some may need Rstudio Cloud!
https:/Iposit.cloud/

Command-line
Bootcamp

The following document has been adapted from the Command-line Bootcamp by Keith
Bradnam licensed via Creative Commons Attribution 4.0 International License. The
original content has been substantially reworked, abbreviated and simplified.

Introduction

This ‘bootcamp’ is intended to provide the reader with a basic overview of essential
Unix/Linux commands that will allow them to navigate a file system and move, copy, edit
files. It will also introduce a brief overview of some ‘power’ commands in Unix. It was
originally developed as part of a Bioinformatics Core Workshop taught at UC Davis
(Using the Linux Command-Line for Analysis of High Throughput Sequence Data).

Why Unix?

The Unix operating system has been around since 1969. Back then there was no such
thing as a graphical user interface. You typed everything. It may seem archaic to use a
keyboard to issue commands today, but it's much easier to automate keyboard tasks
than mouse tasks. There are several variants of Unix (including Linux), though the
differences do not matter much for most basic functions.


http://korflab.ucdavis.edu/bootcamp.html
http://www.keithbradnam.com/
http://www.keithbradnam.com/
http://bioinformatics.ucdavis.edu/
http://training.bioinformatics.ucdavis.edu/docs/2015/06/june-2015-workshop/index.html
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Linux

Increasingly, the raw output of biological research exists as in silico data, usually in the
form of large text files. Unix is particularly suited to working with such files and has
several powerful (and flexible) commands that can process your data for you. The real
strength of learning Unix is that most of these commands can be combined in an almost
unlimited fashion. So if you can learn just five Unix commands, you will be able to do a
lot more than just five things.

Typeset Conventions

Command-line examples that you are meant to type into a terminal window will be
shown in a box with a fixed-width font, e.g.

$ 1s -1rh

Sometimes the accompanying text will include a reference to a Unix command. Any
such text will also be in a fixed-width, boxed font. E.g.

Type the pwd command again.

From time to time this documentation will contain web links to pages that will help you
find out more about certain Unix commands. Usually, the first mention of a command or
function will be a hyperlink to Wikipedia. Important or critical points will be styled like so:

This is an important point!

1. The Terminal

A terminal is the common name for the program that does two main things. It allows you
to type input to the computer (i.e. run programs, move/view files etc.) and it allows you
to see output from those programs. All Unix machines will have a terminal program
available.

Open the terminal application. You should now see something that looks like the
following:


http://en.wikipedia.org/wiki/Hyperlink

@ [ ] 1. ubuntu@ip-10-0-0-75: ~ (ssh)
ubuntu@:~$ |

Terminal application

# connect over ssh

ssh dbobo@huxley-master.pcc.amnh.org

if you're using putty:



&% PuTTY Configuration

Category:
- Session Basic options for your PuTTY session
Logging .
Tarminal Specify the destination you want to connect to

Keyboard Host Name (or IP address) Part

Ball dbebo@huxley-masier pec.amnh ong 22

Feat

- Win:ims Connection type:

i Oy Raw () Telnet () Rlegin @ 38H () Serial

E‘*‘"“"‘“P‘ Load, save or dalete a slored session

Translation .

Salection Saved Sessions

Colours: huxley

- D‘::::mmn augrabies 'S Load

bugs

Proxy chimera

Telnet cuvier =0

Rlagin deanbobo.com

FssH hal Dalete

Serial huxley I
Close window on axit:
) Aways () Maver (@) Only on clean exit

About Help | Open | Cancel

There will be many situations where it will be useful to have multiple terminals open and
it will be a matter of preference as to whether you want to have multiple windows, or
one window with multiple tabs (there are typically keyboard shortcuts for switching
between windows, or moving between tabs).

For MacOS, | recommend iTerm2.

For Windows | recommend PuTTy (for SSH connections)

2. Your first Unix command

It's important to note that you will always be inside a single directory when using the
terminal. The default behavior is that when you open a new terminal you start in your



own home directory (containing files and directories that only you can modify). To see
what files and directories are in our home directory, we need to use the Is command.
This command lists the contents of a directory. If we run the 1s command we should see
something like:

$ 1s
project.Rproj
$

There are four things that you should note here:

1. You will probably see different output to what is shown here, it depends on your
computer setup. Don’t worry about that for now.

2. The /cloud/project$ that you see is the Unix command prompt. In this case, it
contains the path of the current /cloud/project. Note that the command prompt
might not look the same on different Unix systems. In this case, the $ sign marks
the end of the prompt.

3. The output of the 1s command lists one thing. In this case, it is the configuration
file for your Rstudio project. You can ignore this for now.

4. After the 1s command finishes it produces a new command prompt, ready for you
to type your next command.

3: The Unix tree

Looking at directories from within a Unix terminal can often seem confusing. But bear in
mind that these directories are exactly the same type of folders that you can see if you
use any graphical file browser. From the root level (/) there are usually a dozen or so
directories. You can treat the root directory like any other, e.g. you can list its contents:

$ 1s /

bin dev  initrd.img lib64 mnt root software tmp vmlinuz
boot etc initrd.img.old lost+found opt run srv usr vmlinuz.old
data home 1lib media proc sbin sys var

You might notice some of these names appearing in different colors. Many Unix
systems will display files and directories differently by default. Other colors may be used


http://en.wikipedia.org/wiki/Ls
http://en.wikipedia.org/wiki/Command_line_interface

for special types of files. When you log in to a computer you are working with your files
in your home directory, and this is often inside a directory called ‘users’ or ‘home’.

