

FREEHOLD REGIONAL HIGH SCHOOL DISTRICT OFFICE OF CURRICULUM AND INSTRUCTION INTERNATIONAL BACCALAUREATE PROGRAM

IB Mathematics: Analysis & Approaches, SL & HL Year 1

Grade Level: 11

Credits: 5

BOARD OF EDUCATION ADOPTION DATE: August 26, 2021

FREEHOLD REGIONAL HIGH SCHOOL DISTRICT

Board of Education

Mr. Peter Bruno, **President** Mr. Marc Parisi, **Vice President** Ms. Diana Cappiello Ms. Debra Fanelli Ms. Elizabeth Higley Ms. Kathie Lavin Mr. Michael Messinger Mr. Heshy Moses Mr. Adam Weiss

Central Administration

Dr. Charles Sampson, Superintendent
Dr. Nicole Hazel, Chief Academic Officer
Dr. Shanna Howell, Director of Curriculum and Instruction
Ms. Renee Schneider, District Supervisor of Instruction
Ms. Stephanie Mechmann, Administrative Supervisor of Curriculum and Instruction
Mr. Oscar Diaz, Administrative Supervisor of Curriculum and Instruction

Curriculum Writing Committee

Ms. Kristy Gerdes Mr. David Patterson

Supervisors

Mr. Michael K. Dillon Ms. Kristine Jenner

IB Mathematics: Analysis & Approaches, SL & HL Year 1

Course Description

From the International Baccalaureate Organization: "Mathematics: analysis and approaches is for students who enjoy developing their mathematics to become fluent in the construction of mathematical arguments and develop strong skills in mathematical thinking. They will also be fascinated by exploring real and abstract applications of these ideas, with and without technology. Students who take Mathematics: analysis and approaches will be those who enjoy the thrill of mathematical problem solving and generalization.

This course recognizes the need for analytical expertise in a world where innovation is increasingly dependent on a deep understanding of mathematics. This course includes topics that are both traditionally part of a pre-university mathematics course (for example, functions, trigonometry, calculus) as well as topics that are amenable to investigation, conjecture and proof, for instance the study of sequences and series at both SL and HL, and proof by induction at HL.

The course allows the use of technology, as fluency in relevant mathematical software and hand-held technology is important regardless of choice of course. However, Mathematics: analysis and approaches has a strong emphasis on the ability to construct, communicate and justify correct mathematical arguments.

Students who choose Mathematics: analysis and approaches at SL or HL should be comfortable in the manipulation of algebraic expressions and enjoy the recognition of patterns and understand the mathematical generalization of these patterns. Students who wish to take Mathematics: analysis and approaches at a higher level will have strong algebraic skills and the ability to understand simple proof. They will be students who enjoy spending time with problems and get pleasure and satisfaction from solving challenging problems."

Course Sequence and Pacing

Unit Title	HL Pacing	SL Pacing	
<u>1: Foundational Knowledge</u>	6 sessions	18 sessions	
2: Further Trigonometry	13 sessions	28 sessions	
<u>3: Further Functions</u>	22 sessions	40 sessions	
4: Complex Numbers (HL only)	18 sessions	n/a	
5: Combinatorics	10 sessions	20 sessions	
<u>6: Reasoning and Proof (HL only)</u>	18 sessions	n/a	
7: Overview: Linear Algebra (HL only)	8 sessions	n/a	
<u>8: Vectors (HL Only)</u>	25 sessions	n/a	

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 1 Overview: Foundational Knowledge

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

Modelling real-life situations with the structure of arithmetic and geometric sequences and series allows for prediction, analysis and interpretation.

Formulae are a generalization made on the basis of specific examples, which can then be extended to new examples.

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

The relationships between the length of the sides and the size of the angles in a triangle can be used to solve many problems involving position, distance, angles and area.

Equivalent measurement systems, such as degrees and radians, can be used for angles to facilitate ease of calculation.

AHL

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

Section and IB Sub-Topics	HL Duration (sessions)	SL Duration (sessions)
A: Sequences and Series SL 1.2, SL 1.3, SL 1.4	2	5
B: Introduction to Trigonometry SL 3.1, SL 3.2, SL 3.3, SL 3.4, SL 3.6, AHL 3.9	2	6
C: Function Analysis SL 2.1, SL 2.2, SL 2.3, SL 2.4, SL 2.5, SL 2.6, SL 2.7, SL 2.10, SL 2.11	2	7

Duration: 2 HL, 5 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

Modelling real-life situations with the structure of arithmetic and geometric sequences and series allows for prediction, analysis and interpretation.

Formulae are a generalization made on the basis of specific examples, which can then be extended to new examples.

IB Conto	ent	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 1.2	 Arithmetic sequences and series. Use of the formulae for the nth term and the sum of the first n terms of the sequence. Use of sigma notation for sums of arithmetic sequences. Applications. Analysis, interpretation and prediction where a model is not perfectly arithmetic in real life. 	 Distinguish between arithmetic and geometric patterns in given sequences. Deduce into the explicit formula, given an arithmetic sequence in recursive form. Describe arithmetic sequences from recursive and explicit formulas. Apply arithmetic sequences to real-world scenarios using approximation where appropriate.
SL 1.3	Geometric sequences and series. Use of the formulae for the n th term and the sum of the first n terms of the sequence. Use of sigma notation for the sums of geometric sequences. Applications.	 Deduce into the explicit formula, given a geometric sequence in recursive form. Describe geometric sequences from recursive and explicit formulas. Apply geometric sequences to real-world scenarios using approximation where appropriate.
SL 1.4	Financial applications of geometric sequences and series: • compound interest	Apply geometric sequences to problems involving financial situations.

	annual depreciation.	
	TOK Connections	International Mindedness Connections
SL 1.2: Is of patte the gold	s all knowledge concerned with identification and use rns? Consider Fibonacci numbers and connections with en ratio.	SL 1.4: Do all societies view investment and interest in the same way?
SL 1.3: H conclusi instance perimet	How do mathematicians reconcile the fact that some ons seem to conflict with our intuitions? Consider for that a finite area can be bounded by an infinite er	
SL 1.4: H and prac package	How have technological advances affected the nature ctice of mathematics? Consider the use of financial s for instance.	

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

The relationships between the length of the sides and the size of the angles in a triangle can be used to solve many problems involving position, distance, angles and area.

Equivalent measurement systems, such as degrees and radians, can be used for angles to facilitate ease of calculation.

AHL

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

IB Contei	nt	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 3.1	The distance between two points in three-dimensional space, and their midpoint. Volume and surface area of three-dimensional solids including right-pyramid, right cone, sphere, hemisphere and combinations of these solids. The size of an angle between two intersecting lines or between a line and a plane.	 Calculate the distance between two points in a three-dimensional space, and their midpoint using a variety of methods. Calculate the volume and surface area of three-dimensional solids. Hence determine the parameters for the three-dimensional solid.
SL 3.2	Use of sine, cosine and tangent ratios to find the sides and angles of right-angled triangles. The sine rule: $\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C}$. The cosine rule: $c^2 = a^2 + b^2 - 2abcosC$; $cos C = \frac{a^2 + b^2 - c^2}{2ab}$.	 Solve right-angled triangles using sine, cosine and tangent ratios. Determine the appropriate method for solving oblique triangles, and hence find all unknown sides and angles. Calculate the area of an non-right angled triangle.

