Last updated: 15 May 2018

Problem Statement

We need to efficiently support the following query:

Get N unresolved answers submitted to any version of the state STATE_NAME of
exploration EXP_ID.

Definitions and constraints
e |t can be assumed that STATE_NAME is a valid state name for the latest version of the
exploration EXP_ID.
e Aresolved answer satisfies one of the following conditions:

o Itis matched by a rule of some answer group in the latest version of the
exploration.

o ltis part of the training data of some answer group in the latest version of the
exploration.

e An unresolved answer is an answer that satisfies one of the following conditions:

o lItis not matched by any of the rules and has default outcome or statistical
classification.

o Itis not part of training data.

e A confirmed unclassified answer is an answer satisfying following condition:

o ltis not matched by any of the rules and has default outcome. Thus, creator
expects default outcome for such answers. For e.g. it is a nonsense answer --
such answers would be stored in the confirmed_unclassified_answers field of the
state.

e The “any version” part of the problem statement is intended to account for renamings of
the state.

What are our raw inputs?

We currently have a StateAnswersModel in the backend, keyed by (exp_id, exp_version,
state_name). This model contains a list of all answers submitted to that state for the given
version of the exploration.

Current approach

Following is the basic approach:

e Modify InteractionAnswerSummariesMRJobManager and introduce a new type of
calculation to find out top N unresolved answers and store the output in
StateAnswersCalcOutputModel with exp_version set to ‘all’. This way we can have
unresolved answers across multiple exploration versions.

Use StateAnswersCalcOutputModel to fetch top unresolved answer for a particular
<exp_id, exp_version="all’, state_name> and transfer them to frontend. The model
should store unresolved answers across multiple exp versions for which state_name
stays same across all versions.

the-expleratien—No need to do this as it might be better to allow a few resolved answers
in training data (as discussed in mail thread).

Interaction Answer Summaries MRJob calculation

Following are the list of tasks to be done by new calculation

The new calculation should iterate through all answers submitted to a particular <exp_id,
state_name> and hence calculating unresolved answers across multiple exp versions.
Then uniquify all the answers so that each answer is present in the list exactly once. For
each answer keep its latest resolution detail because when aggregating answers across
multiple versions it may happen that an unresolved answer in old version is now
resolved in new version and vice-versa.

From this answers list remove all the answers which are resolved or part of training data
or part of confirmed unclassified answers.

Calculate frequency of each unresolved answer with the help of original list of answers
used in step 1.

Extract top N unresolved answers along with their frequencies from above list and store
it in StateAnswersCalcOutputModel. This model should store unresolved answers for
each <exp_id, exp_version="all’, state_name> (with exp_version="all’ it spans across
multiple exploration versions). The value of N is fixed and predetermined for all
explorations.

NOTE: This job will store unresolved answers only for those states which contains a
trainable interaction.

NOTE: When aggregating unresloved answers across multiple states, make sure that
answers are aggregated only for those versions which have same interaction id as the
most recent exploration version which is included in aggregating answers.

Output of calculation job:

[
{

‘answer’; actual answer,
‘frequency’: frequency count of the answer.
} for answer in answers

Generating training data

Creator can fetch unresolved answers for a particular <exploration, state>.

e When fetched in frontend, filter out resolved answers from unresolved answers based on
latest state of the exploration.
Show remaining unresolved answers to the creator.
To remove an answer from confirmed unclassified answers creator would submit the
answer as a new answer in training interface and assign an answer group to it. Note that
{training_data + confirmed_unclassified_answers} should be unique and they should not
have an overlap in between them. No need for a separate tab of confirmed unclassified
answers to remove answers from it.

Future reference

Things to be considered in future iterations.
e Use state id instead of state_name in calculation models.
e What happens when a new answer comes in (and in so doing, hits a rule, or is an exact
match to training data, or is classified statistically, or undergoes default classification)?
What happens when an exploration is reverted to a previous version?
What happens when an exploration version is incremented due to an edit?

