‘users’ or ‘home’. 

 

4: Finding out where you are 
There may be many hundreds of directories on any Unix machine, so how do you know 
which one you are in? The command pwd will Print the Working Directory and that’s 
pretty much all this command does: 

$ pwd​
/home/ubuntu 

When you log in to a Unix computer, you are typically placed into your home directory. 
In this example, after we log in, we are placed in a directory called ‘ubuntu’ which itself 
is a subdirectory of another directory called ‘home’. Conversely, ‘users’ is the parent 
directory of ‘clmuser’. The first forward slash that appears in a list of directory names 
always refers to the top level directory of the file system (known as the root directory). 
The remaining forward slash (between ‘home’ and ‘ubuntu’) delimits the various parts of 
the directory hierarchy. If you ever get ‘lost’ in Unix, remember the pwd command. 

As you learn Unix you will frequently type commands that don’t seem to work. Most of 
the time this will be because you are in the wrong directory, so it’s a really good habit to 
get used to running the pwd command a lot. 

 

5: Making new directories 
If we want to make a new directory (e.g. to store some work related data), we can use 
the mkdir command: 

$ mkdir Learning_unix​
$ ls​
command_line_course  Learning_unix  linux_bootcamp 

 

http://en.wikipedia.org/wiki/Pwd
http://en.wikipedia.org/wiki/Working_directory
http://en.wikipedia.org/wiki/Root_directory
http://en.wikipedia.org/wiki/Tilde#Directories_and_URLs


6: Getting from ‘A’ to ‘B’ 
We are in the home directory on the computer but we want to work in the new 
Learning_unix directory. To change directories in Unix, we use the cd command: 

$ cd Learning_unix 

 

 

Let’s make two new subdirectories and navigate into them: 

$ mkdir Outer_directory​
$ cd Outer_directory 

 

$ mkdir Inner_directory​
$ cd Inner_directory/ 

 

We created the two directories in separate steps, but it is possible to use the mkdir 
command to do this all in one step. 

Like most Unix commands, mkdir supports command-line options which let you alter its 
behavior and functionality. Command-like options are — as the name suggests — 
optional arguments that are placed after the command name. They often take the form 
of single letters (following a dash). If we had used the -p option of the mkdir command 
we could have done this in one step. E.g. 

mkdir -p Outer_directory/Inner_directory 

Note the spaces either side the -p! 

 

7: The root directory 
Let’s change directory to the root directory, and then into the usr  directory and then into 
the bin directory 



$ cd /​
$ cd usr​
$ cd bin 

 

In this case, we may as well have just changed directory in one go: 

cd /usr/bin/ 

The leading / is incredibly important. The following two commands are very different: 

cd /usr/bin/ # absolute path​
cd usr/bin/   # relative path 
 
The first command says go to the bin directory that is beneath the usr directory that is at 
the top level (the root) of the file system. There can only be one /usr/bin directory on 
any Unix system. 
The second command says go to the bin directory that is beneath the usr directory that 
is located wherever I am right now. There can potentially be many usr/bin directories 
on a Unix system (though this is unlikely). 

Learn and understand the difference between these two commands. 

 

8: Navigating upwards in the 
Unix filesystem 
Frequently, you will find that you want to go ‘upwards’ one level in the directory 
hierarchy. Two dots .. are used in Unix to refer to the parent directory of wherever you 
are. Every directory has a parent except the root level of the computer. Let’s go into the 
Learning_unix directory and then navigate up two levels: 

$ cd ​
$ cd ~/Learning_unix/​
$ cd .. 

 

What if you wanted to navigate up two levels in the file system in one go? It’s very 
simple, just use two sets of the .. operator, separated by a forward slash: 



cd ../.. 

 

9: Absolute and relative paths 
Using cd .. allows us to change directory relative to where we are now. You can also 
always change to a directory based on its absolute location. E.g. if you are working in 
the /cloud/project/Learning_unix directory and you then want to change to the /tmp 
directory, then you could do either of the following: 

$ cd ../../../tmp 

 
or… 
 
$ cd /tmp 
 

They both achieve the same thing, but the 2nd example requires that you know about 
the full path from the root level of the computer to your directory of interest (the ‘path’ is 
an important concept in Unix). Sometimes it is quicker to change directories using the 
relative path, and other times it will be quicker to use the absolute path. 

 

10: Finding your way back home 
Unix uses the tilde character as a short-hand way of specifying a home directory. 

See what happens when you try the following commands (use the pwd command after 
each one to confirm the results if necessary): 

cd / ​
cd ~ # takes you home​
cd   # takes you home 

 

http://en.wikipedia.org/wiki/Tilde#Directories_and_URLs


Hopefully, you should find that cd and cd ~ do the same thing, i.e. they take you back to 
your home directory (from wherever you were). You will frequently want to jump straight 
back to your home directory, and typing cd is a very quick way to get there. 