	Area of a triangle as $\frac{1}{2}$ absinC.	
SL 3.3	Applications of right and non-right angled trigonometry, including Pythagoras's theorem.	Apply properties of right and non-right angled triangle trigonometry to various real-world scenarios.
	Angles of elevation and depression. Construction of labelled diagrams from written statements.	Sketch right and non-right angled triangles to determine the appropriate method for solving a real-world problem.
SL 3.4	The circle: radian measure of angles; length of an arc; area of a sector.	Express angle measures in different units and compare and contrast the value of using each measure.
		Deduce the relationship between the area of a circle and the area of a sector; circumference of a circle and arc length.
SL 3.6	The Pythagorean identity $\cos^2 \theta + \sin^2 \theta = 1$.	Explore trigonometric ratios to deduce various identities.
	Double angle identities for sine and cosine.	Calculate trigonometric ratios using appropriate known formulae.
	The relationship between trigonometric ratios.	Simplify trigonometric expressions and solve trig equations using appropriate known formulae.
AHL 3.9	Definition of the reciprocal trigonometric ratios sec θ , cosec θ and cot θ .	Explore trigonometric ratios to deduce various identities.
	Pythagorean identities: $1 + \tan^2 \theta = \sec^2 \theta$ and $1 + \cot^2 \theta = \csc^2 \theta$.	formulae.
		Simplify trigonometric expressions and solve trig equations using appropriate known formulae.
	TOK Connections	International Mindedness Connections
SL 3.1: W to everyb	'hat is an axiomatic system? Are axioms self-evident oody?	SL 3.2: Diagrams of Pythagoras' theorem occur in early Chinese and Indian manuscripts. The earliest references to trigonometry are in Indian mathematics; the use of triangulation to find the
SL 3.2: Is theorem criteria m	it ethical that Pythagoras gave his name to a that may not have been his own creation? What night we use to make such a judgment?	curvature of the Earth in order to settle a dispute between England and France over Newton's gravity.
SL 3.3: If 180° or m nature of	the angles of a triangle can add up to less than 180°, nore than 180°, what does this tell us about the mathematical knowledge?	SL 3.3: The use of triangulation to find the curvature of the Earth in order to settle a dispute between England and France over Newton's gravity.
SL 3.4 : W What crit such deci	hich is a better measure of angle: radian or degree? eria can/do/should mathematicians use to make sions?	
HL 3.9: W To what e conclusio	/hat is the relationship between concepts and facts? extent do the concepts that we use shape the ons that we reach?	

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 1: Foundational Knowledge Section 1.C: Function Analysis sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

Formulae are a generalization made on the basis of specific examples, which can then be extended to new examples.

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

IB Conter	nt	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 2.1	 Different forms of the equation of a straight line. Gradient; intercepts. Lines with gradients m₁ and m₂ Parallel lines m₁ = m₂. Perpendicular lines m₁ × m₂ = -1. 	 Compare and contrast different forms of linear functions in order to identify when to use each. Find and interpret gradients and intercepts for linear functions. Determine the relationship between different types of lines (including parallel and perpendicular).
SL 2.2	Concept of a function, domain, range and graph. Function notation, for example $f(x)$, $v(t)$, $C(n)$. The concept of a function as a mathematical model. Informal concept that an inverse function reverses or undoes the effect of a function. Inverse function as a reflection in the line $y = x$, and the notation $f^{-1}(x)$.	 Explore the properties of functions, including domain, range and graph. Represent functions in various forms and convert between them. Explore the relationship between a function and its inverse.

Duration: 2 HL, 7 SL

SL 2.3	The graph of a function; its equation y = f(x).	R	Represent functions in various forms and convert between hem.
	Creating a sketch from information given or a context, including transferring a graph from screen to paper.	S	Sketch the graph of a function using various approaches.
	Using technology to graph functions including their sums and differences.	c	Compose functions using mathematical operations.
SL 2.4	Key features of graphs.	D	Determine key features of graphs.
	Point of intersection of two curves or lines using technology.	Fi te	Find the point of intersection of two curves using echnology.
SL 2.5	Composite functions.	c	Compose functions using mathematical operations
	Identity function. Finding the inverse function f $^{-1}(x)$	v	/erify inverse functions using composition
SL 2.6	The quadratic function f(x) = ax ² + bx + c: its graph, y-intercept (0, c). Axis of symmetry.	C ir	Compare and contrast different forms of quadratic functions n order to identify various features of the function.
	The form $f(x) = a(x - p)(x - q)$, x-intercepts (p, 0) and (q,0).	S	Sketch the graphs of quadratic functions.
	The form $f(x) = a (x - h)^{2} + k$, vertex (h, k).		
SL 2.7	7 Solution of quadratic equations and inequalities. The quadratic formula.		Solve quadratic functions using various methods.
	The discriminant $\Delta = b^2 - 4ac$ and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots.	D tł	Determine the nature of the roots of a quadratic based on he discriminant.
SL 2.10	Solutions of equations, both graphically and analytical	y. S	Solve equations, both graphically and analytically, using a
	Use of technology to solve a variety of equations, including those where there is no appropriate analytic approach.		anery of methous for a variety of real-world scenarios.
	Applications of graphing skills and solving equations that relate to real-life situations.		
SL 2.11	 11 Transformations of graphs. Translations: y = f(x) + b; y = f(x - a). Reflections (in both axes): y = - f(x); y = f(-x). Vertical stretch with scale factor p: y = p f(x). Horizontal stretch with scale factor 1/q: y = f(qx). Composite transformations. 		nvestigate various transformations of functions. Demonstrate an understanding of various transformations from a variety of approaches, including analytic and graphical.
	TOK Connections	Intern	national Mindedness Connections
SL 2.1: Descartes showed that geometric problems could be solved algebraically and vice versa. What does this tell us about mathematical representation and mathematical knowledge?SL 2.1: Gov Gov (Sw nutricition and mathematical		SL 2.2 Gottfr (Switz numb	2: The development of functions by Rene Descartes (France), ried Wilhelm Leibnitz (Germany) and Leonhard Euler zerland); the notation for functions was developed by a per of different mathematicians in the 17th and 18th

 SL 2.2: Do you think mathematics or logic should be classified as a language? SL 2.3: Does studying the graph of a function contain the same level of mathematical rigour as studying the function algebraically? What are the advantages and disadvantages of having different forms and symbolic language in mathematics? 	centuries–how did the notation we use today become internationally accepted? SL 2.4: Bourbaki group analytical approach versus the Mandlebrot visual approach
SL 2.5: Do you think mathematics or logic should be classified as a language?	
SL 2.6: Are there fundamental differences between mathematics and other areas of knowledge? If so, are these differences more than just methodological differences? SL 2.10: What assumptions do mathematicians make when they apply mathematics to real-life situations?	