O

o O O

O O O O

o

O

How do we handle a change in an answer group’s rules?

How do we handle an addition to an answer group’s training data?

How do we handle a removal from an answer group’s training data?

How do we handle an answer being moved from one answer group’s training
data to another’s?

How do we handle the addition of a new state to an exploration?

How do we handle the deletion of a state in an exploration?

How do we handle the change of a state’s interaction ID?

How do we handle changes to a state’s non-interactive content, or the outcome
of any answer group, or its interaction customization args, or its hints/solutions,
or its parameters? (Answer: no-op.)

How do we handle an addition to confirmed_unclassified_answers?

How do we handle a removal from confirmed_unclassified_answers?

e How do we regenerate, from scratch, the backend models that support this query?

Training Interface

Current training interface

It allows us to do following things:

Test a new answer. Check what will be its outcome. Allow creator to assign this new
answer to some answer group’s training data if answer has default outcome otherwise
(answer is successfully classified using hard rules) it allows us to do nothing.

New training interface

It should be able to do following things in addition to the abilities of current interface

Show unresolved answers to creator. Unresolved answers are student submitted
answers that have either default outcome or statistical classification (uses ML).

Ask creator whether she / he is happy with outcome. If she / he is then add answer to
training data of that answer group (if answer is classified using statistical classification).
If answer is classified using default outcome and creator is happy with it then add it to list
of “confirmed_unclassified_answers”.

Allows creator to open list of “confirmed_unclassified_answers” and remove answers
from there.

The interface should also allow creator to remove or assign some different answer group
to an answer from training of a particular answer group.

Components of system

New calculation

e A new calculation will be added to Interaction Answer Summaries MRJob as described
above.

A function to retrieve unresolved answers stored in calculations model in
exp service

e A new function will be added to exp_services which will take (exp_id, exp_version,
state_name) as its input and return the unresolved answers stored in calculations model
generated by summarizers job.

A controller to send these unresolved answers to frontend

e GET
o Get method will take (exp_id, exp_ver, state_name) from input parameters and
return the unresolved answers for that state.

Teach Oppia modal

e This modal contains unresolved answers.

Unresolved Answers

Mangoes are orange.

Response = Confirm Fix

Bananas are yellow.

Response =» Confirm Fix

Close

e As shown above unresolved answers tab contains a list of unresolved answers with each
answer having the Oppia feedback, confirm button and fix button with it.

e The outcome for each answer will be calculated on the fly by passing each answer
through answer classification service.

e The “Confirm” button will add answer to training data of answer group to which answer is
classified.

e The “Fix” button will open Answer Group Assignment modal for that answer so that
creator can fix answer group to which answer should be classified.

Answer Group Assignment modal

e Answer Group Assignment modal allows creator to assign an answer to answer group to
which it will be added.

If Oppia encounters the answer:
A new input

Select correct feedback or type a new response:

s a8

(try agaimn)

'ty a8

= .I.I'l
(Iry agaim)

. final

Mew Response

Exit

Training data editor modal

e This modal will be used to edit training data of any answer group. The modal will show a
list of answers present in training data of answer group.

Training Data Add New Answers

| Mangoes are yellow x |
| Banaase are orange x |
Close

e Upon clicking on answer Answer Group Assignment modal will be opened for that
particular answer.

e Upon clicking on remove icon an answer will be removed from training data. (It won’t be
added to unresolved answers as unresolved answers are calculated by summarizers job
in backend everyday. Thus unresolved answers will be updated daily).

e The model also contains new answers tab.

Training Data Add New Answers

Add your answers here...

Mext

Close

e The new answers tab allows creator to add answers directly to particular answer group’s
training data.

Milestones

Milestone 1

e Code
o Implement new calculations in interaction summarizers MR job.

o Implement stats_service function to retrieve unresolved answers from backend

storage.
o Implement backend controller to send unresolved answers to frontend.

o Test new calculation output.
o Test exp_services function and backend controller.