4: Finding out where you are

There may be many hundreds of directories on any Unix machine, so how do you know
which one you are in? The command pwd will Print the Working Directory and that’s
pretty much all this command does:

$ pwd

/home/ubuntu
When you log in to a Unix computer, you are typically placed into your home directory.
In this example, after we log in, we are placed in a directory called ‘ubuntu’ which itself
is a subdirectory of another directory called ‘home’. Conversely, ‘users’ is the parent
directory of ‘cimuser’. The first forward slash that appears in a list of directory names
always refers to the top level directory of the file system (known as the root directory).
The remaining forward slash (between ‘home’ and ‘ubuntu’) delimits the various parts of
the directory hierarchy. If you ever get ‘lost’ in Unix, remember the pwd command.

As you learn Unix you will frequently type commands that don’t seem to work. Most of
the time this will be because you are in the wrong directory, so it'’s a really good habit to
get used to running the pwd command a lot.

5: Making new directories

If we want to make a new directory (e.g. to store some work related data), we can use
the mkdir command:

$ mkdir Learning_unix
$ 1s
command_line_course Learning_unix linux_bootcamp



http://en.wikipedia.org/wiki/Pwd
http://en.wikipedia.org/wiki/Working_directory
http://en.wikipedia.org/wiki/Root_directory
http://en.wikipedia.org/wiki/Tilde#Directories_and_URLs

6: Getting from ‘A’ to ‘B’

We are in the home directory on the computer but we want to work in the new
Learning_unix directory. To change directories in Unix, we use the cd command:

$ cd Learning_unix

Let's make two new subdirectories and navigate into them:

$ mkdir Outer_directory
$ cd Outer_directory

$ mkdir Inner_directory
$ cd Inner_directory/

We created the two directories in separate steps, but it is possible to use the mkdir
command to do this all in one step.

Like most Unix commands, mkdir supports command-line options which let you alter its
behavior and functionality. Command-like options are — as the name suggests —
optional arguments that are placed after the command name. They often take the form
of single letters (following a dash). If we had used the -p option of the mkdir command
we could have done this in one step. E.g.

mkdir -p Outer_directory/Inner_directory

Note the spaces either side the -p!

7: The root directory

Let’s change directory to the root directory, and then into the usr directory and then into
the bin directory



$ cd /
$ cd usr
$ cd bin

In this case, we may as well have just changed directory in one go:

cd /usr/bin/

The leading / is incredibly important. The following two commands are very different:

cd /usr/bin/ # absolute path
cd usr/bin/ # relative path

The first command says go to the bin directory that is beneath the usr directory that is at
the top level (the root) of the file system. There can only be one /usr/bin directory on
any Unix system.

The second command says go to the bin directory that is beneath the usr directory that

is located wherever | am right now. There can potentially be many usr/bin directories
on a Unix system (though this is unlikely).

Learn and understand the difference between these two commands.

8: Navigating upwards in the
Unix filesystem

Frequently, you will find that you want to go ‘upwards’ one level in the directory
hierarchy. Two dots .. are used in Unix to refer to the parent directory of wherever you
are. Every directory has a parent except the root level of the computer. Let’s go into the
Learning_unix directory and then navigate up two levels:

$ cd
$ cd ~/Learning_unix/
$ cd ..

What if you wanted to navigate up two levels in the file system in one go? It's very
simple, just use two sets of the .. operator, separated by a forward slash:



cd ../..

9: Absolute and relative paths

Using cd .. allows us to change directory relative to where we are now. You can also
always change to a directory based on its absolute location. E.g. if you are working in
the /cloud/project/Learning_unix directory and you then want to change to the /tmp
directory, then you could do either of the following:

$cd../../../tmp

or...

$ cd /tmp

They both achieve the same thing, but the 2nd example requires that you know about
the full path from the root level of the computer to your directory of interest (the ‘path’ is

an important concept in Unix). Sometimes it is quicker to change directories using the
relative path, and other times it will be quicker to use the absolute path.

10: Finding your way back home

Unix uses the tilde character as a short-hand way of specifying a home directory.

See what happens when you try the following commands (use the pwd command after
each one to confirm the results if necessary):

cd /
cd ~ # takes you home
cd # takes you home


http://en.wikipedia.org/wiki/Tilde#Directories_and_URLs

Hopefully, you should find that cd and cd ~ do the same thing, i.e. they take you back to
your home directory (from wherever you were). You will frequently want to jump straight
back to your home directory, and typing cd is a very quick way to get there.

You can also use the ~ as a quick way of navigating into subdirectories of your home
directory when your current directory is somewhere else. |.e. the quickest way of
navigating from the root directory to your Learning_unix directory is as follows:

$cd/
$ cd ~/Learning_unix

11: Making the 1s command more
useful

The .. operator that we saw earlier can also be used with the 1s command, e.g. you can
list directories that are ‘above’ you:

$ cd ~/Learning_unix/Outer_directory/

$ 1s ../../
Learning_unix project.Rproj

Time to learn another useful command-line option. If you add the letter ‘I’ to the 1s
command it will give you a longer output compared to the default:

$ 1s -1 /home
total o
lrwxrwxrwx 1 root root 20 Jan 9 11:37 r1819497 -> /cloud/home/r1819497



$ 1s -1

total 3856
-rwW-r--pr--
-rw-r--r--
-rW-r--r--
-rw-r--r--
drwxr-xr-x
-rw-r--r--

zaira zaira 89 Apr
zaira zaira 210 Apr
zaira zaira 1513 Apr
zaira zaira 19933 Apr
zaira zaira 4096 Apr
zaira zaira 67 Apr
drwxr-xr-x zalra zaira 4096 Apr
drwxr-xr-x zaira zaira 4096 Apr

T T T “I“'_I_"_I_'

MODE OWNER GROUP SIZE MODIFICATION DATE FILE/FOLDER NAME

20:46 CODE_OF_CONDUCT.md
20:46 CONTRIBUTING.md
20:46 LICENSE.md

20:46 README.md

22:45

20:46 babel.config.js
22:55

=
VoORrRARRELRRRE

(o TN e R IV o I o A TV o IRV o BV o BV |

Mode, owner, and group explained in more detail in section 33.