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 2 Overview: Further Trigonometry

IB Topic Essential Understandings:

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

The properties of shapes depend on the dimension they occupy in space.

Volume and surface area of shapes are determined by formulae, or general mathematical relationships or rules expressed using symbols or variables.

The relationships between the length of the sides and the size of the angles in a triangle can be used to solve many problems involving position, distance, angles and area.

Equivalent measurement systems, such as degrees and radians, can be used for angles to facilitate ease of calculation.

Different representations of the values of trigonometric relationships, such as exact or approximate, may not be equivalent to one another.

The trigonometric functions of angles may be defined on the unit circle, which can visually and algebraically represent the periodic or symmetric nature of their values.

AHL

Position and movement can be modelled in three-dimensional space using vectors.

Section and IB Sub-Topics	HL Duration	SL Duration
A: Spatial Geometry SL 3.1	2 sessions	3 sessions
B: Triangle Trigonometry SL 3.2, SL 3.3	2 sessions	4 sessions
C: Circle Trigonometry SL 3.4	2 sessions	4 sessions
D: Trigonometry Ratios SL 3.5, SL 3.6	2 sessions	5 sessions
E: Trigonometric Graphs and Applications SL 3.7, AHL 3.11	3 sessions	7 sessions
F: Algebra and Trigonometry SL 3.8, AHL 3.9, AHL 3.10	2 sessions	5 sessions

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 2: Further Trigonometry Section 2.A: Spatial Geometry

Duration: 2 HL, 3 SL sessions

IB Topic Essential Understandings:

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

The properties of shapes depend on the dimension they occupy in space.

Volume and surface area of shapes are determined by formulae, or general mathematical relationships or rules expressed using symbols or variables.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold	
SL 3.1	 5L 3.1 The distance between two points in three-dimensional space, and their midpoint. Volume and surface area of three-dimensional solids including right-pyramid, right cone, sphere, hemisphere and combinations of these solids. The size of an angle between two intersecting lines or between a line and a plane. 		Calculate the distance between two points in a three- dimensional space, and their midpoint using a variety of methods.Calculate the volume and surface area of three- dimensional solids.Hence determine the parameters for the three- dimensional solid.
	TOK Connections	International Mindedness Connections	
SL 3.1: What is an axiomatic system? Are axioms self-evident to everybody?SL st stSL 3.1: Demonstrate Cavalieri's principle using a variety of materials.Explore how would we calculate the volume if the cross-sectional areas are not the same? Revisit when learning integral calculus.SL st s		SL 3.1: Hi SL 3.1: Ho 1000 peo cost?	story of the distance formula. ow were the Pyramids built and how long would it take for ple to construct with modern technology? What would it

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 2: Further Trigonometry Section 2.B: Triangle Trigonometry

Duration: 2 HL, 4 SL sessions

IB Topic Essential Understandings:

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

The relationships between the length of the sides and the size of the angles in a triangle can be used to solve many problems involving position, distance, angles and area.

IB Content			Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 3.2	Use of sine, cosine and tangent ratios to find the signal angles of right-angled triangles.	des and	Determine when to use which trig ratio based on given information
	The sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$. The cosine rule: $c^2 = a^2 + b^2 - 2ab\cos C$;		Apply the sine rule and cosine rule to solve non-right triangles
	$\cos C = \frac{a^2 + b^2 - c^2}{2ab} .$		Calculate the area of a non-right triangle
	Area of a triangle as $\frac{1}{2}ab\sin C$.		
SL 3.3	3.3 Applications of right and non-right angled trigonometry, including Pythagoras's theorem.		Apply rules of right and non-right triangles to solve real world problems including problems involving angles of elevation and depression
	Angles of elevation and depression.		Construct diagrams that represent written statements
	Construction of labelled diagrams from written statements.		
TOK Connections			International Mindedness Connections
SL 3.2: Is it ethical that Pythagoras gave his name to a theorem that may not have been his own creation? What criteria might we use to make such a judgment?SL 3.3: D Indian m 		agrams of Pythagoras' theorem occur in early Chinese and anuscripts. The earliest references to trigonometry are in athematics; the use of triangulation to find the curvature of in order to settle a dispute between England and France rton's gravity.	

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 2: Further Trigonometry Section 2.C: Circle Trigonometry

Duration: 2 HL, 4 SL sessions

IB Topic Essential Understandings:

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

Equivalent measurement systems, such as degrees and radians, can be used for angles to facilitate ease of calculation.

Different representations of the values of trigonometric relationships, such as exact or approximate, may not be equivalent to one another.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 3.4	The circle: radian measure of angles; length of an arc; area of a sector.	 Investigate the relationship between central angle, arc length and sector area. Solve for missing values of a circle using known information about arc length and/or sector area.
	TOK Connections	International Mindedness Connections
SL 3.4: W What crit such dec	'hich is a better measure of angle: radian or degree? ceria can/do/should mathematicians use to make isions?	SL 3.4: Seki Takakazu calculating π to ten decimal places; Hipparchus, Menelaus and Ptolemy; Why are there 360 degrees in a complete turn? Links to Babylonian mathematics

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 2: Further Trigonometry Section 2.D: Trigonometry Ratios

Duration: 2 HL, 5 SL sessions

IB Topic Essential Understandings:

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

Different representations of the values of trigonometric relationships, such as exact or approximate, may not be equivalent to one another.

IB Content			Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 3.5	Definition of $\cos\theta$, $\sin\theta$ in terms of the unit circle Definition of $\tan\theta$ as $\sin\theta/\cos\theta$ Exact values of trigonometric ratios of 0, $\pi/6$, $\pi/4$, $\pi/\pi/2$ and their multiples. Extension of the sine rule to the ambiguous case	3,	 Define trigonometric ratios from known relationships on the unit circle. Hence find trig ratios for special angles. Extend understanding of sine rule to ambiguous case
SL 3.6	The Pythagorean identity $\cos^2 \theta + \sin^2 \theta = 1$. Double any identities for sine and cosine. The relationship between trigonometric ratios	gle	Use known relationships between trig ratios to simplify trigonometric expressions, solve trigonometric equations and show that trig expressions are equivalent.
TOK Connections			International Mindedness Connections
SL 3.5: Trigonometry was developed by successive civilizations and cultures. To what extent is mathematical knowledge embedded in particular traditions or bound to particular cultures? How have key events in the history of mathematics shaped its current form and methods?		SL 3.5 an an	: The first work to refer explicitly to the sine as a function of gle is the Aryabhatiya of Aryabhata (ca 510).

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 2 : Further Trigonometry Section 2.E: Trigonometric Graphs and Applications

IB Topic Essential Understandings:

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

Duration: 3 HL, 7 SL sessions

IB Content-Specific Conceptual Understandings

The relationships between the length of the sides and the size of the angles in a triangle can be used to solve many problems involving position, distance, angles and area.