You can also use the ~ as a quick way of navigating into subdirectories of your home 
directory when your current directory is somewhere else. I.e. the quickest way of 
navigating from the root directory to your Learning_unix directory is as follows: 

$ cd /​
$ cd ~/Learning_unix 

 

11: Making the ls command more 
useful 
The .. operator that we saw earlier can also be used with the ls command, e.g. you can 
list directories that are ‘above’ you: 

$ cd ~/Learning_unix/Outer_directory/​
$ ls ../../​
Learning_unix  project.Rproj 

 

Time to learn another useful command-line option. If you add the letter ‘l’ to the ls 
command it will give you a longer output compared to the default: 

$ ls -l /home​
total 0​
lrwxrwxrwx 1 root root 20 Jan  9 11:37 r1819497 -> /cloud/home/r1819497 

 



 

Mode, owner, and group explained in more detail in section 33. 

For each file or directory we now see more information (including file ownership and 
modification times). The ‘d’ at the start of each line indicates that these are directories. 
There are many, many different options for the ls command. Try out the following 
(against any directory of your choice) to see how the output changes. 

ls -l ​
ls -R ​
ls -l -t -r ​
ls -lh 

Note that the last example combine multiple options but only use one dash. This is a 
very common way of specifying multiple command-line options. You may be wondering 
what some of these options are doing. It’s time to learn about Unix documentation…. 

 

12: Man pages 
If every Unix command has so many options, you might be wondering how you find out 
what they are and what they do. Well, thankfully every Unix command has an 
associated ‘manual’ that you can access by using the man command. E.g. 

man ls ​
man cd​



man man # yes even the man command has a manual page 

When you are using the man command, press space to scroll down a page, b to go back 
a page, or q to quit. You can also use the up and down arrows to scroll a line at a time. 
The man command is actually using another Unix program, a text viewer called less, 
which we’ll come to later on. 

 

13: Removing directories 
We now have a few (empty) directories that we should remove. To do this use the rmdir 
command, this will only remove empty directories so it is quite safe to use. If you want 
to know more about this command (or any Unix command), then remember that you 
can just look at its man page. 

$ cd ~/Learning_unix/Outer_directory/​
$ rmdir Inner_directory/​
$ cd ..​
$ rmdir Outer_directory/​
$ ls​
$ 

* Note, you have to be outside a directory before you can remove it with rmdir * 

 

14: Using tab completion 
Saving keystrokes may not seem important, but the longer that you spend typing in a 
terminal window, the happier you will be if you can reduce the time you spend at the 
keyboard. Especially, as prolonged typing is not good for your body. So the best Unix tip 
to learn early on is that you can tab complete the names of files and programs on most 
Unix systems. Type enough letters that uniquely identify the name of a file, directory or 
program and press tab…Unix will do the rest. E.g. if you type ‘tou’ and then press tab, 
Unix should autocomplete the word to ‘touch’ (this is a command which we will learn 
more about in a minute). In this case, tab completion will occur because there are no 
other Unix commands that start with ‘tou’. If pressing tab doesn’t do anything, then you 

http://en.wikipedia.org/wiki/Rmdir
http://en.wikipedia.org/wiki/Command_line_completion


have not have typed enough unique characters. In this case pressing tab twice will 
show you all possible completions. This trick can save you a LOT of typing! 

Navigate to your home directory, and then use the cd command to change to the 
Learning_unix directory. Use tab completion to complete directory name. If there are no 
other directories starting with ‘L’ in your home directory, then you should only need to 
type ‘cd’ + ‘L’ + ‘tab’. 

Tab completion will make your life easier and make you more productive! 

Another great time-saver is that Unix stores a list of all the commands that you have 
typed in each login session. You can access this list by using the history command or 
more simply by using the up and down arrows to access anything from your history. So 
if you type a long command but make a mistake, press the up arrow and then you can 
use the left and right arrows to move the cursor in order to make a change. 

 

15: Creating empty files with the 
touch command 
The following sections will deal with Unix commands that help us to work with files, i.e. 
copy files to/from places, move files, rename files, remove files, and most importantly, 
look at files. First, we need to have some files to play with. The Unix command touch 
will let us create a new, empty file. The touch command does other things too, but for 
now we just want a couple of files to work with. 

$ cd Learning_unix/​
$ touch heaven.txt​
$ touch earth.txt​
$ ls​
earth.txt  heaven.txt 

 

16: Moving files 

http://en.wikipedia.org/wiki/History_(Unix)
http://en.wikipedia.org/wiki/Command_line_completion


Now, let’s assume that we want to move these files to a new directory (‘Temp’). We will 
do this using the Unix mv (move) command. Remember to use tab completion: 

$ mkdir Temp​
$ mv heaven.txt Temp/​
$ mv earth.txt Temp/​
$ ls​
Temp​
$ ls Temp/​
earth.txt  heaven.txt 

For the mv command, we always have to specify a source file (or directory) that we want 
to move, and then specify a target location. If we had wanted to we could have moved 
both files in one go by typing any of the following commands: 

mv *.txt Temp/ ​
mv *t Temp/ ​
mv *ea* Temp/ 

The asterisk * acts as a wild-card character, essentially meaning ‘match anything’. The 
second example works because there are no other files or directories in the directory 
that end with the letters ‘t’ (if there was, then they would be moved too). Likewise, the 
third example works because only those two files contain the letters ‘ea’ in their names. 
Using wild-card characters can save you a lot of typing. 