Milestone 2

e Code
o Implement Teach Oppia modal.
o Implement Answer Group Assignment modal.
o Update Training Data Services factory service to properly update answers
group’s training data upon change.
o Implement training data editor modal.

o Frontend tests for training data factory service.

Deprecated approach

Following is the approach we were going to use. Keeping it here for reference.

AnswerWithFrequencyModel

We will need a way to store an answer together with the number of times it appears, so that we
can prioritize resolution of answers by their frequencies, and also so that we can provide
information to creators in the Statistics tab. This motivates the definition of an
AnswerWithFrequencyModel keyed by (exp_id, state_id, hashed_answer), with the following

fields:

exp_id (string)

state_id (string)

hashed_answer (a string hash of the answer, used for indexing since we can’t index on
the answer)

answer (the full answer, of arbitrary type)

most_recent_exp_version (the most recent version of the exploration for which this
answer was submitted. This allows us to deprecate old answers in the future.)
frequency (integer)

is_part_of training_data (boolean)

latest_resolution_reason (string or None): it is a string representing which classification
was used to give responses, i.e. hard rule, default outcome, statistical classification.
latest_resolution_answer_group_index (Integer or None): index of answer group using
which answer was classified.

latest_resolution_rule_index (Integer or None): index of a rule within answer group using
which answer was classified.

expected_resolution_reason (string or None): this represents which classification is
expected in response to answer. This field is only valid if answer is part of training data
or confirmed unclassified answer.

See definitions given above. Following details gives information about how to distinguish
between resolved, unresolved and confirmed unresolved answer with the help of above model.

Resolved answers

Answers which are classified by hard rules (represented by “latest_resolution_reason”
field) or are of training data (represented by “is_part_of training_data” field).

Unresolved answers

Answers which have default outcome or statistical classification as their latest resolution
reason and are not part of training data.

Confirmed unresolved answers
e Answers which are part of training data and have default outcome as their expected
resolution reason.

Generation of AnswerWithFrequencyModel for all existing exploration in Oppia
This model is populated by a one-off job that iterates along all existing answers in
StateAnswersModel.

Regeneration: Simulate the “update_or_store_new_answer” flow below, iterating along the
StateAnswersModel entities for each version of each exploration.

Handling collisions

e To handle the collisions, we will be using master with children model. In this scheme,
there is one master model which stores one answer and along with this answer it also
stores references to the child models which store other answers. All the answers (master
as well as children) have same hash value and results in collision.

e For reference, see the implementation of “stats_models.StateAnswersModel”.

Handling changes in the exploration

This is part of frontend training interface UX. Hence it should be taken care of with
implementation of frontend interface.

There are four kinds of changes that could affect resolved / unresolved / confirmed unclassified
answers:

1. Change in interaction id of the state.

2. Addition of answer group / rule.

3. Removal of answer group / rule.

4. Modification of answer group / rule.

Due to this, the following changes can occur:

1. All the previous stored answers for that particular state may become invalid. This can
happen when creator modifies interaction id.

2. Previously resolved answers may become unresolved. This can happen if creator
deletes / modifies answer group or its rules.

3. Previously unresolved answers and / or “confirmed_unclassified_answers” may become
resolved due to addition / modification of answer group / rules.

e Note: Proper data structure (lets call this ‘answers_data’) will be required to handle all
these changes atomically and consistently. Basically this data structure keeps track of all
the changes that are happening to various answers across above three changes.

Handling change in interaction id

When creator clicks on the button to fetch unresolved answer to create training data
check the current interaction id. If it is different than the interaction id of the state at the
beginning then all of the previous answers are invalid for this new state.

Basically this should be done for all the conditions which result in some significant
change and requires change in state id. As of now, we only consider change in
interaction id to be significant enough for change in state id of that particular state.