IB Content			Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 3.7	L 3.7 The circular functions sinx, cosx, and tanx; amplitude,		Graph trigonometric functions for given domains.
	functions of the form $f(x) = asin(b(x + c)) + d$.		Transform trigonometric functions analytically and graphically
	Transformations.		Model real-world applications using trigonometric functions
	Real-life contexts.		
AHL 3.11	Relationships between trigonometric functions and the symmetry properties of their graphs.	9	Explore relationship between trigonometric functions and symmetry
	TOK Connections		International Mindedness Connections
SL 3.7: Music can be expressed using mathematics. What does this tell us about the relationship between music and mathematics?		No	ne applicable
AHL 3.11: Mathematics and knowledge claims: how can there be an infinite number of discrete solutions to an equation?			

Duration: 2 HL, 5 SL sessions

IB Topic Essential Understandings:

Geometry and trigonometry allows us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

The relationships between the length of the sides and the size of the angles in a triangle can be used to solve many problems involving position, distance, angles and area.

Equivalent measurement systems, such as degrees and radians, can be used for angles to facilitate ease of calculation.

Different representations of the values of trigonometric relationships, such as exact or approximate, may not be equivalent to one another.

IB Content			Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 3.8	Solving trigonometric equations in a finite interval, b graphically and analytically Equations leading to quadratic equations in sinx, cost tanx.	ooth sx or	Solve trigonometric equations graphically and analytically Represent trigonometric equations in the form of quadratic equations; hence use quadratic properties to solve trigonometric equations.
AHL 3.9	Definition of the reciprocal trigonometric ratios sectors cosec θ and cot θ . Pythagorean identities: $1 + \tan^2 \theta = \sec^2 \theta$ and $1 + \csc^2 \theta$ cosec ² θ The inverse functions f(x) = arcsinx, f(x) = arccosx, f(x) arctanx; their domains and ranges; their graphs	Θ , ot ² Θ = x) =	 Sketch inverse trig functions and compare and contrast their domains with their inverses. Use known relationships between trig ratios to simplify trigonometric expressions, solve trigonometric equations and show that trig expressions are equivalent.
AHL 3.10	HL 3.10 Compound angle identities. Double angle identity for tan.		 Investigate relationship between angle sums and differences. Use the double angle identity to find trigonometric ratios, simplify expressions, solve equations and verify equations.
TOK Connections			International Mindedness Connections
AHL 3.9: What is the relationship between concepts and facts? To what extent do the concepts that we use shape the conclusions that we reach?		AHL 3.9 and wh word si	9: The origin of degrees in the mathematics of Mesopotamia by we use minutes and seconds for time; the origin of the ne.

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 3 Overview: Further Functions

IB Topic Essential Understandings:

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

IB Content-Specific Conceptual Understandings

Logarithm laws provide the means to find inverses of exponential functions which model real-life situations.

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

The parameters in a function or equation correspond to geometrical features of a graph and can represent physical quantities in spatial dimensions.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

Our spatial frame of reference affects the visible part of a function and by changing this "window" can show more or less of the function to best suit our needs.

Equivalent representations of quadratic functions can reveal different characteristics of the same relationship.

Functions represent mappings that assign to each value of the independent variable (input) one and only one dependent variable (output).

AHL

Extending results from a specific case to a general form can allow us to apply them to a larger system.

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

Section and IB Sub-Topics	HL Duration	SL Duration
A: Function Analysis SL 2.2, SL 2.5, AHL 2.14, AHL 2.15, AHL 2.16	5 sessions	13 sessions
B: Linear Functions SL 2.1, SL 2.3, SL 2.4, SL 2.10, SL 2.11	1 sessions	5 sessions
C: Quadratic and Other Polynomial Functions SL 2.3, SL 2.4, SL 2.6, SL 2.7, SL 2.10, SL 2.11, AHL 2.12	4 sessions	9 sessions
D: Logarithms and Exponential Functions SL 2.3, SL 2.4, SL 2.9, SL 2.10, SL 2.11	8 sessions	13 sessions
E: Rational Functions (HL only) SL 2.3, SL 2.4, SL 2.8, SL 2.10, SL 2.11, AHL 2.13	4 sessions	n/a

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 3: Further Functions Section 3.A: Function Analysis

IB Topic Essential Understandings:

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

IB Content-Specific Conceptual Understandings

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

The parameters in a function or equation correspond to geometrical features of a graph and can represent physical quantities in spatial dimensions.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

Our spatial frame of reference affects the visible part of a function and by changing this "window" can show more or less of the function to best suit our needs.

Functions represent mappings that assign to each value of the independent variable (input) one and only one dependent variable (output).

AHL

Extending results from a specific case to a general form can allow us to apply them to a larger system.

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 2.2	Concept of a function, domain, range and graph. Function notation, for example $f(x)$, $v(t)$, $C(n)$. The concept of a function as a mathematical model. Informal concept that an inverse function reverses or undoes the effect of a function. Inverse function as a reflection in the line $y = x$, and the notation $f^{-1}(x)$	Understand the concept of a function and its inverse that reverses the effect of the function. Model functions & inverse functions as a reflection in the line y=x.
SL 2.5	Composite functions Identity function. Finding the inverse function $f^{-1}(x)$.	Compose functions algebraically. Find inverse functions analytically. Verify inverse functions using compositions.

AHL 2.14	Odd and even functions Finding the inverse function, f ⁻¹ (x), including dor restriction.	main	Explore rotations and reflections of functions and hence classify them as odd, even or neither.
	Self-inverse functions		
AHL 2.15	Solutions of $g(x) \ge f(x)$, both graphically and ana	lytically	Determine solutions of polynomial inequalities graphically and analytically.
AHL 2.16	The graphs of the functions, $y = f(x) $ and $y = f(1/f(x), y = f(ax + b), y = [f(x)]^2$. Solution of modulus equations and inequalities	x), y =	Graph functions and Interpret key features of their graphs. Find the solutions of modulus equations and inequalities.
TOK Connections Internat		Internatio	nal Mindedness Connections
SL 2.2 Do you think mathematics or logic should be classified as a language?SL 2.2 The Gottfried (Switzerla different are culturally and historically situated, does this mean mathematics cannot be seen as independent of culture?SL 2.2 The Gottfried (Switzerla different are notation and measurement are culturally and historically situated, does this mean mathematics cannot be seen as independent of culture?SL 2.2 The 		e development of functions by Rene Descartes (France), Wilhelm Leibnitz (Germany) and Leonhard Euler nd); the notation for functions was developed by a number of nathematicians in the 17th and 18th centuries—how did the we use today become internationally accepted? The notation for functions was developed by a number of nathematicians in the 17th and 18th centuries. How did the we use today become internationally accepted? The Bourbaki group analytic approach versus Mandlebrot	

IB Topic Essential Understandings:

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

IB Content-Specific Conceptual Understandings

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

The parameters in a function or equation correspond to geometrical features of a graph and can represent physical quantities in spatial dimensions.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

Our spatial frame of reference affects the visible part of a function and by changing this "window" can show more or less of the function to best suit our needs.

Functions represent mappings that assign to each value of the independent variable (input) one and only one dependent variable (output).