For each file or directory we now see more information (including file ownership and
modification times). The ‘d’ at the start of each line indicates that these are directories.
There are many, many different options for the 1s command. Try out the following
(against any directory of your choice) to see how the output changes.

1s -1

Is -R

Is -1 -t -r

1s -1h
Note that the last example combine multiple options but only use one dash. This is a
very common way of specifying multiple command-line options. You may be wondering
what some of these options are doing. It’s time to learn about Unix documentation....

12: Man pages

If every Unix command has so many options, you might be wondering how you find out
what they are and what they do. Well, thankfully every Unix command has an
associated ‘manual’ that you can access by using the man command. E.g.

man 1s
man cd



man man # yes even the man command has a manual page

When you are using the man command, press space to scroll down a page, b to go back
a page, or q to quit. You can also use the up and down arrows to scroll a line at a time.
The man command is actually using another Unix program, a text viewer called 1ess,
which we’ll come to later on.

13: Removing directories

We now have a few (empty) directories that we should remove. To do this use the rmdir
command, this will only remove empty directories so it is quite safe to use. If you want
to know more about this command (or any Unix command), then remember that you
can just look at its man page.

cd ~/Learning_unix/Outer_directory/
rmdir Inner_directory/

€& oo

rmdir Outer_directory/

1s

B A B A B B

* Note, you have to be outside a directory before you can remove it with rmdir *

14: Using tab completion

Saving keystrokes may not seem important, but the longer that you spend typing in a
terminal window, the happier you will be if you can reduce the time you spend at the
keyboard. Especially, as prolonged typing is not good for your body. So the best Unix tip
to learn early on is that you can tab complete the names of files and programs on most
Unix systems. Type enough letters that uniquely identify the name of a file, directory or
program and press tab...Unix will do the rest. E.qg. if you type ‘tou’ and then press tab,
Unix should autocomplete the word to ‘touch’ (this is a command which we will learn
more about in a minute). In this case, tab completion will occur because there are no
other Unix commands that start with ‘tou’. If pressing tab doesn’t do anything, then you


http://en.wikipedia.org/wiki/Rmdir
http://en.wikipedia.org/wiki/Command_line_completion

have not have typed enough unique characters. In this case pressing tab twice will
show you all possible completions. This trick can save you a LOT of typing!

Navigate to your home directory, and then use the cd command to change to the
Learning_unix directory. Use tab completion to complete directory name. If there are no
other directories starting with ‘L’ in your home directory, then you should only need to
type ‘cd’ + ‘L’ + ‘tab’.

Tab completion will make your life easier and make you more productive!

Another great time-saver is that Unix stores a list of all the commands that you have
typed in each login session. You can access this list by using the history command or
more simply by using the up and down arrows to access anything from your history. So
if you type a long command but make a mistake, press the up arrow and then you can
use the left and right arrows to move the cursor in order to make a change.

15: Creating empty files with the
touch command

The following sections will deal with Unix commands that help us to work with files, i.e.
copy files to/from places, move files, rename files, remove files, and most importantly,
look at files. First, we need to have some files to play with. The Unix command touch
will let us create a new, empty file. The touch command does other things too, but for
now we just want a couple of files to work with.

$ cd Learning_unix/

$ touch heaven.txt

$ touch earth.txt

$ 1s

earth.txt heaven.txt

16: Moving files


http://en.wikipedia.org/wiki/History_(Unix)
http://en.wikipedia.org/wiki/Command_line_completion

Now, let's assume that we want to move these files to a new directory (‘Temp’). We will
do this using the Unix mv (move) command. Remember to use tab completion:

$ mkdir Temp

$ mv heaven.txt Temp/
$ mv earth.txt Temp/

$ 1s

Temp

$ 1s Temp/

earth.txt heaven.txt

For the mv command, we always have to specify a source file (or directory) that we want
to move, and then specify a target location. If we had wanted to we could have moved
both files in one go by typing any of the following commands:

mv *.txt Temp/

mv *t Temp/

mv *ea* Temp/
The asterisk * acts as a wild-card character, essentially meaning ‘match anything’. The
second example works because there are no other files or directories in the directory
that end with the letters ‘t’ (if there was, then they would be moved too). Likewise, the
third example works because only those two files contain the letters ‘ea’ in their names.
Using wild-card characters can save you a lot of typing.

The “?’ character is also a wild-card but with a slightly different meaning. See if you can
work out what it does.

17: Renaming files

In the earlier example, the destination for the mv command was a directory name
(Temp). So we moved a file from its source location to a target location, but note that the
target could have also been a (different) file name, rather than a directory. E.g. let’s
make a new file and move it whilst renaming it at the same time:

$ touch rags

$ 1s

rags Temp

$ mv rags Temp/riches
$ 1s Temp/


http://en.wikipedia.org/wiki/Mv
http://en.wikipedia.org/wiki/Wildcard_character

earth.txt heaven.txt riches

In this example we create a new file (‘rags’) and move it to a new location and in the
process change the name (to ‘riches’). So mv can rename a file as well as move it. The
logical extension of this is using mv to rename a file without moving it (you have to use mv
to do this as Unix does not have a separate ‘rename’ command):

$ mv Temp/riches Temp/rags

18: Moving directories

It is important to understand that as long as you have specified a ‘source’ and a ‘target’
location when you are moving a file, then it doesn’t matter what your current directory is.
You can move or copy things within the same directory or between different directories
regardless of whether you are in any of those directories. Moving directories is just like
moving files:

$ mv Temp/riches Temp/rags

$ mkdir Temp2

$ mv Temp2 Temp

$ 1s Temp/

earth.txt heaven.txt rags Temp2

This step moves the Temp2 directory inside the Temp directory.