Handling addition of an answer group / rule

When a new answer group / rule is added, re-classify all the unresolved answers /
confirmed_unclassified_answers again and see if some of them become resolved.
Reclassification should be done only for answers which are cached in frontend. Answers
will be cached in frontend when creator has previously opened training interface. Note:
confirmed unclassified answers are stored with exploration state itself, thus they will
always be cached in frontend, regardless whether creator modifies training data and / or
confirmed unclassified answers.

If they do then store such answers appropriately in ‘answers_data’ so that their backend
AnswerWithFrequencyModels can be updated at the time of exploration publishing.

Handling removal of an answer group / rule

Keep track of changes happening in answer group and its rules. Whenever an answer
group or one of its rules is removed, fetch all answers that were classified by that answer
group (or classified to that rule, in case when only a rule of answer group has been
removed.)

Once all answers have been fetched re-classify them through hard rules
(AnswerClassificationService) so that we have new resolution for each of these answers.
If an answer becomes unresolved then add it to the list of unresolved answers. If it stays
resolved then add the answer to appropriate (answer group, rule to which now they
classify) in ‘answers_data’.

Keep these changes in cache (answers_data) so that their respective
AnswerWithFrequencyModels can be updated at the time of exploration publishing.
When creator publishes exploration, propagate these changes to the backend along with
changes made in exploration and store them in AnswerWithFrequency models.

Handling changes in an answer group / rule

If an answer group or one of its rule changes then perform handling of removal an
answer group / rule (for updating resolved answers) and then perform handling of
addition of an answer group / rule scenario (for updating unresolved answers / confirmed
unclassified answers).

Fetching unresolved answers

e When creator clicks on the button to create new training data, fetch the answers page by
page and before showing them to creator pass them through answer classification to
re-classify them.

e |f an answer becomes resolved then add this answer to resolved answers list (answer
group, rule) to which it is classified in ‘answers_data’.

Show all the unresolved answers to the creator (page by page).

Note: this method performs lazy updation of unresolved answers because answers are
only updated (when answer changes, unresolved — resolved) when creator fetched
them in frontend.

Handling changes in training data

e \Whenever an answer is added in training data it changes from unresolved answer to
resolved answer.

e Changes in training data also impact AnswerWithFrequency models. To handle this
changes we can compare previous training data and current training data.

e From this comparison we can derive 3 lists: new added answers, removed answers,
modified answers (answer transferred from training data of one answer group to other)

e This, then, can be modified in AnswerWithFrequency model by doing necessary

changes in “is_part_of _training_data”, “expected_resolution_reason” and
“expected_resolution_details”.

Handling changes in confirmed unclassified answers

Addition of an answer

e Upon adding answer, set ‘is_part_of training_data’ to True and change
expected_resolution_reason to default outcome. The answer changes from unresolved
answer to confirmed unclassified answer.

Removal of an answer

e Upon adding answer, set ‘is_part_of training_data’ to False. Set
expected_resolution_reason to None. The answer changes from confirmed unclassified
answer to unresolved answer.

Required components to be implemented

Datastore models
e AnswerWithFrequencyModel

o Implement this model as shown above.

MapReduce Jobs
e MR job to populate AnswerWithFrequenyModel for current explorations.
o This job should iterate through all (exploration, version, submittedAnswers) and
populate AnswerWithFrequencyModel for each submitted answer.

Methods

e get _top_n_unresolved_answers(exploration_id, state_name, cursor=None):

o Find the state ID corresponding to (exp_id, latest exp_version, state_name)

o Query AnswerWithFrequencyModel to retrieve N instances with the given exp_id,
state_id, and a latest_resolution_reason of either None or ‘statistical’ and
‘is_part_of_training_data’ is False. (We could declare a composite field for these
conditions, and update it on-put, in order to make the query a simple one with just
one clause.)

o Use Query cursor and retrieve answers page by page.

e update or_store_new_answer(exploration_id, state_name, answer, exp_version):

o Find the state ID corresponding to (exp_id, exp_version, state_name)

o Find the AnswerWithFrequencyModel corresponding to (exp_id, state id,
hashed_answer) and update its count, most_recent_exp_version, frequency,
latest_resolution_reason and latest_resolution_details.

o If the model already exists then check

m if (exp_version >= model.most_recent_exp_version). If it is then
increment frequency count and store latest resolution reason and details.

m If (exp_version < model.most_recent_exp_version) then increment
frequency but do not change count.