AHL

Extending results from a specific case to a general form can allow us to apply them to a larger system.

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

IB Conten	t	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 2.1	Different forms of the equation of a straight line. Gradient; intercepts.	Distinguish between the different forms of the equation of a straight line. Identify the key features of linear equations, including
	Parallel lines $m_1 = m_2$. Perpendicular lines $m_1 \times m_2 = -1$.	Understand the relationship between parallel and perpendicular lines.
SL 2.3	The graph of a function; its equation y = f(x). Creating a sketch from information given or a context, including transferring a graph from screen to paper. Using technology to graph functions including their sums and differences	Graph linear equations by hand and through the use of technology.

SL 2.4	Determine key features of graphs.		Determine key features of graphs.
	Finding the point of intersection of two curves or lines technology.	using	Find the points of intersection of two curves or lines using technology.
SL 2.10	Solving equations, both graphically and analytically. Use of technology to solve a variety of equations, inclu those where there is no appropriate analytic approach Applications of graphing skills and solving equations th relate to real-life situations.	iding at	Solve equations, both graphically and analytically and through the use of technology. Model and analyze real life applications.
SL 2.11	Transformations of graphs. Translations: $y = f(x) + b$; $y = f(x - a)$. Reflections (in both axes): $y = -f(x)$; $y = f(-x)$. Vertical stretch with scale factor p: $y = p f(x)$. Horizontal stretch with scale factor 1 q : $y = f(qx)$. Composite transformations.		Demonstrate transformations of graphs. Describe composite transformations.
	TOK Connections		International Mindedness Connections
 SL 2.1 Descartes showed that geometric problems could be solved algebraically and vice versa. What does this tell us about mathematical representation and mathematical knowledge? SL 2.3 Does studying the graph of a function contain the same level of mathematical rigour as studying the function algebraically? What are the advantages and disadvantages of having different forms and symbolic language in mathematics? SL 2.10 What assumptions do mathematicians make when they 		SL 2.4 E visual a	Bourbaki group analytical approach versus the Mandlebrot
apply mat	thematics to real-life situations?		

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 3: Further Functions Section 3.C: Quadratic and Other Polynomial Functions

Duration: 4 HL, 9 SL sessions

IB Topic Essential Understandings:

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

IB Content-Specific Conceptual Understandings

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

The parameters in a function or equation correspond to geometrical features of a graph and can represent physical quantities in spatial dimensions.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

Our spatial frame of reference affects the visible part of a function and by changing this "window" can show more or less of the function to best suit our needs.

Equivalent representations of quadratic functions can reveal different characteristics of the same relationship.

Functions represent mappings that assign to each value of the independent variable (input) one and only one dependent variable (output).

AHL

Extending results from a specific case to a general form can allow us to apply them to a larger system.

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 2.3	The graph of a function; its equation y = f(x). Creating a sketch from information given or a context, including transferring a graph from screen to paper. Using technology to graph functions including their sums and differences	Graph polynomial equations by hand and through the use of technology.
SL 2.4	Determine key features of graphs. Finding the point of intersection of two curves or lines using technology.	Determine key features of graphs. Find the point of intersection of two curves or lines using technology.

SL 2.6	The quadratic function $f(x) = ax^2 + bx + c$: its graph, -intercept (0, c). Axis of symmetry. The form $f(x) = a - q$), x-intercepts (p, 0) and (q, 0). The form $f(x) = a + k$, vertex (h, k)	$y = (x - p)(x - (x - h)^2)$	Convert between forms of quadratic functions. Identify the key features of the graphs of quadratic functions
SL 2.7	7 Solution of quadratic equations and inequalities. The quadratic formula. The discriminant $\Delta = b^2 - 4ac$ and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots.		Solve quadratic equations using the Quadratic Formula. Evaluate the discriminant of a quadratic in order to analyze the roots of a function.
SL 2.10	.0 Solving equations, both graphically and analytically. Use of technology to solve a variety of equations, including those where there is no appropriate analytic approach. Applications of graphing skills and solving equations that relate to real-life situations.		Solve equations, both graphically, analytically and using technology where there is an absence of an analytic approach. Model and analyze real life applications.
SL 2.11	Transformations of graphs. Translations: $y = f(x) + b$; $y = f(x - a)$. Reflections (in both axes): $y = -f(x)$; $y = f(-x)$. Vertical stretch with scale factor p: $y = p f(x)$. Horizontal stretch with scale factor 1 q : $y = f(qx)$. Composite transformations.		Demonstrate transformations of graphs. Describe composite transformations.
AHL 2.12	 2.12 Polynomial functions, their graphs and equations; zeros, roots and factors. The factor and remainder theorems. Sum and product of the roots of polynomial equations. 		 Graph polynomial functions. Identify the roots and zeros of polynomial functions using the remainder and factor theorem. Find the sum and product of the roots of polynomial equations.
	TOK Connections		International Mindedness Connections
 SL 2.3 Does studying the graph of a function contain the same level of mathematical rigour as studying the function algebraically? What are the advantages and disadvantages of having different forms and symbolic language in mathematics? SL 2.6 Are there fundamental differences between mathematics and other areas of knowledge? If so, are these differences more than just methodological differences? SL 2.10 What assumptions do mathematicians make when they apply mathematics to real-life situations? 		SL 2.4 Bo visual ap SL 2.7 T ² /2 . Sult containe	burbaki group analytical approach versus the Mandlebrot oproach. he Babylonian method of multiplication: ab = (a + b ² – a ² – ba Sutras in ancient India and the Bakhshali Manuscript ed an algebraic formula for solving quadratic equations.

AHL 2.12 Is it an oversimplification to say that some areas of knowledge give us facts whereas other areas of knowledge give us interpretations?	
---	--

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 3: Further Functions Section 3.D: Logarithms and Exponential Functions

Duration: 8 HL, 13 SL sessions

IB Topic Essential Understandings:

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

IB Content-Specific Conceptual Understandings

Logarithm laws provide the means to find inverses of exponential functions which model real-life situations.

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

The parameters in a function or equation correspond to geometrical features of a graph and can represent physical quantities in spatial dimensions.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

Our spatial frame of reference affects the visible part of a function and by changing this "window" can show more or less of the function to best suit our needs.

Equivalent representations of quadratic functions can reveal different characteristics of the same relationship.

Functions represent mappings that assign to each value of the independent variable (input) one and only one dependent variable (output).

AHL

Extending results from a specific case to a general form can allow us to apply them to a larger system.

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

IB Content	:	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 2.3	The graph of a function; its equation y = f(x). Creating a sketch from information given or a context, including transferring a graph from screen to paper. Using technology to graph functions including their sums and differences	Graph logarithmic and exponential equations by hand and through the use of technology.
SL 2.4	Determine key features of graphs.	Determine key features of graphs.