The ‘?’ character is also a wild-card but with a slightly different meaning. See if you can 
work out what it does. 

 

17: Renaming files 
In the earlier example, the destination for the mv command was a directory name 
(Temp). So we moved a file from its source location to a target location, but note that the 
target could have also been a (different) file name, rather than a directory. E.g. let’s 
make a new file and move it whilst renaming it at the same time: 

$ touch rags​
$ ls​
rags  Temp​
$ mv rags Temp/riches​
$ ls Temp/​

http://en.wikipedia.org/wiki/Mv
http://en.wikipedia.org/wiki/Wildcard_character


earth.txt  heaven.txt  riches 

 

In this example we create a new file (‘rags’) and move it to a new location and in the 
process change the name (to ‘riches’). So mv can rename a file as well as move it. The 
logical extension of this is using mv to rename a file without moving it (you have to use mv 
to do this as Unix does not have a separate ‘rename’ command): 

$ mv Temp/riches Temp/rags 

 

18: Moving directories 
It is important to understand that as long as you have specified a ‘source’ and a ‘target’ 
location when you are moving a file, then it doesn’t matter what your current directory is. 
You can move or copy things within the same directory or between different directories 
regardless of whether you are in any of those directories. Moving directories is just like 
moving files: 

$ mv Temp/riches Temp/rags​
$ mkdir Temp2​
$ mv Temp2 Temp​
$ ls Temp/​
earth.txt  heaven.txt  rags  Temp2 

This step moves the Temp2 directory inside the Temp directory.  

 

Try creating a ‘Temp3’ directory inside ‘Learning_unix’ and then cd to /tmp. Can you 
move Temp3 inside Temp without changing directory? 

 

19: Removing files 
You’ve seen how to remove a directory with the rmdir command, but rmdir won’t remove 
directories if they contain any files. So how can we remove the files we have created 



(inside Learning_Unix/Temp)? In order to do this, we will have to use the rm (remove) 
command. 

Please read the next section VERY carefully. Misuse of the rm command can lead 
to needless death & destruction 

Potentially, rm is a very dangerous command; if you delete something with rm, you will 
not get it back! It is possible to delete everything in your home directory (all directories 
and subdirectories) with rm, that is why it is such a dangerous command. 

Let me repeat that last part again. It is possible to delete EVERY file you have ever 
created with the rm command. Are you scared yet? You should be. Luckily there is a 
way of making rm a little bit safer. We can use it with the -i command-line option which 
will ask for confirmation before deleting anything (remember to use tab-completion): 

$ cd Temp​
$ ls​
earth.txt  heaven.txt  rags  Temp2​
$ rm -i earth.txt heaven.txt rags​
rm: remove regular empty file 'earth.txt'? y​
rm: remove regular empty file 'heaven.txt'? y​
rm: remove regular empty file 'rags'? y​
$ ls​
Temp2 

We could have simplified this step by using a wild-card ​
e.g.     rm -i *.txt ​
or we could have made things more complex by removing each file with a separate rm 
command. Let’s finish cleaning up: 

rmdir Temp2/Temp3​
rmdir Temp2​
cd ..​
rmdir Temp 

 

20: Copying files 
Copying files with the cp (copy) command is very similar to moving them. Remember to 
always specify a source and a target location. Let’s create a new file and make a copy 
of it: 

http://en.wikipedia.org/wiki/Rm_(Unix)
http://en.wikipedia.org/wiki/Cp_(Unix)


~/Learning_unix$ touch file1​
~/Learning_unix$ cp file1 file2​
~/Learning_unix$ ls​
file1  file2 

 

What if we wanted to copy files from a different directory to our current directory? Let’s 
put a file in our home directory (specified by ~ remember) and copy it to the current 
directory (Learning_unix): 

~/Learning_unix$ touch ~/file3​
~/Learning_unix$ ls ~​
command_line_course  file3  Learning_unix  linux_bootcamp​
~/Learning_unix$ cp ~/file3 .​
~/Learning_unix$ ls​
file1  file2  file3 

This last step introduces another new concept. In Unix, the current directory can be 
represented by a . (dot) character. You will mostly use this only for copying files to the 
current directory that you are in. Compare the following: 

ls ​
ls . ​
ls ./ 

In this case, using the dot is somewhat pointless because ls will already list the 
contents of the current directory by default. Also note how the trailing slash is optional. 
You can use rm to remove the temporary files. 

 

21: Copying directories 
The cp command also allows us (with the use of a command-line option) to copy entire 
directories. Use man cp to see how the -R or -r options let you copy a directory 
recursively. 

 

 



22: Echo, redirect, and less 
So far we have covered listing the contents of directories and moving/copying/deleting 
either files and/or directories. Now we will quickly cover how you can look at files. The 
less command lets you view (but not edit) text files. We will use the echo command to 
put some text in a file and then view it: 

~/Learning_unix$ echo "Call me Ishmael."​
Call me Ishmael.​
~/Learning_unix$ echo "Call me Ishmael." > opening_lines.txt​
~/Learning_unix$ ls​
opening_lines.txt​
~/Learning_unix$ less opening_lines.txt 

On its own, echo isn’t a very exciting Unix command. It just echoes text back to the 
screen. But we can redirect that text into an output file by using the > symbol. This 
allows for something called file redirection. 