Training interface UX components

These components should be implemented alongside training interface Ul.

Backend methods

e update state_answers_upon_exploration_publish(exploratio_id, answers_data)
o ‘answers_data’ will be the updated data received from the frontend.
o Use this data and update corresponding models in AnswerWithFrquencyModel.
o Design appropriate data structure (answer_data) for efficient storing and
retrieving of answers. Basically “answers_data” should store each answer with its
new resolution details due to changes in exploration state answer groups.

https://cloud.google.com/appengine/docs/standard/python/datastore/query-cursors

update_training_data_answers(exploration_id, exp_version, state_name, training_data):

o Fetch previous version’s training data and compare it with new training_data.

o Generate 3 lists new_answers, removed_answers, changed_answers.

o Find state_id corresponding to (exploration_id, state_name).

o For each answer in new_answers, fetch their respective
AnswerWithFrequencyModels. Set ‘is_part_of training_data’ to True. Change
expected resolution reason to statistical classification and other expected
resolution details accordingly.

o For each answer in removed_answers, fetch their respective
AnswerWithFrequencyModels. Set ‘is_part_of training_data’ to False. Change
expected resolution reason and expected resolution details to None.

o For each answer in changed_answers, fetch their respective
AnswerWithFrequencyModels. Change expected resolution reason and expected
resolution details accordingly.

get_answers_classified_using_given_rule(exploration_id, state_name,
answer_group_index, rule_index):

o Retrieve state_id corresponding to (exploration_id, state_name).

o Use Query to retrieve all answers that have given exploration_id, state_id,
latest_resolution_reason=hard rule classification and has matching
answer_group_index and rule_index.

o Ifrule_index is None then fetch all answers classified using given
answer_group_index.

o Return list of all such answers.

update_confirmed_unclassified_answers(exploration_id, state_name,
confirmed_unclassified_answers)

o Fetch previous confirmed_unclassified _answers and compare it with new list.
Confirmed unclassified answers are stored as an attribute of exploration state.
Create two lists from this new_added_answers, removed_answers.

For each answer in new_added _answers perform addition task.
For each answer in removed_answers perform removal task.

Controllers

/get_top_unresolved_answers
o Returns unresolved answers for given (exploration_id, state_name).

/get_answers_classified_using_given_rule
o Returns resolved answers for (exploration_id, state_name) which were classified
using given (answer_group_index, rule_index).

Frontend methods

handle _changes_in_answer_group()
o Fetch all answers from backend that were classified using given
answer_group_index, rule_index.
o Run all the fetched answers through AnswerClassificationService.
o Store all the newly classified answers appropriately in ‘answers_data’.

fetch_unresolved_answers()

o Retrieve all unresolved answers from ‘answers_data’.

o If answers are less than page_size then fetch more unresolved answers from
backend page by page.

o Run all the newly fetched unresolved answers through
AnswerClassificationService and keep only those which remain unresolved.

o All the answers which are resolved now, add them to ‘answers_data’
appropriately.

o Return page_size number of answers.

add_to_confirmed_unclassified_answers(answer):
o Add the answer to confirmed_unclassified_answers.

get_confirmed_unclassified_answers():
o Confirmed unclassified answers will be stored as an attribute of exploration state.
Thus it will be transmitted to frontend along with all exploration data.
o Return the list of confirmed unclassified answers retrieved from state’s attribute.

remove_from_confirmed_unclassified_answers():
o Remove particular answer from confirmed_unclassified_answers list and add it
as unresolved answers in ‘answer_data’.