	Finding the point of intersection of two curves or line using technology.	S	Find the point of intersection of two curves or lines using technology.
SL 2.9	Exponential functions and their graphs: $f(x) = a^x$, $a > 0$ $f(x) = e^x$),	Analyze exponential and logarithmic functions.
	Logarithmic functions and their graphs: $f(x) = \log_a x$, x $f(x) = \ln x$, $x > 0$.	> 0,	
SL 2.10	Solving equations, both graphically and analytically. Use of technology to solve a variety of equations, including those where there is no appropriate analyti approach. Applications of graphing skills and solving equations t relate to real-life situations.	c hat	Solve equations, both graphically, analytically and using technology where there is an absence of an analytic approach. Model and analyze real life applications.
SL 2.11	11 Transformations of graphs.		Demonstrate transformations of graphs.
	Translations: $y = f(x) + b$; $y = f(x - a)$. Reflections (in both axes): $y = -f(x)$; $y = f(-x)$. Vertical stretch with scale factor p: $y = p f(x)$. Horizontal stretch with scale factor 1 q : $y = f(qx)$.		Describe composite transformations.
	Composite transformations.		
	TOK Connections	Inter	national Mindedness Connections
SL 2.3 Does studying the graph of a function contain the same level of mathematical rigour as studying the function algebraically? What are the advantages and disadvantages of having different forms and symbolic language in mathematics?		SL 2.4 Bourbaki group analytical approach versus the Mandlebrot visual approach.	
SL 2.9 What role do "models" play in mathematics? Do they play a different role in mathematics compared to their role in other areas of knowledge?			
SL 2.10 What assumptions do mathematicians make when they apply mathematics to real-life situations?			

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 3: Further Functions Section 3.E: Rational Functions (HL only)

Duration: 4 HL, n/a SL sessions

IB Topic Essential Understandings:

Models are depictions of real-life events using expressions, equations or graphs while a function is defined as a relation or expression involving one or more variables. Creating different representations of functions to model the relationships between variables, visually and symbolically as graphs, equations and tables represent different ways to communicate mathematical ideas.

IB Content-Specific Conceptual Understandings

Different representations of functions, symbolically and visually as graphs, equations and tables provide different ways to communicate mathematical relationships.

The parameters in a function or equation correspond to geometrical features of a graph and can represent physical quantities in spatial dimensions.

Moving between different forms to represent functions allows for deeper understanding and provides different approaches to problem solving.

Our spatial frame of reference affects the visible part of a function and by changing this "window" can show more or less of the function to best suit our needs.

Equivalent representations of quadratic functions can reveal different characteristics of the same relationship.

Functions represent mappings that assign to each value of the independent variable (input) one and only one dependent variable (output).

AHL

Extending results from a specific case to a general form can allow us to apply them to a larger system.

Patterns can be identified in behaviours which can give us insight into appropriate strategies to model or solve them.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 2.3	The graph of a function; its equation y = f(x). Creating a sketch from information given or a context, including transferring a graph from screen to paper. Using technology to graph functions including their sums and differences	Graph rational equations by hand and through the use of technology.
SL 2.4	Determine key features of graphs. Finding the point of intersection of two curves or lines using technology.	Determine key features of graphs. Find the point of intersection of two curves or lines using technology.

SL 2.8	The reciprocal function $f(x) = \frac{1}{x}$, $x \neq 0$: its graph and self-inverse nature. Rational functions of the form $f(x) = \frac{ax+b}{cx+d}$ and their graphs. Equations of vertical and horizontal asymptotes		Analyze the reciprocal function. Identify the equations of the vertical and horizontal asymptotes.
SL 2.10	Solving equations, both graphically and analytically. Use of technology to solve a variety of equations, including those where there is no appropriate analyt approach. Applications of graphing skills and solving equations relate to real-life situations.	ic that	Solve equations, both graphically, analytically and using technology where there is an absence of an analytic approach. Model and analyze real life applications.
SL 2.11	Transformations of graphs. Translations: $y = f(x) + b$; $y = f(x - a)$. Reflections (in both axes): $y = -f(x)$; $y = f(-x)$. Vertical stretch with scale factor p: $y = p f(x)$. Horizontal stretch with scale factor 1 q : $y = f(qx)$. Composite transformations.		Demonstrate transformations of graphs. Describe composite transformations.
AHL 2.13	Rational functions of the form $f(x) = \frac{ax+b}{cx^2+dx+e}$, and f $\frac{ax^2+bx+c}{dx+e}$	(x) =	Analyze rational functions.
	TOK Connections		International Mindedness Connections
SL 2.3 Does level of ma algebraical having diffe SL 2.8 Wha mathemati SL 2.10 Wh apply math AHL 2.13 D same level algebraical having diffe	s studying the graph of a function contain the same thematical rigour as studying the function ly? What are the advantages and disadvantages of erent forms and symbolic language in mathematics? It are the implications of accepting that cal knowledge changes over time? Hat assumptions do mathematicians make when they hematics to real-life situations? Hoes studying the graph of a function contain the of mathematical rigour as studying the function ly? What are the advantages and disadvantages of erent forms and symbolic language in mathematics?	SL 2.4 visual	Bourbaki group analytical approach versus the Mandlebrot approach.

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 4 Overview: Complex Numbers (HL Only)

Duration: 18 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

Representing complex numbers in different forms allows us to easily carry out seemingly difficult calculations.

Section and IB Sub-Topics	HL Duration	SL Duration
A: Properties of & Operations with Complex Numbers AHL 1.12, AHL 1.13	5 sessions	N/A
B: Graphs of Complex Numbers AHL 1.12	7 sessions	N/A
C: Roots of Complex Numbers AHL 1.14	6 sessions	N/A

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 4 : Complex Numbers (HL only) Section 4.A: Properties of & Operations with Complex Numbers

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

Representing complex numbers in different forms allows us to easily carry out seemingly difficult calculations.

IB Content	t	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.12	Complex numbers: the number i, where $i^2 = -1$.	Understand complex numbers as a distinct set of numbers.
	Cartesian form z = a + bi; the terms real part, imaginary part, conjugate, modulus and argument.	Represent complex numbers in cartesian form and distinguish the real parts from the imaginary parts.
AHL 1.13	Modulus–argument (polar) form: z = r(cosθ + isinθ) = rcisθ	Represent complex numbers in cartesian, polar and Euler forms and transform between each.
	Euler form: z = re ^{iθ}	Interpret geometrically the sums, products and quotients of complex numbers in Cartesian, polar or Euler forms.
	Sums, products and quotients in Cartesian, polar or Euler forms and their geometric interpretation.	
	TOK Connections	International Mindedness Connections
AHL 1.12 H the words difficult th	How does language shape knowledge? For example, do "imaginary" and "complex" make the concepts more an if they had different names?	n/a
AHL 1.13 the place of the place of the pla	Why might it be said that $e^{i\pi} + 1 = 0$ is beautiful? What is of beauty and elegance in mathematics? What about of creativity?	