Careful when using file redirection (>), it will overwrite any existing file of the 
same name 

When you are using less, you can bring up a page of help commands by pressing h, 
scroll forward a page by pressing space, or go forward or backwards one line at a time 
by pressing j or k. To exit less, press q (for quit). The less program also does about a 
million other useful things (including text searching). 

 

23: Viewing files with cat; 
append to file 
Let’s add another line to the file: 

~/Learning_unix$ echo "The primroses were over." >> opening_lines.txt​
~/Learning_unix$ cat opening_lines.txt​
Call me Ishmael.​
The primroses were over. 

 

http://en.wikipedia.org/wiki/Less_(Unix)
http://en.wikipedia.org/wiki/Echo_(command)
http://en.wikipedia.org/wiki/Redirection_(Unix)


Notice that we use >> and not just >. This operator will append to a file. If we only used 
>, we would end up overwriting the file. The cat command displays the contents of the 
file (or files) and then returns you to the command line. Unlike less you have no control 
on how you view that text (or what you do with it). It is a very simple, but sometimes 
useful, command. You can use cat to quickly combine multiple files or, if you wanted to, 
make a copy of an existing file: 

cat opening_lines.txt > file_copy.txt 

 

24: Counting characters in a file 
~/Learning_unix$ ls​
opening_lines.txt​
​
~/Learning_unix$ ls -l​
total 4​
-rw-rw-r-- 1 ubuntu ubuntu 42 Jun 15 04:13 opening_lines.txt​
​
~/Learning_unix$ wc opening_lines.txt​
 2  7 42 opening_lines.txt​
​
~/Learning_unix$ wc -l opening_lines.txt​
2 opening_lines.txt 

The ls -l option shows us a long listing, which includes the size of the file in bytes (in 
this case ‘42’). Another way of finding this out is by using Unix’s wc command (word 
count). By default this tells you many lines, words, and characters are in a specified file 
(or files), but you can use command-line options to give you just one of those statistics 
(in this case we count lines with wc -l). 

 

25: Editing small text files with 
nano 

http://en.wikipedia.org/wiki/Cat_(Unix)
https://en.wikipedia.org/wiki/Wc_(Unix)


Nano is a lightweight editor installed on most Unix systems. There are many more 
powerful editors (such as ‘emacs’ and ‘vi’), but these have steep learning curves. Nano 
is very simple. You can edit (or create) files by typing: 

nano opening_lines.txt 

You should see the following appear in your terminal: 

 
The bottom of the nano window shows you a list of simple commands which are all 
accessible by typing ‘Control’ plus a letter. E.g. Control + X exits the program. 

 

We recommend Vim or Emacs text editors. They are much more feature-rich. 

 

26: The $PATH environment 
variable 

https://www.freecodecamp.org/news/vim-beginners-guide/
https://www.gnu.org/software/emacs/tour/


One other use of the echo command is for displaying the contents of something known 
as environment variables. These contain user-specific or system-wide values that either 
reflect simple pieces of information (your username), or lists of useful locations on the 
file system. Some examples: 

~/Learning_unix$ echo $USER​
ubuntu​
~/Learning_unix$ echo $HOME​
/home/ubuntu​
~/Learning_unix$ echo $PATH​
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games 

The last one shows the content of the $PATH environment variable, which displays a — 
colon separated — list of directories that are expected to contain programs that you can 
run. This includes all of the Unix commands that you have seen so far. These are files 
that live in directories which are run like programs (e.g. ls is just a special type of file in 
the /bin directory). 

Knowing how to change your $PATH to include custom directories can be necessary 
sometimes (e.g. if you install some new bioinformatics software in a non-standard 
location). 

 

# env 

 

27: Matching lines in files with 
grep 
Use nano to add the following lines to opening_lines.txt: 

Now is the winter of our discontent.  ​
All children, except one, grow up.  ​
The Galactic Empire was dying.  ​
In a hole in the ground there lived a hobbit.  ​
It was a pleasure to burn.  ​
It was a bright, cold day in April, and the clocks were striking thirteen.  ​
It was love at first sight.  ​



I am an invisible man.  ​
It was the day my grandmother exploded.  ​
When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow.  ​
Marley was dead, to begin with. 

 

You will often want to search files to find lines that match a certain pattern. The Unix 
command grep does this (and much more). The following examples show how you can 
use grep’s command-line options to: 

●​ show lines that match a specified pattern 
●​ ignore case when matching (-i) 
●​ only match whole words (-w) 
●​ show lines that don’t match a pattern (-v) 
●​ Use wildcard characters and other patterns to allow for alternatives (*, ., and []) 

$ grep was opening_lines.txt​
The Galactic Empire was dying.​
It was a pleasure to burn.​
It was a bright, cold day in April, and the clocks were striking thirteen.​
It was love at first sight.​
It was the day my grandmother exploded.​
When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow.​
Marley was dead, to begin with.​
​
$ grep -v was opening_lines.txt​
Call me Ishmael.​
The primroses were over.​
Now is the winter of our discontent.​
All children, except one, grow up.​
In a hole in the ground there lived a hobbit.​
I am an invisible man.​
​
grep all opening_lines.txt​
Call me Ishmael.​
​
grep -i all opening_lines.txt​
Call me Ishmael.​
All children, except one, grow up.​
​
grep in opening_lines.txt​
Now is the winter of our discontent.​
The Galactic Empire was dying.​
In a hole in the ground there lived a hobbit.​
It was a bright, cold day in April, and the clocks were striking thirteen.​

http://en.wikipedia.org/wiki/Grep


I am an invisible man.​
Marley was dead, to begin with.​
​
grep -w in opening_lines.txt​
In a hole in the ground there lived a hobbit.​
It was a bright, cold day in April, and the clocks were striking thirteen.​
​
grep -w o.. opening_lines.txt​
Now is the winter of our discontent.​
All children, except one, grow up.​
​
grep [aeiou]t opening_lines.txt​
In a hole in the ground there lived a hobbit.​
It was love at first sight.​
It was the day my grandmother exploded.​
When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow.​
Marley was dead, to begin with.​
​
grep -w -i [aeiou]t opening_lines.txt​
It was a pleasure to burn.​
It was a bright, cold day in April, and the clocks were striking thirteen.​
It was love at first sight.​
It was the day my grandmother exploded.​
When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow. 

 

28: Combining Unix commands 
with pipes 
One of the most powerful features of Unix is that you can send the output from one 
command or program to any other command (as long as the second command accepts 
input of some sort). We do this by using what is known as a pipe. This is implemented 
using the ‘|’ character (which is a character which always seems to be on different keys 
depending on the keyboard that you are using). Think of the pipe as simply connecting 
two Unix programs. Here’s an example which introduces some new Unix commands: 

~/Learning_unix$ grep was opening_lines.txt | wc -c​
328 

 

http://en.wikipedia.org/wiki/Pipe_(Unix)


~/Learning_unix$​
grep was opening_lines.txt | sort | head -n 3 | wc -c​
136 

The first use of grep searches the specified file for lines matching ‘was’, it sends the 
lines that match through a pipe to the wc program. We use the -c option to just count 
characters in the matching lines (328). 

The second example first sends the output of grep to the Unix sort command. This sorts 
a file alphanumerically by default. The sorted output is sent to the head command which 
by default shows the first 10 lines of a file. We use the -n option of this command to only 
show 3 lines. These 3 lines are then sent to the wc command as before. 

Whenever making a long pipe, test each step as you build it! 

 
 

 

29: Screen 
 
GNU Screen is a terminal multiplexer that allows you to manage multiple terminal sessions 
within a single terminal window or remote terminal session. Here are some key features and 
aspects of GNU Screen: 
 
Multiple Sessions: You can have multiple terminal sessions running simultaneously, each within 
its own "window". This is useful when working on different tasks or projects concurrently. 
 
Session Detachment and Reattachment: You can detach a screen session and then reattach it 
later, even from a different terminal. This is very useful for long-running processes on remote 
servers. 
 
Session Sharing: Multiple users can connect to the same screen session, making collaborative 
work easier. 
 
Customization and Scripting: GNU Screen is customizable and scriptable, allowing for a tailored 
user experience. 
 
Persistent Sessions: If your connection drops or you need to disconnect from a server, your 
screen sessions remain active and you can pick up right where you left off. 



 
By utilizing GNU Screen, you can significantly enhance your terminal-based workflows, making 
it easier to manage multiple tasks and maintain long-running processes, especially on remote 
servers. 
 
# to start a screen session, type the command 

$ screen 

 
 
# to see if you're in a screen session 

$ echo $TERM 

if you see something that says "xterm", you're not in screen. 
If you see something that says "screen", you're in a screen session. 
 
# to see a list of screen sessions 

$ screen -ls ​
There is a screen on:​
        26760.pts-0.huxley-head (Detached)​
1 Socket in /home/dbobo/.screen. 

 
# to detach from a screen session 

$ screen -d 

 
# to reattach to a screen session 

$ screen -r 26760 

 
The escape key sequence is ctrl + a 
 
 [ctrl] + [a]   then [c]   =  create a new window 
 
[ " ] = show all windows 
[ n ] = move to next window 
[ p ] = move to previous window 
 
Screen cheat sheet: 
https://kapeli.com/cheat_sheets/screen.docset/Contents/Resources/Documents/index 
 
 
 



30: Keyboard Shortcuts 
 
 

Shortcut Action 

Bash Navigation 

Ctrl + A Move to the start of the command line 

Ctrl + E Move to the end of the command line 

Ctrl + F Move one character forward 

Ctrl + B Move one character backward 

Ctrl + XX Switch cursor position between start of the command line and the current position 