When a new exploration version is committed (TODO):

o

o

o

How do we handle a change in an answer group’s rules?(Answer: see above)

How do we handle an addition to an answer group’s training data? (Answer: see above)
How do we handle a removal from an answer group’s training data? (Answer: see
above)

How do we handle an answer being moved from one answer group’s training data to
another’s? (Answer: see above)

How do we handle the addition of a new state to an exploration? (Answer: assign state
id to new state)

How do we handle the deletion of a state in an exploration? (Answer: no-op)

How do we handle the change of a state’s interaction ID? (Answer: assign new state id)

o How do we handle changes to a state’s non-interactive content, or the outcome of any
answer group, or its interaction customization args, or its hints/solutions, or its
parameters? (Answer: no-op.)

How do we handle an addition to confirmed_unclassified_answers? (Answer: see above)
How do we handle a removal from confirmed_unclassified_answers? (Answer: see
above)

Expected workflow

Earlier work (already done)

StateldMappingModel (finished)

In order to handle state renames, we will need a way to keep track of state IDs across different
versions of an exploration. This leads to a StateldMappingModel keyed by (exp _id,
exp_version). It is created each time a new exploration version is committed, and contains the
following properties:

exp_id (string)

exp_version (integer)

state_names_to_ids (mapping of state names to IDs for this article version of the
exploration)

latest_state id_used (integer)

IDs are non-negative integers that are assigned starting from 0 and counting upwards.

Regeneration: This model can be generated for all existing explorations by starting at version 1
of the exploration and mapping each state name to a distinct ID, increasing the counter
accordingly. When a new version of the exploration is committed, the changelist is analyzed and
new IDs are assigned to newly-added states, and IDs are preserved for states that have been
renamed.

Note: If an interaction ID has changed, then we basically have a new state: old answers
are no longer valid. We need to account for this. The simplest way is probably to just
assign the state a new ID.

Risk: If a data inconsistency happens, or we change the definition of “state identity”, this
model can’t be regenerated because we’re referring to these IDs elsewhere. For
example, if we later decide that an edit to the non-interactive content in a long-ago
version is a major one and we want to stop answers from before that edit showing up,
the state IDs will all need to be updated, but this has knock-on effects (to both the
current exploration and also to any other data we store that uses the state IDs).

o Resolution: We could, if such circumstances occur, define a new field (e.g.
state_id_new) and repopulate that, and also repopulate derived model data
based on the new state IDs. However, the above risk suggests that we should not
use these state IDs in any canonical versions of data -- they should only be
referenced in derived, computed objects. We should therefore add docstrings in
the state ID mapping model and domain objects saying: “only use this for derived
data, but not for data that’s regarded as the source of truth”.

This model supports the following methods:

e get_id(state_name): returns the state ID corresponding to the state name of this version
of the exploration, for correlation with states in other versions of the same exploration.

Components for StateldMappingModel

exp_domian.StateNameToldMap class

Aftributes:

e State name_to_id_map: dict. A dictionary that maps each state_name to unique
state_id.

Methods:

1. get_state_name_to_id_mapping(cls, old_exp, new_exp, cmd_list) (@classmethod)
e Construct state_id to state_name mapping for old_exp. Initialize new_state_names to [].
e Go through change list one by one:

O

o

If CMD is to add a new state then add state_name to new_state_names list.

If CMD is to remove a state then check the id_to_name mapping dict and find a
key whose value is the removed state name. If such pair is found then remove it
from id_to_name mapping. If it is not found then look for the removed state’s
name in new_state _names list and remove it from there.

If CMD is to rename a state then check the id_to_name mapping dict and find a
key whose value is the old name of renamed state. If such pair is found then
change the value to new name of state. If it is not found then find the renamed
state’s old name in new_state_names list, remove it from there, and add new
name of renamed state in list.