Duration: 5 HL, 0 SL sessions

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 4 : Complex Numbers (HL only) Section 4.B: Graphs of Complex Numbers

Duration: 7 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

Representing complex numbers in different forms allows us to easily carry out seemingly difficult calculations.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.12	The complex plane.	Compare and contrast the complex plane with the coordinate plane.
		Represent complex numbers on a coordinate plane.
	TOK Connections	International Mindedness Connections
AHL 1.12 H do the word more difficu	ow does language shape knowledge? For example, Is "imaginary" and "complex" make the concepts It than if they had different names?	n/a

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 4: Complex Numbers (HL only) Section 4.C: Roots of Complex Numbers

Duration: 6 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

Representing complex numbers in different forms allows us to easily carry out seemingly difficult calculations.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.14	Complex conjugate roots of quadratic and polynomial equations with real coefficients. Complex roots occur in conjugate pairs. De Moivre's theorem and its extension to rational exponents. Powers and roots of complex numbers.	 Solve polynomials with complex roots Explain why complex roots of polynomials occur in conjugate pairs. Apply De Moivre's theorem to simplify rational expressions Simplify complex numbers with rational exponents
	TOK Connections	International Mindedness Connections
AHL 1.14 C important creation of known.	ould we ever reach a point where everything in a mathematical sense is known? Reflect on the complex numbers before their applications were	n/a

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 5 Overview: Combinatorics

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems

IB Content-Specific Conceptual Understandings

Patterns in numbers inform the development of algebraic tools that can be applied to find unknowns.

The binomial theorem is a generalization which provides an efficient method for expanding binomial expressions.

AHL

Section and IB Sub-Topics	HL Duration	SL Duration
A: Counting Principles, including Permutations & Combinations AHL 1.10	5 sessions	9 sessions
B: Pascal's Triangle SL 1.9	2 sessions	3 sessions
C: Binomial Theorem SL 1.9, AHL 1.10	3 sessions	8 sessions

IB Mathematics: Analysis & Approaches, SL & HL, Year 1	
Unit 5: Combinatorics	
Section 5.A: Counting Principles, including Permutations & Combinations	Duration: 5 HL, 9 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems

IB Content-Specific Conceptual Understandings

Patterns in numbers inform the development of algebraic tools that can be applied to find unknowns.

AHL

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.10	Counting principles, including permutations and combinations.	Apply counting principles.Distinguish between real world situations that can be represented using combinations and permutations.
	TOK Connections	International Mindedness Connections
AHL 1.10 V more than	Vhat counts as understanding in mathematics? Is it just getting the right answer?	AHL 1.10 The properties of "Pascal's triangle" have been known in a number of different cultures long before Pascal (for example the Chinese mathematician Yang Hui).

Duration: 2 HL, 3 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems

IB Content-Specific Conceptual Understandings

Patterns in numbers inform the development of algebraic tools that can be applied to find unknowns.

The binomial theorem is a generalization which provides an efficient method for expanding binomial expressions.

IB Contei	nt	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 1.9	Use of Pascal's triangle and nCr	Generate Pascal's triangle and apply in order to identify binomial coefficients.
	TOK Connections	International Mindedness Connections

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 5 : Combinatorics Section 5.C: Binomial Theorem

Duration: 3 HL, 8 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model real-world situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems

IB Content-Specific Conceptual Understandings

Patterns in numbers inform the development of algebraic tools that can be applied to find unknowns.

The binomial theorem is a generalization which provides an efficient method for expanding binomial expressions.

AHL

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 1.9	The binomial theorem: expansion of $(a + b)^n$, $n \in \mathbb{N}$.	Apply Pascal's triangle and the Binomial Theorem to expand binomials.
AHL 1.10	Extension of the binomial theorem to fractional & negative indices, ie $(a + b)^n$, $n \in Q$.	Extend the Binomial Theorem to expand binomials with fractional and negative indices.
	TOK Connections	International Mindedness Connections
SL 1.9 How of mathem and "his" t	TOK Connections whave notable individuals shaped the development natics as an area of knowledge? Consider Pascal riangle.	International Mindedness Connections AHL 1.10 The properties of "Pascal's triangle" have been known in a number of different cultures long before Pascal (for example the Chinese mathematician Yang Hui).

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 6 Overview: Reasoning and Proof (HL only)

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

Numbers and formulae can appear in different, but equivalent, forms, or representations, which can help us to establish identities.

AHL

Section and IB Sub-Topics	HL Duration	SL Duration
A: Proof by Deduction SL 1.6	5 sessions	N/A
B: Proof by Contradiction & Counterexample AHL 1.15	6 sessions	N/A
C: Proof by Mathematical Induction AHL 1.15	7 sessions	N/A

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 6 : Reasoning and Proof Section 6.A: Proof by Deduction

Duration: 5 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

Numbers and formulae can appear in different, but equivalent, forms, or representations, which can help us to establish identities

AHL

IB Conten	t	Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
SL 1.6	Simple deductive proof, numerical and algebraic; how to lay out a left-hand side to right-hand side (LHS to RHS) proof. The symbols and notation for equality and identity.	Perform simple deductive proofs. Understand symbols and notations used in equations and identities.
	TOK Connections	International Mindedness Connections
SL 1.6 Is n reasoning	nathematical reasoning different from scientific , or reasoning in other Areas of Knowledge?	n/a

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 6 : Reasoning and Proof Section 6.B: Proof by Contradiction & Counterexample

Duration: 6 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

IB Content			Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.15	Proof by contradiction. Use of a counterexample to show that a statement not always true.	is	Prove that a statement is true using contradiction or a counterexample
	TOK Connections		International Mindedness Connections
AHL 1.15 V determinir provide us difference proof by in	Vhat is the role of the mathematical community in g the validity of a mathematical proof? Do proofs with completely certain knowledge? What is the between the inductive method in science and duction in mathematics?	АН	L 1.15 How did the Pythagoreans find out that 2 is irrational?

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 6 : Reasoning and Proof Section 6.C: Proof by Mathematical Induction

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems

IB Content-Specific Conceptual Understandings

AHL

Proof serves to validate mathematical formulae and the equivalence of identities.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.15	Proof by mathematical induction.	Prove statements to be true using mathematical induction.
	TOK Connections	International Mindedness Connections
AHL 1.15 W determining provide us w difference b proof by ind	hat is the role of the mathematical community in the validity of a mathematical proof? Do proofs vith completely certain knowledge? What is the etween the inductive method in science and uction in mathematics?	AHL 1.15 How did the Pythagoreans find out that 2 is irrational?

Duration: 7 HL, 0 SL sessions

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 7 Overview: Linear Algebra (HL only)

Duration: 8 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

Representing partial fractions and complex numbers in different forms allows us to easily carry out seemingly difficult calculations.

The solution for systems of equations can be carried out by a variety of equivalent algebraic and graphical methods.