Ctrl + ] + x Moves the cursor forward to next occurrence of x 

Alt + F / Esc + F Moves the cursor one word forward 

Alt + B / Esc + B Moves the cursor one word backward 

Alt + Ctrl + ] + x Moves cursor to the previous occurrence of x 

Bash Control/Process 

Ctrl + L Similar to clear command, clears the terminal screen 

Ctrl + S Stops command output to the screen 

Ctrl + Z Suspends current command execution and moves it to the background 



Ctrl + Q Resumes suspended command 

Ctrl + C Sends SIGI signal and kills currently executing command 

Ctrl + D Closes the current terminal 

Bash History 

Ctrl + R Incremental reverse search of bash history 

Alt + P Non-incremental reverse search of bash history 

Ctrl + J Ends history search at current command 

Ctrl + _ Undo previous command 

Ctrl + P / Up arrow Moves to previous command 

Ctrl + N / Down arrow Moves to next command 

Ctrl + S Gets the next most recent command 

Ctrl + O Runs and re-enters the command found via Ctrl + S and Ctrl + R 

Ctrl + G Exits history search mode 

!! Runs last command 

!* Runs previous command except its first word 

!*:p Displays what !* substitutes 

!x Runs recent command in the bash history that begins with x 



!x:p Displays the x command and adds it as the recent command in history 

!$ Same as OPTION+., brings forth last argument of the previous command 

!^ Substitutes first argument of last command in the current command 

!$:p Displays the word that !$ substitutes 

^123^abc Replaces 123 with abc 

!n:m Repeats argument within a range (i.e, m 2-3) 

!fi Repeats latest command in history that begins with fi 

!n Run nth command from the bash history 

!n:p Prints the command !n executes 

!n:$ Repeat arguments from the last command (i.e, from argument n to $) 

Bash Editing 

Ctrl + U Deletes before the cursor until the start of the command 

Ctrl + K Deletes after the cursor until the end of the command 

Ctrl + W Removes the command/argument before the cursor 

Ctrl + D Removes the character under the cursor 

Ctrl + H Removes character before the cursor 

Alt + D Removes from the character until the end of the word 

Alt + Backspace Removes from the character until the start of the word 



Alt + . / Esc+. Uses last argument of previous command 

Alt + < Moves to the first line of the bash history 

Alt + > Moves to the last line of the bash history 

Esc + T Switch between last two words before cursor 

Alt + T Switches current word with the previous 

Bash Information 

TAB Autocompletes the command or file/directory name 

~TAB TAB List all Linux users 

Ctrl + I Completes the command like TAB 

Alt + ? Display files/folders in the current path for help 

Alt + * Display files/folders in the current path as parameter 

 

 

31: Downloading files from the 
web 
 
wget is a free utility for non-interactive download of files from the web. It supports HTTP, 
HTTPS, and FTP protocols, as well as retrieval through HTTP proxies. With wget, you can 
download entire websites, parts of websites, or individual files from websites. It's known for its 



ability to resume interrupted downloads, which can be very useful in scripts or automated 
processes. 
 

$ wget 

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chrMT.phase

3_callmom-v0_4.20130502.genotypes.vcf.gz 

 
 
 

32: File compression & Tarballs 
 
ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz  is a gzipped compressed VCF 
file. 
 

less can view many compressed files natively. 
 

$ less ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz 

 
# unwrap the lines 

$ less -S ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz 

 
# decompress a gzipped file: 

$ gunzip ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz 

 
# gzip compress a file 

$ gzip ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf 

 
Other tools: 
zip to compress a zip file 
unzip to decompress a zip file 
 
# file command to see if a file is compressed  
 
The Linux ‘tar’ stands for tape archive, which is used to create Archive and extract the Archive 
files. tar command in Linux is one of the important commands which provides archiving 

https://en.wikipedia.org/wiki/Variant_Call_Format
https://en.wikipedia.org/wiki/Variant_Call_Format


functionality in Linux. We can use the Linux tar command to create compressed or 
uncompressed Archive files and also maintain and modify them.  
 
# extract a tarball:  

$ tar -zxvf file_name.tar.gz 

 
 
 

33: File Permissions 
The below is taken from: https://www.redhat.com/sysadmin/linux-file-permissions-explained 

What are octal values? 

When Linux file permissions are represented by numbers, it's called numeric mode. In numeric 
mode, a three-digit value represents specific file permissions (for example, 744.) These are 
called octal values. The first digit is for owner permissions, the second digit is for group 
permissions, and the third is for other users. Each permission has a numeric value assigned to 
it: 

●​ r (read): 4 
●​ w (write): 2 
●​ x (execute): 1 

In the permission value 744, the first digit corresponds to the user, the second digit to the group, 
and the third digit to others. By adding up the value of each user classification, you can find the 
file permissions. 

For example, a file might have read, write, and execute permissions for its owner, and only read 
permission for all other users. That looks like this: 

●​ Owner: rwx = 4+2+1 = 7 
●​ Group: r-- = 4+0+0 = 4 
●​ Others: r-- = 4+0+0 = 4 

The results produce the three-digit value 744. 

 
 

What do Linux file permissions actually do? 

I've talked about how to view file permissions, who they apply to, and how to read what 
permissions are enabled or disabled. But what do these permissions actually do in practice? 



Read (r) 
Read permission is used to access the file's contents. You can use a tool like cat or less on the 
file to display the file contents. You could also use a text editor like Vi or view on the file to 
display the contents of the file. Read permission is required to make copies of a file, because 
you need to access the file's contents to make a duplicate of it. 

Write (w) 
Write permission allows you to modify or change the contents of a file. Write permission also 
allows you to use the redirect or append operators in the shell (> or >>) to change the contents 
of a file. Without write permission, changes to the file's contents are not permitted. 

Execute (x) 
Execute permission allows you to execute the contents of a file. Typically, executables would be 
things like commands or compiled binary applications. However, execute permission also allows 
someone to run Bash shell scripts, Python programs, and a variety of interpreted languages. 

 
 
34: For Loops 
 
A for loop is a control flow statement that allows code to be executed repeatedly based on a 
specified condition. In Bash scripting, for loops are used to iterate over a series of values or 
elements of an array, or the output of a command. 
 
Here's a general syntax for a for loop in Bash: 
 
# psuedocode  

for VARIABLE in ITEM_1 ITEM_2 ... ITEM_N​
do​
    COMMANDS​
done 

 
you can also use shell expansion: 
 

for VARIABLE in {1..10}​
do​
    COMMANDS 

echo $VARIABLE 

 

​
done 

 



 
 
 
An example: 
 

for i in {1..10}; do echo "The number is $i"; done 

 

The number is 1 

The number is 2 

The number is 3 

The number is 4 

The number is 5 

The number is 6 

The number is 7 

The number is 8 

The number is 9 

The number is 10 

 
The for loop iterates over the list of numbers 1 through 10. The variable i takes on the value of 
the current item in the list during each iteration of the loop. The echo command is used to print 
the current value of i to the console.  
 
for loops are a fundamental part of Bash scripting, and understanding how to use them will 
help you automate repetitive tasks and manage collections of data. 
 
 
 
 

34: While Loops 
 
A while loop is another control flow statement used in Bash scripting to execute a block of 
commands as long as a specified condition is true. Here's the general syntax of a while loop in 
Bash: 
 
# pseudocode: 

while [ CONDITION ]​
do​
    COMMANDS​



done 

 
 
CONDITION is a test or comparison, such as checking whether a variable is less than a certain 
value. 
COMMANDS are the commands that will be executed in each iteration of the loop as long as 
the condition is true. 
Here's a simple example of a while loop in Bash that prints numbers 1 to 5: 
 
 

#!/bin/bash​
​
# Initialize a variable​
count=1​
​
# A simple while loop that prints numbers 1 to 5​
while [ $count -le 5 ]​
do​
    echo "Number $count"​
    ((count++))  # Increment the count variable​
done 

 
 
In this script: 
 
A variable named count is initialized with a value of 1. 
The while loop checks the condition $count -le 5 (which means "while count is less than or equal 
to 5"). 
 
Inside the loop, the echo command prints (with echo) the current value of count to the console. 
The ((count++)) statement increments the value of count by 1 in each iteration of the loop. 
When you run this script, you will see the following output: 
 

Number 1​
Number 2​
Number 3​
Number 4​
Number 5 

 
This while loop continues executing as long as the value of count remains 5 or less, and it stops 
once count becomes greater than 5. The while loop is useful in situations where you want to 
repeat a block of commands indefinitely, or until a certain condition is met. 



 
If you were to run this without a script (i.e. directly at the prompt), here's what it'd look like: 
 
# bash code 

count=1; while [ $count -le 5 ]; do echo "Number $count";  ((count++)); 

done 

 
 
 
While can also be used to iterate over a file. 
 
# pseudocode: 
 

cat FILENAME | while read line; do COMMAND; done 

 
# bash code: 
 

cat opening_lines.txt | while read column1 column2 column3; do echo 

$column1 $colum2 $column3 ; done 

 
Tip: In Bash, the read command is commonly used to read a line of input from standard input or 
from a file. When used in conjunction with a loop, read can be employed to process a delimited 
file line by line, splitting each line into fields based on a specified delimiter. 
 
Here's how you might use read to parse columns in a delimited file: 
 
Specify a Delimiter: 
 
Use the -a option with read to read input into an array, and specify the delimiter using the IFS 
(Internal Field Separator) variable. 
Read Lines from a File: 
 
Use a while loop to read lines from the file, and read to split each line into array elements. 
Access Individual Columns: 
 
Access individual columns by referencing the array indices. 
Here's an example that demonstrates how to use read to parse a CSV file with comma as the 
delimiter: 
 



# bash script 
 

#!/bin/bash​
​
# Define the delimiter​
IFS=','​
​
# Read the file line by line​
cat opening_lines.txt | while read -a lineArray​
do​
    # Access columns by index​
    column1=${lineArray[0]}​
    column2=${lineArray[1]}​
    column3=${lineArray[2]}​
    ​
    echo "Column 1: $column1, Column 2: $column2, Column 3: $column3"​
    ​
done  

 
In this example: 
 
IFS=',' sets the delimiter to comma. 
while read -a lineArray reads each line from input.csv into an array named lineArray. 
The array indices are used to access individual columns: column1=${lineArray[0]}, 
column2=${lineArray[1]}, and column3=${lineArray[2]}. 
The echo command prints the values of the columns to the console. 
In this way, the read command, along with a while loop, can be used to process a delimited file, 
parsing the columns and performing actions on the data as needed. 
 