If CMD is to revert exploration then get the version_number from CMD and obtain
StateldMappingModel for (exp_id, version_number). Call
cls.get_state_id_mapping_from_model(StateldMappingModel instance) and
return the result of called method.

e Go through each key value (id, name) pair in id_to_name mapping. Create a list of
modified_state_names as follows:

O

o

O

Find the state that has “id” as state ID in old exploration.
Find the state that has “name” as state name in new exploration.
Check for following differences and if any one of the following is True then treat
the state as a new state and add it to list of modified_state_names:
m Changes in interaction_id (we can add more checks here in future)

Add all state_names in modified_state _names to new_state _names.
Reverse id_to_name mapping to name_to_id mapping.
Add a name in name_to_id mapping for each name in new_state_names with new state
IDs as their values.

e Generate StateNameToldMap domain object using name_to_id dict, validate it and
return it.

2. validate()
e Check that state_id assigned to each state is unique and is instance of integer type and
is less than or equal to the latest_state id used.

3. get_id_for_state_name(state_name)
e Return unique ID assigned to this state_name.

4. get_state_name_to_id_mapping_for_new_exploration(cls, Exploration object)
(@classmethod)

e Go through each state in exploration and assign ids starting with O.

e Create StateNameToldMap object, validate it and return it.

5. get_state_name_to_id_mapping_from_model(cls, StateldMappingModel object)
(@classmthod)

e Create new StateNameToldMap domain object and copy
StateldMappingModel.state_names_to_ids to state_name_to_id_map attribute of new
object.

e Call validate() method on new object and return it.

exp_domain.Exploration class

Methods:
1. store_state_id_mapping_model(change_list)
e If (exp_version > 1) then
o Retrieve previous version of exploration.
o Call exp_domain.StateNameToldMap.get_state_name_to_id_mapping(old_exp,
new_exp (self), change_list) and obtain StateNameToldMap object.
e If (exp_version == 1) then
o exp_domain.StateNameToldMap.get_state_name_to_id_mapping_for_new_expl
oration(cls, Exploration object) and obtain StateNameToldMap object.
e Store StateldMappingModel instance for this exploration version with the help of IDs
assigned in StateNameToldMap object.

Mapreduce job for generation of StateldMappingModel instance for current exploration
database:

e |terate over all the entities of exploration model (ExplorationModel). This will iterate over
latest versions of all explorations.
e Map function
o Do a get_multi() and retrieve all versions of the current exploration. Also do a
get_multi() and retrieve change list for all versions of exploration.

o Start with version 1 and go upto latest version and create StateldMappingModel
instance for all versions. That is for each version call
store_state_id_mapping_model with relevant change list.

Reduce function
o Do nothing.

	Problem Statement
	What are our raw inputs?
	Current approach
	Interaction Answer Summaries MRJob calculation
	Generating training data
	Future reference

	Training Interface
	Current training interface
	New training interface

	
	Components of system
	New calculation
	A function to retrieve unresolved answers stored in calculations model in exp service
	A controller to send these unresolved answers to frontend
	Teach Oppia modal
	Answer Group Assignment modal
	Training data editor modal

	
	Milestones
	Milestone 1
	Milestone 2

	
	Deprecated approach
	AnswerWithFrequencyModel
	Handling collisions
	Handling changes in the exploration
	Handling change in interaction id
	Handling addition of an answer group / rule
	Handling removal of an answer group / rule
	Handling changes in an answer group / rule
	Fetching unresolved answers

	Handling changes in training data
	Handling changes in confirmed unclassified answers
	Addition of an answer
	Removal of an answer

	Required components to be implemented
	Datastore models
	MapReduce Jobs
	Methods

	Training interface UX components
	Backend methods
	Controllers
	Frontend methods

	Expected workflow

	
	Earlier work (already done)
	StateIdMappingModel (finished)
	Components for StateIdMappingModel
	exp_domian.StateNameToIdMap class
	Attributes:
	Methods:

	exp_domain.Exploration class
	Methods:

	Mapreduce job for generation of StateIdMappingModel instance for current exploration database:

