Text Search Support in Pinot
Author: Siddharth Teotia, Nov 2019

Introduction

Primer on Lucene

Analyzer
Queries

Lucene and Regex

Input data

Design
Parser changes
Data Type

Storage
Lucene index directory and files

Offline
Building Text Index

Loading Text Index
Querying Text Index

Building BrokerRequest

Physical (execution planning) per segment

Filter processing

Server combine and broker reduce
Realtime

Building and querying text Index in real-time

How is the reader refreshed, reference counting and thread safety?
How often should the refresh happen?

Realtime to offline segment conversion?

Performance Evaluation

Heap overhead, GC, CPU
Write Path

Query Path

Impact on segment generation time

Introduction

This is a design document for supporting text search in Pinot. Text search is generally similar
to other regular database search operations both in what user is looking to do (filtering) and
how the database implements it efficiently (indexing). The TEXT column data is likely to be
different than a regular STRING data. The text column could have log info (each column
value a line from server log), resume text, yelp review (sentences) etc. The user should be
able to search for phrases, terms/words, prefixes, regular expressions etc.

The initial POC (source code) was done with Lucene. This document will attempt to capture
all the POC details along with complete design details and results from some more
experiments.

Primer on Lucene

The central data structure in Lucene is an inverted index from terms/words to documents
(essentially document IDs) in which they occur. For each term in the index, it also maintains
additional data like position(s) of the term in a given document.

Document/Row is the unit of indexing (logically). Physically, the textual data in each row is
parsed/tokenized into indexable terms and these are used to build an inverted index.

When we add Document to Lucene Index, we specify which fields are indexable fields. We
can also specify if the indexable field should be physically stored by Lucene or not. In other
words, if we just want Lucene to build the index for a text column (say skills or log data) in
Pinot table, we should just wrap around that column in a Lucene document object, tell it to
index but not store the field since it will anyway be stored in the forward index of Pinot.

Analyzer

Lucene comes with inbuilt Standard analyzer (essentially the text parser) that tokenizes the
input text data into indexable tokens, removes stop words etc. The same analyzer is later
used during query time to interpret the user written query and get the tokens which will be
used to query the index. This process is also called as Lexical analysis and used during
indexing and searching time.

Remove stop words like ‘and’, ‘the’, ‘or’ etc -- these are not indexed.

Break composite words into two individual words like publish-subscribe would be
broken into ‘publish’ and ‘subscribe’

Lowercasing

Everything separated by white-space is by default an individual token.

https://docs.google.com/document/d/1P38NvfNfATiTzd8W_ZBzPyAnP50_lyFk-qm6syqeD2E/edit
https://github.com/apache/incubator-pinot/pull/4715/files

e Word stemming (as per porter-stemming algorithm) such that if in the original text,
there is token’ bikes’, then the user should be able to use query term as both ‘bike’
and ‘bikes’.

Removing trailing (‘s) from words.
Strip off commas and other punctuation.

Lucene’s standard analyzer is built on Unicode text segmentation algorithm for tokenization
(determining word boundaries). By default, this does not support stop words (we can provide

a list though), stemming and removal of trailing ‘s. However, there is English Analyzer which
uses the exact same tokenization mechanism for breaking text but uses a default set of
english stop words (and, or, the, on etc), does stemming and removes trailing ‘s.

In addition to standard and english analyzer, Lucene has a ton of support for analysis in
multiple different languages -- Chinese, Danish, Polish etc. This means that if a Pinot table
has two text columns (one with English text and one with Chinese text), we can instruct
Lucene to use a per column analyzer -- standard/english for first column, and Chinese
analyzer for second column.

Azure search service which is based on Lucene provides 35 Lucene based analyzers for
multiple different languages and several more proprietary analyzers based on their natural
language processing technology.

NOTE: Only the term and phrase queries are analyzed. Prefix query, regex query aren’t
analyzed. They are just lower-cased and directly applied to index. The reason is that prefix
and regex query support in Lucene is on a term basis. More on regex further in the
document.

NOTE: Same analyzer should be used during (1) index building and (2) querying
Queries

Lucene supports different kinds of queries like (1) phrase query, (2) term query, (3)
combination of these two using boolean operator(s), (4) prefix query and (5) regex query

Query syntax Examples: Say there is a text column named “col on which we have built a
Lucene index. The following table gives some insight into how the lucene search queries
look like.

col: “P1” Look for documents where each document MUST contain the
phrase P1 “blah blah blah” as is in column col. A phrase is
always specified in double quotes

col: “P1” AND col:T1 Look for documents where each document MUST contain the
phrase P1 “blah blah blah” as is and term T1 in column col

http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/analysis/standard/StandardAnalyzer.html
http://unicode.org/reports/tr29/
http://lucene.apache.org/core/8_2_0/analyzers-common/org/apache/lucene/analysis/en/EnglishAnalyzer.html
http://lucene.apache.org/core/8_2_0/analyzers-common/overview-summary.html
https://docs.microsoft.com/en-us/azure/search/index-add-language-analyzers

col: “P1” AND col: "P2” Look for documents where each document MUST contain two
independent phrases “P1” and “P2” in column col

col: “P1” AND col:T1 AND col:T2 Look for documents where each document MUST contain the
phrase “P1” as is along with terms ‘T1’ and ‘T2’ in column col

col: “P1” AND (col:T1 OR col:T2) Look for documents where each document MUST contain the
phrase “P1” as is and any of the terms “T1” or “T2’ in col

Lucene and Regex

Lucene query syntax supports regular expression searches and it can allow us to use text
search instead of regexp_like at least for some common queries and getter better
performance.

The combination of following for a single column text search query helps us to build a variety
of single column search expressions

One or more phrases,

One or more terms

Using AND, OR, NOT, parentheses to combine and group phrases and terms
Single character wildcard for terms (te?t)

Multi-character wildcard for terms (tes*t, test®)

/regular expression/ - regex on a term enclosed within forward slashes.

Important thing to note here is that as a user if | am aware of the data and to some extent
how Lucene breaks down the text into tokens, it may not be entirely necessary to write a
Lucene regex query.

Let’'s say you have a log file and each log line is a column value in Pinot text column. Take
the example of pql query log file. Let’'s say we want to extract all queries that have ‘GROUP
BY’. We are aware that “GROUP BY” as a phrase will be delimited by whitespace and so |
can do a phrase search for these two terms instructing

WHERE REGEXP_LIKE(column_name, 'GROUP BY")
WHERE TEXT_SEARCH(column_name, \"GROUP BY\”) -- (regex lucene syntax not
needed)

Similarly let’s take the example of server log file. Say we want to find all documents/rows
with exception. Now since exception in Java is something like “BlahBlahException”,
‘exception’ by itself can’t be tokenized and indexed as an individual term unless we
preprocess the text and add delimiter. So we can use regular expression syntax with
Lucene.

WHERE REGEXP_LIKE(column_name, 'Exception’)
WHERE TEXT_SEARCH(column_name, '/.*Exception/') - (using regex lucene syntax)

Let’s take a generic example. Say we have to look for documents/rows in a text column that
MUST have two phrases “p1” and “p2”. Take the example of searching the Apache access
log for all GET requests that went to Firefox browser. So essentially we need to look for
‘GET and ‘Firefox’ and these could be in any order in the document. The two queries will
look like following:

WHERE REGEXP_LIKE(column_name, 'get.*firefox|firefox.*get")
WHERE TEXT_SEARCH(column_name, ‘get’ AND ‘firefox’) (regex lucene syntax not
needed if we know how a typical log line in apache log generally looks like)

Another example would be to search for documents/rows with a combination of multiple
phrases and terms in any order. Say phrase p1 and term t1 are a MUST along with any one
of term t2 or t3

WHERE REGEXP_LIKE(column_name, ‘some complex regex to take care of all orderings in
which p1, t1, t2, t3 can occur in a document”)

WHERE TEXT_SEARCH(column_name, \’p1\” AND t1 AND (t2 OR t3)’) -- regex lucene
syntax not needed

Specifying the same query in text_search syntax is much cleaner and simpler as opposed to
coming up with complex regex.