Try creating a “Temp3’ directory inside ‘Learning_unix’ and then cd to /tmp. Can you
move Temp3 inside Temp without changing directory?

19: Removing files

You’ve seen how to remove a directory with the rmdir command, but rmdir won’t remove
directories if they contain any files. So how can we remove the files we have created



(inside Learning_unix/Temp)? In order to do this, we will have to use the rm (remove)
command.

Please read the next section VERY carefully. Misuse of the rm command can lead
to needless death & destruction

Potentially, rm is a very dangerous command; if you delete something with rm, you will
not get it back! It is possible to delete everything in your home directory (all directories
and subdirectories) with rm, that is why it is such a dangerous command.

Let me repeat that last part again. It is possible to delete EVERY file you have ever
created with the rm command. Are you scared yet? You should be. Luckily there is a
way of making rm a little bit safer. We can use it with the -i command-line option which
will ask for confirmation before deleting anything (remember to use tab-completion):

$ cd Temp

$ 1s

earth.txt heaven.txt rags Temp2

$ rm -i earth.txt heaven.txt rags

rm: remove regular empty file 'earth.txt'? y
rm: remove regular empty file 'heaven.txt'? y
rm: remove regular empty file 'rags'? y

$ 1s

Temp2

We could have simplified this step by using a wild-card

€.g. rm -i *.txt

or we could have made things more complex by removing each file with a separate rm
command. Let’s finish cleaning up:

rmdir Temp2/Temp3
rmdir Temp2

€@ oo

rmdir Temp

20: Copying files

Copying files with the cp (copy) command is very similar to moving them. Remember to
always specify a source and a target location. Let’s create a new file and make a copy
of it:


http://en.wikipedia.org/wiki/Rm_(Unix)
http://en.wikipedia.org/wiki/Cp_(Unix)

~/Learning_unix$ touch filel
~/Learning_unix$ cp filel file2

~/Learning_unix$ 1s
filel file2

What if we wanted to copy files from a different directory to our current directory? Let’s
put a file in our home directory (specified by ~ remember) and copy it to the current
directory (Learning_unix):

~/Learning_unix$ touch ~/file3
~/Learning_unix$ ls ~
command_line_course file3 Learning unix linux_bootcamp

~/Learning_unix$ cp ~/file3 .
~/Learning_unix$ 1s
filel file2 file3

This last step introduces another new concept. In Unix, the current directory can be
represented by a . (dot) character. You will mostly use this only for copying files to the
current directory that you are in. Compare the following:

1s
1s .
1s ./

In this case, using the dot is somewhat pointless because 1s will already list the
contents of the current directory by default. Also note how the trailing slash is optional.
You can use rm to remove the temporary files.

21: Copying directories

The cp command also allows us (with the use of a command-line option) to copy entire
directories. Use man cp to see how the -r or -r options let you copy a directory
recursively.




22: Echo, redirect, and less

So far we have covered listing the contents of directories and moving/copying/deleting
either files and/or directories. Now we will quickly cover how you can look at files. The
less command lets you view (but not edit) text files. We will use the echo command to
put some text in a file and then view it:

~/Learning_unix$ echo "Call me Ishmael."
Call me Ishmael.
~/Learning_unix$ echo "Call me Ishmael." > opening_ lines.txt

~/Learning unix$ 1s
opening_lines.txt
~/Learning_unix$ less opening lines.txt

On its own, echo isn’t a very exciting Unix command. It just echoes text back to the
screen. But we can redirect that text into an output file by using the > symbol. This
allows for something called file redirection.

Careful when using file redirection (>), it will overwrite any existing file of the
same name

When you are using less, you can bring up a page of help commands by pressing h,
scroll forward a page by pressing space, or go forward or backwards one line at a time
by pressing j or k. To exit less, press q (for quit). The less program also does about a
million other useful things (including text searching).

23: Viewing files with cat;
append to file

Let’s add another line to the file:

~/Learning_unix$ echo "The primroses were over." >> opening_lines.txt
~/Learning_unix$ cat opening_lines.txt

Call me Ishmael.
The primroses were over.



http://en.wikipedia.org/wiki/Less_(Unix)
http://en.wikipedia.org/wiki/Echo_(command)
http://en.wikipedia.org/wiki/Redirection_(Unix)

Notice that we use >> and not just >. This operator will append to a file. If we only used
>, we would end up overwriting the file. The cat command displays the contents of the
file (or files) and then returns you to the command line. Unlike less you have no control
on how you view that text (or what you do with it). It is a very simple, but sometimes
useful, command. You can use cat to quickly combine multiple files or, if you wanted to,
make a copy of an existing file:

cat opening_lines.txt > file_copy.txt

24: Counting characters in a file

~/Learning unix$ 1s
opening_lines.txt

~/Learning unix$ 1ls -1
total 4
-rw-rw-r-- 1 ubuntu ubuntu 42 Jun 15 04:13 opening_lines.txt

~/Learning_unix$ wc opening_lines.txt
2 7 42 opening lines.txt

~/Learning_unix$ wc -1 opening lines.txt
2 opening_lines.txt

The 1s -1 option shows us a long listing, which includes the size of the file in bytes (in
this case ‘42’). Another way of finding this out is by using Unix’s wc command (word
count). By default this tells you many lines, words, and characters are in a specified file
(or files), but you can use command-line options to give you just one of those statistics
(in this case we count lines with we -1).

25: Editing small text files with
nano


http://en.wikipedia.org/wiki/Cat_(Unix)
https://en.wikipedia.org/wiki/Wc_(Unix)

Nano is a lightweight editor installed on most Unix systems. There are many more
powerful editors (such as ‘emacs’ and ‘vi’), but these have steep learning curves. Nano
is very simple. You can edit (or create) files by typing:

nano opening_lines.txt

You should see the following appear in your terminal:

1. ubuntu@ip-10-0-0-75: ~/Learning_unix (ssh)
GNU nano 2.2.6 File: opening_lines.txt

[all me Ishmael.
The primroses were over.

[ Read 2 lines ]
e Get Help e WriteQut i Read File @{ Prev Page [ Cut Text We Cur Pos
W1 Exit A AR Y Where Is W Next Page QI UnCut Text @] To Spell

The bottom of the nano window shows you a list of simple commands which are all
accessible by typing ‘Control’ plus a letter. E.g. Control + X exits the program.

We recommend Vim or Emacs text editors. They are much more feature-rich.

26: The $PATH environment
variable


https://www.freecodecamp.org/news/vim-beginners-guide/
https://www.gnu.org/software/emacs/tour/

One other use of the echo command is for displaying the contents of something known
as environment variables. These contain user-specific or system-wide values that either
reflect simple pieces of information (your username), or lists of useful locations on the
file system. Some examples:

~/Learning_unix$ echo $USER
ubuntu
~/Learning_unix$ echo $HOME

/home/ubuntu
~/Learning_unix$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

The last one shows the content of the $PATH environment variable, which displays a —
colon separated — list of directories that are expected to contain programs that you can
run. This includes all of the Unix commands that you have seen so far. These are files
that live in directories which are run like programs (e.g. 1s is just a special type of file in
the /bin directory).

Knowing how to change your $PATH to include custom directories can be necessary
sometimes (e.qg. if you install some new bioinformatics software in a non-standard
location).

# env

27: Matching lines in files with
grep

Use nano to add the following lines to opening_lines.txt:

Now is the winter of our discontent.

All children, except one, grow up.

The Galactic Empire was dying.

In a hole in the ground there lived a hobbit.

It was a pleasure to burn.
It was a bright, cold day in April, and the clocks were striking thirteen.
It was love at first sight.




I am an invisible man.
It was the day my grandmother exploded.

When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow.
Marley was dead, to begin with.

You will often want to search files to find lines that match a certain pattern. The Unix
command grep does this (and much more). The following examples show how you can
use grep’s command-line options to:

show lines that match a specified pattern

ignore case when matching (-1)

only match whole words (-w)

show lines that don’t match a pattern (-v)

Use wildcard characters and other patterns to allow for alternatives (*, ., and [])

$ grep was opening_lines.txt

The Galactic Empire was dying.

It was a pleasure to burn.

It was a bright, cold day in April, and the clocks were striking thirteen.

It was love at first sight.

It was the day my grandmother exploded.

When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow.
Marley was dead, to begin with.

$ grep -v was opening lines.txt

Call me Ishmael.

The primroses were over.

Now is the winter of our discontent.

All children, except one, grow up.

In a hole in the ground there lived a hobbit.
I am an invisible man.

grep all opening lines.txt
Call me Ishmael.

grep -1 all opening_lines.txt
Call me Ishmael.
All children, except one, grow up.

grep in opening lines.txt

Now is the winter of our discontent.

The Galactic Empire was dying.

In a hole in the ground there lived a hobbit.

It was a bright, cold day in April, and the clocks were striking thirteen.



http://en.wikipedia.org/wiki/Grep

I am an invisible man.
Marley was dead, to begin with.

grep -w in opening_lines.txt
In a hole in the ground there lived a hobbit.
It was a bright, cold day in April, and the clocks were striking thirteen.

grep -w o.. opening_ lines.txt
Now is the winter of our discontent.
All children, except one, grow up.

grep [aeiou]t opening lines.txt

In a hole in the ground there lived a hobbit.

It was love at first sight.

It was the day my grandmother exploded.

When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow.
Marley was dead, to begin with.

grep -w -i [aeiou]t opening lines.txt

It was a pleasure to burn.

It was a bright, cold day in April, and the clocks were striking thirteen.

It was love at first sight.

It was the day my grandmother exploded.

When he was nearly thirteen, my brother Jem got his arm badly broken at the elbow.

28: Combining Unix commands
with pipes

One of the most powerful features of Unix is that you can send the output from one
command or program to any other command (as long as the second command accepts
input of some sort). We do this by using what is known as a pipe. This is implemented
using the ‘|’ character (which is a character which always seems to be on different keys
depending on the keyboard that you are using). Think of the pipe as simply connecting
two Unix programs. Here’s an example which introduces some new Unix commands:

~/Learning_unix$ grep was opening lines.txt | wc -c

328



http://en.wikipedia.org/wiki/Pipe_(Unix)

~/Learning_unix$
grep was opening_lines.txt | sort | head -n 3 | wc -c

136

The first use of grep searches the specified file for lines matching ‘was’, it sends the
lines that match through a pipe to the wc program. We use the -c option to just count
characters in the matching lines (328).

The second example first sends the output of grep to the Unix sort command. This sorts
a file alphanumerically by default. The sorted output is sent to the head command which
by default shows the first 10 lines of a file. We use the -n option of this command to only
show 3 lines. These 3 lines are then sent to the we command as before.

Whenever making a long pipe, test each step as you build it!

29: Screen

GNU Screen is a terminal multiplexer that allows you to manage multiple terminal sessions
within a single terminal window or remote terminal session. Here are some key features and
aspects of GNU Screen:

Multiple Sessions: You can have multiple terminal sessions running simultaneously, each within
its own "window". This is useful when working on different tasks or projects concurrently.

Session Detachment and Reattachment: You can detach a screen session and then reattach it
later, even from a different terminal. This is very useful for long-running processes on remote
servers.

Session Sharing: Multiple users can connect to the same screen session, making collaborative
work easier.

Customization and Scripting: GNU Screen is customizable and scriptable, allowing for a tailored
user experience.

Persistent Sessions: If your connection drops or you need to disconnect from a server, your
screen sessions remain active and you can pick up right where you left off.




By utilizing GNU Screen, you can significantly enhance your terminal-based workflows, making
it easier to manage multiple tasks and maintain long-running processes, especially on remote
servers.

# to start a screen session, type the command

$ screen

# to see if you're in a screen session
$ echo $TERM

if you see something that says "xterm", you're not in screen.
If you see something that says "screen", you're in a screen session.

# to see a list of screen sessions

$ screen -1s

There is a screen on:
26760.pts-0.huxley-head (Detached)

1 Socket in /home/dbobo/.screen.

# to detach from a screen session

$ screen -d

# to reattach to a screen session

$ screen -r 26760

The escape key sequence is ctrl + a

[ctrl] + [a] then [c] = create a new window
["]=show all windows

[ n ] = move to next window

[ p]= move to previous window

Screen cheat sheet:
https://kapeli.com/cheat_sheets/screen.docset/Contents/Resources/Documents/index



30: Keyboard Shortcuts

Shortcut

Action

Bash Navigation

Ctrl+ A Move to the start of the command line

Ctrl+E Move to the end of the command line

Ctrl+F Move one character forward

Ctrl +B Move one character backward

Ctrl + XX Switch cursor position between start of the command line and the current position
Ctrl +]+x Moves the cursor forward to next occurrence of x

Alt+F/Esc+F

Moves the cursor one word forward

Alt+B/Esc+B

Moves the cursor one word backward

Alt + Ctrl +] + x

Moves cursor to the previous occurrence of x

Bash Control/Process

Ctrl + L Similar to clear command, clears the terminal screen
Ctrl+S Stops command output to the screen
Ctrl+Z Suspends current command execution and moves it to the background




Ctrl+Q Resumes suspended command
Ctrl+C Sends SIGI signal and kills currently executing command
Ctrl+D Closes the current terminal

Bash History

Ctrl +R Incremental reverse search of bash history
Alt+P Non-incremental reverse search of bash history
Ctrl+J Ends history search at current command

Ctrl + _ Undo previous command

Ctrl + P / Up arrow

Moves to previous command

Ctrl + N / Down arrow

Moves to next command

Ctrl +S Gets the next most recent command

Ctrl+ 0 Runs and re-enters the command found via Ctrl + S and Ctrl + R
Ctrl + G Exits history search mode

Il Runs last command

1% Runs previous command except its first word

*:p Displays what !* substitutes

Ix Runs recent command in the bash history that begins with x




X:p Displays the x command and adds it as the recent command in history
1S Same as OPTION+,, brings forth last argument of the previous command
1A Substitutes first argument of last command in the current command
IS:p Displays the word that !$ substitutes

AM23*abce Replaces 123 with abc

In:m Repeats argument within a range (i.e, m 2-3)

i Repeats latest command in history that begins with fi

In Run nth command from the bash history

In:p Prints the command In executes

n:$ Repeat arguments from the last command (i.e, from argument n to $)
Bash Editing

Ctrl+U Deletes before the cursor until the start of the command

Ctrl +K Deletes after the cursor until the end of the command

Ctrl+ W Removes the command/argument before the cursor

Ctrl+D Removes the character under the cursor

Ctrl+H Removes character before the cursor

Alt+D Removes from the character until the end of the word

Alt + Backspace

Removes from the character until the start of the word




Alt +./ Esc+. Uses last argument of previous command
Alt + < Moves to the first line of the bash history

Alt + > Moves to the last line of the bash history
Esc+T Switch between last two words before cursor
Alt+T Switches current word with the previous

Bash Information

TAB Autocompletes the command or file/directory name
~TAB TAB List all Linux users

Ctrl +1 Completes the command like TAB

Alt+7? Display files/folders in the current path for help

Alt +* Display files/folders in the current path as parameter

31: Downloading files from the

web

wget is a free utility for non-interactive download of files from the web. It supports HTTP,
HTTPS, and FTP protocols, as well as retrieval through HTTP proxies. With wget, you can
download entire websites, parts of websites, or individual files from websites. It's known for its




ability to resume interrupted downloads, which can be very useful in scripts or automated
processes.