 

35: ~/.bashrc 
 
The ~/.bashrc file is a script file that Bash runs every time it is started interactively, allowing you 
to configure your shell environment by setting variables, aliases, functions, and other shell 
attributes. The tilde ~ represents the user's home directory, so ~/.bashrc refers to a file named 
.bashrc located in the home directory of the user. 
 
Here are some key points regarding the ~/.bashrc file: 
 



●​ Environment Configuration: 
○​ You can use this file to set environment variables which will be available to all 

terminal sessions.  
○​ For example, you can set the PATH environment variable to include additional 

directories where executable programs are located.​
 

●​ Aliases and Functions: 
○​ You can define aliases and functions to create shortcuts or to encapsulate 

complex command sequences. 
○​ For example, you might define an alias to shorten a frequently used command, 

making it quicker to type.​
 

●​ Shell Options: 
○​ You can set shell options to modify the behavior of the shell. 
○​ For example, you might set options to control how the shell handles errors or job 

control.​
 

●​ Prompt Customization: 
○​ You can customize the appearance of the shell prompt, including its color and the 

information it displays. 
○​  

 
●​ Script Execution: 

○​ You can use the ~/.bashrc file to execute scripts automatically whenever a new 
shell session is started. 

 
Here's an example snippet from a ~/.bashrc file: 
 
# bash code 

# Set PATH​
export PATH="$HOME/software/:$PATH"​
​
# Define alias​
alias l='ls -ltrh'​
​
# Customize the prompt​
PS1='[\u@\h \W]\$ '​
 

 
 
 



Miniconda installation  
Conda in a virtual environment manager. It can be used to install software. 
 

mkdir -p /nas4/$USER/software/miniconda3​
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh 

-O /nas4/$USER/software/miniconda.sh​
bash /nas4/$USER/software/miniconda.sh -b -u -p 

/nas4/$USER/software/miniconda3 

 
# make a backup of ~/.bashc because conda will modify it. Whenever a software is going to 
modify my .bashrc, I usually create a backup of it. 

cp ~/.bashrc ~/.bashrc.bak 

 
# run the conda init (to initialize conda) 

/nas4/$USER/software/miniconda3/bin/conda init bash 

 
 
 

Miscellaneous Unix power 
commands 
The following examples introduce some other Unix commands, and show how they could be 
used to work on a fictional file called file.txt. Remember, you can always learn more about these 
Unix commands from their respective man pages with the man command. These are not all real 
world cases, but rather show the diversity of Unix command-line tools: 
 

●​ View the penultimate 10 lines of a file (using head and tail commands): 

$ tail -n 20 file.txt | head 

●​ Show lines of a file that begin with a start codon (ATG) (the ^ matches patterns at 
the start of a line): 

$ grep "^ATG" file.txt 

http://en.wikipedia.org/wiki/Head_(Unix)
http://en.wikipedia.org/wiki/Tail_(Unix)


●​ Cut out the 3rd column of a tab-delimited text file and sort it to only show unique 
lines (i.e. remove duplicates): 

$ cut -f 3 file.txt | sort -u 

●​ Count how many lines in a file contain the words ‘cat’ or ‘bat’ (-c option of grep 
counts lines): 

$ grep -c '[bc]at' file.txt 

●​ Turn lower-case text into upper-case (using tr command to ‘transliter ate’): 

$ cat file.txt | tr 'a-z' 'A-Z' 

●​ Change all occurrences of ‘Chr1’ to ‘Chromosome 1’ and write changed output to 
a new file (using sed command): 

$ cat file.txt | sed 's/Chr1/Chromosome 1/' > file2.txt 

http://en.wikipedia.org/wiki/Tr_(Unix)
http://en.wikipedia.org/wiki/Sed

	Command-line Bootcamp 
	Introduction 
	Why Unix? 
	Typeset Conventions 
	1. The Terminal 
	2. Your first Unix command 
	3: The Unix tree 
	4: Finding out where you are 
	5: Making new directories 
	6: Getting from ‘A’ to ‘B’ 
	7: The root directory 
	8: Navigating upwards in the Unix filesystem 
	9: Absolute and relative paths 
	10: Finding your way back home 
	11: Making the ls command more useful 
	12: Man pages 
	13: Removing directories 
	14: Using tab completion 
	15: Creating empty files with the touch command 
	16: Moving files 
	17: Renaming files 
	18: Moving directories 
	19: Removing files 
	20: Copying files 
	21: Copying directories 
	22: Echo, redirect, and less 
	23: Viewing files with cat; append to file 
	24: Counting characters in a file 
	25: Editing small text files with nano 
	26: The $PATH environment variable 
	27: Matching lines in files with grep 
	28: Combining Unix commands with pipes 
	29: Screen 
	30: Keyboard Shortcuts 
	 
	31: Downloading files from the web 
	32: File compression & Tarballs 
	33: File Permissions 
	34: While Loops 

	 
	35: ~/.bashrc 
	Miniconda installation  
	Miscellaneous Unix power commands 