Section and IB Sub-Topics	HL Duration	SL Duration
A: Solving Systems using Matrices AHL 1.16	5 sessions	N/A
B: Partial Fractions AHL 1.11	3 sessions	N/A

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 7: Linear Algebra (HL only) Section 7.A: Solving Systems using Matrices

Duration: 5 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

The solution for systems of equations can be carried out by a variety of equivalent algebraic and graphical methods.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.16	Solutions of systems of linear equations (a maximum of three equations in three unknowns), including cases where there is a unique solution, an infinite number of solutions or no solution.	Calculate solutions of systems of linear equations (a maximum of three equations in three unknowns), including cases where there is a unique solution, an infinite number of solutions or no solution.
	TOK Connections	International Mindedness Connections
AHL 1.16 M find solutio	lathematics, Sense, Perception and Reason: If we can ns in higher dimensions can we reason that these t beyond our sense perception?	n/a

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 7: Linear Algebra Section 7.B: Partial Fractions

Duration: 3 HL, 0 SL sessions

IB Topic Essential Understandings:

Number and algebra allow us to represent patterns, show equivalencies and make generalizations which enable us to model realworld situations. Algebra is an abstraction of numerical concepts and employs variables which allow us to solve mathematical problems.

IB Content-Specific Conceptual Understandings

AHL

Representing partial fractions and complex numbers in different forms allows us to easily carry out seemingly difficult calculations.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 1.11	Partial fractions.	Convert rational expressions into partial fractions.
	TOK Connections	International Mindedness Connections
n/a		n/a

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 8 Overview: Vectors (HL Only)

Duration: 25 HL, 0 SL sessions

IB Topic Essential Understandings:

Geometry and vectors allow us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

AHL

Position and movement can be modelled in three-dimensional space using vectors.

Section and IB Sub-Topics	HL Duration	SL Duration
A: Vector Properties AHL 3.12	6 sessions	N/A
B: Vector Operations AHL 3.12, AHL 3.13, AHL 3.16	6 sessions	N/A
C: Coordinate Geometry and Vectors AHL 3.14, AHL 3.15, AHL 3.17	7 sessions	N/A
D: Application of Vectors AHL 3.17,AHL 3.18	6 sessions	N/A

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 8: Vectors (HL Only) Section 8.A: Vector Properties

Duration: 6 HL, 0 SL sessions

IB Topic Essential Understandings:

Geometry and vectors allow us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

AHL

Position and movement can be modelled in three-dimensional space using vectors.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 3.12	Concept of a vector; position vectors; displacement vectors. Representation of vectors using directed line segments. Base vectors i, j, k. Components of a vector: $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}.$	 Understand the concept of a vector; position vectors; displacement vectors. Represent vectors using directed line segments. Identify the components of a vector.
	TOK Connections	International Mindedness Connections
AHL 3.12 V position loc destroy a b does posse obligation?	ectors are used to solve many problems in cation. This can be used to save a lost sailor or uilding with a laser-guided bomb. To what extent ssion of knowledge carry with it an ethical	n/a

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 8 : Vectors (HL Only) Section 8.B: Vector Operations

Duration: 6 HL, 0 SL sessions

IB Topic Essential Understandings:

Geometry and vectors allow us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

AHL

Position and movement can be modelled in three-dimensional space using vectors.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 3.12	Algebraic and geometric approaches to the following: • the sum and difference of two vectors • the zero vector 0, the vector $-v$ • multiplication by a scalar, kv, parallel vectors • magnitude of a vector $ v $; unit vectors $\frac{v}{ v }$ • position vectors $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ • Displacement vector $\overrightarrow{AB} = b - a$ Proofs of geometrical properties using vectors	Apply properties of vectors to perform operations on vectors. Prove vector properties using a variety of methods.
AHL 3.13	The definition of the scalar product of two vectors.	Understand the definition of the scalar product of two vectors.
	The angle between two vectors.	Calculate the scalar product and angle between two vectors.
	Perpendicular vectors; parallel vectors.	Classify vectors as parallel, perpendicular, or skew.
AHL 3.16	The definition of a vector product of two vectors	Understand the definition of a vector product of two vectors.
	Properties of the vector product	Apply the properties of the vector product.
	Geometrical interpretation of $ v x w $	
	TOK Connections	International Mindedness Connections
AHL 3.12 Ve location. Th with a laser knowledge AHL 3.13 Th	ectors are used to solve many problems in position is can be used to save a lost sailor or destroy a building -guided bomb. To what extent does possession of carry with it an ethical obligation?	n/a
product?		

IL 3.16 To what extent is certainty attainable in mathematics? Is rtainty attainable, or desirable, in other areas of knowledge?	\$	

Duration: 7 HL, 0 SL sessions

IB Topic Essential Understandings:

Geometry and vectors allow us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

AHL

Position and movement can be modelled in three-dimensional space using vectors.

IB Content			Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 3.14	Vector equation of a line in two and three dimensions = a + λ b . The angle between two lines. Simple applications to kinematics	s: r	Write equations of vectors in various forms.Calculate the angle between two lines.Apply properties of kinematics to solve real world problems.
AHL 3.15	Coincident, parallel, intersecting and skew lines, distinguishing between these cases. Points of intersection.		Classify lines as coincident, parallel, intersecting and skew. Find the points of intersection of systems of equations.
AHL 3.17	Vector equations of a plane: $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$, where \mathbf{b} and \mathbf{c} are non-parallel vectors within the plane. $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$, where \mathbf{n} is a normal to the plane and \mathbf{a} is the position vector of a point on the plane. Cartesian equation of a plane ax + by + cz = d.		Write equations of planes in various forms. Calculate and interpret dot products of vector equations.
TOK Connections			International Mindedness Connections
 AHL 3.14 Why might it be argued that one form of representation is superior to another? What criteria might a mathematician use in making such an argument? AHL 3.15 How can there be an infinite number of discrete solutions to an equation? What does this suggest about the nature of mathematical knowledge and how it compares to knowledge in other disciplines? 		n/a	

IB Mathematics: Analysis & Approaches, SL & HL, Year 1 Unit 8 : Vectors (HL Only) Section 8.D: Application of Vectors

IB Topic Essential Understandings:

Geometry and vectors allow us to quantify the physical world, enhancing our spatial awareness in two and three dimensions. This topic provides us with the tools for analysis, measurement and transformation of quantities, movements and relationships.

IB Content-Specific Conceptual Understandings

AHL

Position and movement can be modelled in three-dimensional space using vectors.

The relationships between algebraic, geometric and vector methods can help us to solve problems and quantify those positions and movements.

IB Content		Standards-Aligned Objectives. Instruction and assessment will align to the following objectives, with IB command terms in bold
AHL 3.17	Vector equations of a plane: $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$, where b and c are non-parallel vectors within the plane. $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$, where n is a normal to the plane and a is the position vector of a point on the plane. Cartesian equation of a plane ax + by + cz = d.	Write equations of planes in various forms. Calculate and interpret dot products of vector equations.
AHL 3.18	Intersections of: a line with a plane; two planes; three planes.	Find the intersection of lines and planes, two planes and three planes.
	Angle between: a line and a plane; two planes.	Find the angle between a line and plane and between two planes.
TOK Connections		International Mindedness Connections
AHL 3.18 Mathematics and the knower: are symbolic representations of three-dimensional objects easier to deal with than visual representations? What does this tell us about our knowledge of mathematics in other dimensions?		n/a

Duration: 6 HL, 0 SL sessions