$ wget
https://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/ALL.chrMT.phase
3 callmom-v@ 4.20130502.genotypes.vcf.gz

32: File compression & Tarballs

ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz is a gzipped compressed VCE
file.

less can view many compressed files natively.
$ less ALL.chrMT.phase3_callmom-v@_4.20130502.genotypes.vcf.gz

# unwrap the lines

$ less -S ALL.chrMT.phase3 callmom-v@ 4.20130502.genotypes.vcf.gz

# decompress a gzipped file:

$ gunzip ALL.chrMT.phase3 callmom-v@ 4.20130502.genotypes.vcf.gz

# gzip compress a file
$ gzip ALL.chrMT.phase3_callmom-v@_4.20130502.genotypes.vcf

Other tools:
zip to compress a zip file
unzip to decompress a zip file

# file command to see if a file is compressed

The Linux ‘tar’ stands for tape archive, which is used to create Archive and extract the Archive
files. tar command in Linux is one of the important commands which provides archiving


https://en.wikipedia.org/wiki/Variant_Call_Format
https://en.wikipedia.org/wiki/Variant_Call_Format

functionality in Linux. We can use the Linux tar command to create compressed or
uncompressed Archive files and also maintain and modify them.

# extract a tarball:

$ tar -zxvf file_name.tar.gz

33: File Permissions

The below is taken from: https://www.redhat.com/sysadmin/linux-file-permissions-explained
What are octal values?

When Linux file permissions are represented by numbers, it's called numeric mode. In numeric
mode, a three-digit value represents specific file permissions (for example, 744.) These are
called octal values. The first digit is for owner permissions, the second digit is for group
permissions, and the third is for other users. Each permission has a numeric value assigned to
it:

e r(read): 4

e w (write): 2
e X (execute): 1

In the permission value 744, the first digit corresponds to the user, the second digit to the group,
and the third digit to others. By adding up the value of each user classification, you can find the
file permissions.

For example, a file might have read, write, and execute permissions for its owner, and only read
permission for all other users. That looks like this:

e Owner:rwx =4+42+1=7
e Group:r--=4+0+0=4
e Others: r--=4+0+0=4

The results produce the three-digit value 744.

What do Linux file permissions actually do?

I've talked about how to view file permissions, who they apply to, and how to read what
permissions are enabled or disabled. But what do these permissions actually do in practice?



Read (r)

Read permission is used to access the file's contents. You can use a tool like cat or less on the
file to display the file contents. You could also use a text editor like Vi or view on the file to
display the contents of the file. Read permission is required to make copies of a file, because
you need to access the file's contents to make a duplicate of it.

Write (w)

Write permission allows you to modify or change the contents of a file. Write permission also
allows you to use the redirect or append operators in the shell (> or >>) to change the contents
of a file. Without write permission, changes to the file's contents are not permitted.

Execute (x)

Execute permission allows you to execute the contents of a file. Typically, executables would be
things like commands or compiled binary applications. However, execute permission also allows
someone to run Bash shell scripts, Python programs, and a variety of interpreted languages.

34: For Loops

A for loop is a control flow statement that allows code to be executed repeatedly based on a
specified condition. In Bash scripting, for loops are used to iterate over a series of values or
elements of an array, or the output of a command.

Here's a general syntax for a for loop in Bash:

# psuedocode

for VARIABLE in ITEM 1 ITEM 2 ... ITEM N
do

COMMANDS
done

you can also use shell expansion:

for VARIABLE in {1..10}
do

COMMANDS
echo $VARIABLE

done



An example:

for i in {1..10}; do echo "The number is $i"; done

The number is
The number is
The number is
The number is
The number 1is
The number is
The number is
The number is
The number is
The number is

O 00 NOWUT B WNBP

=
(W)

The for loop iterates over the list of numbers 1 through 10. The variable i takes on the value of
the current item in the list during each iteration of the loop. The echo command is used to print
the current value of i to the console.

for loops are a fundamental part of Bash scripting, and understanding how to use them will
help you automate repetitive tasks and manage collections of data.

34: While Loops

A while loop is another control flow statement used in Bash scripting to execute a block of
commands as long as a specified condition is true. Here's the general syntax of a while loop in
Bash:

# pseudocode:

while [ CONDITION ]
do
COMMANDS



done

CONDITION is a test or comparison, such as checking whether a variable is less than a certain
value.

COMMANDS are the commands that will be executed in each iteration of the loop as long as
the condition is true.

Here's a simple example of a while loop in Bash that prints numbers 1 to 5:

#!/bin/bash

# Initialize a variable
count=1

# A simple while loop that prints numbers 1 to 5
while [ $count -le 5 ]
do

echo "Number $count"

((count++)) # Increment the count variable
done

In this script:

A variable named count is initialized with a value of 1.
The while loop checks the condition $count -le 5 (which means "while count is less than or equal
to 5").

Inside the loop, the echo command prints (with echo) the current value of count to the console.
The ((count++)) statement increments the value of count by 1 in each iteration of the loop.
When you run this script, you will see the following output:

Number
Number
Number
Number
Number

ui p W N PR

This while loop continues executing as long as the value of count remains 5 or less, and it stops
once count becomes greater than 5. The while loop is useful in situations where you want to
repeat a block of commands indefinitely, or until a certain condition is met.



If you were to run this without a script (i.e. directly at the prompt), here's what it'd look like:

# bash code

count=1; while [ $count -le 5 ]; do echo "Number $count"; ((count++));
done

While can also be used to iterate over a file.

# pseudocode:

cat FILENAME | while read line; do COMMAND; done

# bash code:

cat opening_lines.txt | while read columnl column2 column3; do echo
$columnl $colum2 $column3 ; done

Tip: In Bash, the read command is commonly used to read a line of input from standard input or
from a file. When used in conjunction with a loop, read can be employed to process a delimited
file line by line, splitting each line into fields based on a specified delimiter.

Here's how you might use read to parse columns in a delimited file:

Specify a Delimiter:

Use the -a option with read to read input into an array, and specify the delimiter using the IFS
(Internal Field Separator) variable.

Read Lines from a File:

Use a while loop to read lines from the file, and read to split each line into array elements.
Access Individual Columns:

Access individual columns by referencing the array indices.
Here's an example that demonstrates how to use read to parse a CSV file with comma as the
delimiter:



# bash script

#!/bin/bash

# Define the delimiter
IFS=","

# Read the file line by 1line

cat opening_lines.txt | while read -a lineArray

do
# Access columns by index
columnl=${lineArray[0]}
column2=${lineArray[1]}
column3=${lineArray[2]}

echo "Column 1: $columnl, Column 2: $column2, Column 3: $column3"

done

In this example:

IFS="," sets the delimiter to comma.

while read -a lineArray reads each line from input.csv into an array named lineArray.

The array indices are used to access individual columns: column1=%{lineArray[0]},
column2=%{lineArray[1]}, and column3=${lineArray[2]}.

The echo command prints the values of the columns to the console.

In this way, the read command, along with a while loop, can be used to process a delimited file,
parsing the columns and performing actions on the data as needed.

35: ~/.bashrc

The ~/.bashrc file is a script file that Bash runs every time it is started interactively, allowing you
to configure your shell environment by setting variables, aliases, functions, and other shell
attributes. The tilde ~ represents the user's home directory, so ~/.bashrc refers to a file named
.bashrc located in the home directory of the user.

Here are some key points regarding the ~/.bashrc file:



e Environment Configuration:
o You can use this file to set environment variables which will be available to all
terminal sessions.
o For example, you can set the PATH environment variable to include additional
directories where executable programs are located.

e Aliases and Functions:
o You can define aliases and functions to create shortcuts or to encapsulate
complex command sequences.
o For example, you might define an alias to shorten a frequently used command,
making it quicker to type.

e Shell Options:
o You can set shell options to modify the behavior of the shell.
o For example, you might set options to control how the shell handles errors or job
control.

e Prompt Customization:
o You can customize the appearance of the shell prompt, including its color and the
information it displays.

e Script Execution:
o You can use the ~/.bashrc file to execute scripts automatically whenever a new
shell session is started.

Here's an example snippet from a ~/.bashrc file:

# bash code

# Set PATH
export PATH="$HOME/software/:$PATH"

# Define alias
alias 1="1ls -1trh’

# Customize the prompt
PS1="[\u@\h \W]\$ '



Miniconda installation

Conda in a virtual environment manager. It can be used to install software.

mkdir -p /nas4/$USER/software/miniconda3

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
-0 /nas4/$USER/software/miniconda.sh

bash /nas4/$USER/software/miniconda.sh -b -u -p
/nas4/$USER/software/miniconda3

# make a backup of ~/.bashc because conda will modify it. Whenever a software is going to
modify my .bashrc, | usually create a backup of it.

cp ~/.bashrc ~/.bashrc.bak

# run the conda init (to initialize conda)

/nas4/$USER/software/miniconda3/bin/conda init bash

Miscellaneous Unix power
commands

The following examples introduce some other Unix commands, and show how they could be
used to work on a fictional file called file.txt. Remember, you can always learn more about these
Unix commands from their respective man pages with the man command. These are not all real
world cases, but rather show the diversity of Unix command-line tools:

e View the penultimate 10 lines of a file (using head and tail commands):

$ tail -n 20 file.txt | head

e Show lines of a file that begin with a start codon (ATG) (the ~ matches patterns at
the start of a line):

$ grep "MATG" file.txt


http://en.wikipedia.org/wiki/Head_(Unix)
http://en.wikipedia.org/wiki/Tail_(Unix)

e Cut out the 3rd column of a tab-delimited text file and sort it to only show unique
lines (i.e. remove duplicates):

$ cut -f 3 file.txt | sort -u

e Count how many lines in a file contain the words ‘cat’ or ‘bat’ (-c option of grep
counts lines):

$ grep -c '[bc]at' file.txt
e Turn lower-case text into upper-case (using tr command to ‘transliter ate’):
$ cat file.txt | tr 'a-z' 'A-Z'

e Change all occurrences of ‘Chr1’ to ‘Chromosome 1’ and write changed output to
a new file (using sed command):

$ cat file.txt | sed 's/Chril/Chromosome 1/' > file2.txt


http://en.wikipedia.org/wiki/Tr_(Unix)
http://en.wikipedia.org/wiki/Sed

	Command-line Bootcamp 
	Introduction 
	Why Unix? 
	Typeset Conventions 
	1. The Terminal 
	2. Your first Unix command 
	3: The Unix tree 
	4: Finding out where you are 
	5: Making new directories 
	6: Getting from ‘A’ to ‘B’ 
	7: The root directory 
	8: Navigating upwards in the Unix filesystem 
	9: Absolute and relative paths 
	10: Finding your way back home 
	11: Making the ls command more useful 
	12: Man pages 
	13: Removing directories 
	14: Using tab completion 
	15: Creating empty files with the touch command 
	16: Moving files 
	17: Renaming files 
	18: Moving directories 
	19: Removing files 
	20: Copying files 
	21: Copying directories 
	22: Echo, redirect, and less 
	23: Viewing files with cat; append to file 
	24: Counting characters in a file 
	25: Editing small text files with nano 
	26: The $PATH environment variable 
	27: Matching lines in files with grep 
	28: Combining Unix commands with pipes 
	29: Screen 
	30: Keyboard Shortcuts 
	 
	31: Downloading files from the web 
	32: File compression & Tarballs 
	33: File Permissions 
	34: While Loops 

	 
	35: ~/.bashrc 
	Miniconda installation  
	Miscellaneous Unix power commands 