The documented limitations | see are that
e Wildcard can’t be used in the beginning of search query or within phrases.

o This should be fine as we are unlikely to have phrase queries like
“‘mach*learning”. Whoever is looking for phrase is ideally looking for a strong
match of the exact phrase as is.

e Regex query (enclosed in forward slashes) can only be used for terms.

o ldeally, we should use regex query in Lucene only when we aren’t sure about
the nature of our data. If we know what we are looking for can be met through
a phrase, term, prefix or any arbitrary combination of these using
AND,OR, NOT then we don’t have to use Lucene regex query.

o On the other hand, if we aren’t sure if the data we are looking for would have
actually been tokenized (and put into index), then we should use regex.

See the performance evaluation section for examples on each of these queries. Also, go
through the functional tests written as part of POC.

Input data

At a high level, the input data can be generally divided into three broad categories:

Unclean data (e.g log search)

https://github.com/apache/incubator-pinot/pull/4715/files#diff-475729332bb164f8ba9d844099ee479c

In this case, the underlying data is not homogeneous. The data is generally alphanumeric,
could have IP addresses, URLs and the characters are likely to include pretty much
anything. There could be a range of characters here (in addition to standard alphabet and
numbers) like comma, quotes, hyphen, slash, parentheses, semicolon etc.

On such data, the user is likely to use a combination of phrase, term, prefix and regex
queries. Unless we preprocess the data, regex might be needed since the data is not clean
and it is not possible to predict what content will be tokenized (and thus available in the
index) or not tokenized (and thus available as part of some bigger token, e.g ‘exception’ as
mentioned in previous section)

Nearly clean . rch on velp review, resume tex

In this case, the underlying data is generally a set of words and/or sentences where there is
whitespace (or some delimiter) between words. The data can still comprise of punctuation
like comma but the range of such characters is generally small.

In this case, the most appropriate set of queries would be phrase, term and prefix. User is
unlikely to use regex queries since the nature of data is simple, is amenable to full
tokenization resulting in almost every searchable word (barring stop words) available in the
index.

Arbitrary language data

The grammar of each language is unique and so the word boundaries will be different.
Although, Lucene supports analyzing multiple different languages, Pinot should initially
support only English.

Design

Parser changes

A new built-in function (similar to regexp_like) will be introduced for the user to specify the
column name and search expression. This function can then be used as part of the WHERE
clause in the queries just like how other filter expressions are written by users.

The grammar change will be made in PQL2.g4
TEXT_MATCH(column_name, search expression, options)

TEXT_MATCH() will essentially be a new predicate type addition to the existing predicate
types we already have in Predicate enum — IN, EQ, RANGE, IN etc.

Few queries to give an idea of how the queries will look like

e SELECT int_coal, skills_text col FROM MyTable WHERE
TEXT_MATCH(skills_text_col, \"Machine learning\" AND \"Tensor flow\", options)

e SELECT COUNT(*) FROM MyTable WHERE INT_COL >= 1010 AND
TEXT_MATCH(skills_text_col, \"Distributed systems\", options)

e SELECT int_col, skills_text col FROM MyTable WHERE
TEXT_MATCH(skills_text_col, \"Machine learning\" AND gpu AND python', options)

The purpose of third argument “options” is to pass down some user specified information.
When we build the AST, Pql2AstListener will create TextMatchPredicateAstNode where the
information about the column name (identifier), search expression (string literal), options
(string literal) will be stored as part of calls to addChild(AstNode node).

TextMatchPredicateAstNode is a new concrete implementation of PredicateAstNode similar
to how we have for IN, BETWEEN, REGEX, comparison etc.

Once the AST is built, we build the broker request. The details for that (and how the broker
request will be used to execute the query) are mentioned further in querying text index
section

Data Type

As mentioned earlier in the input data section, the candidate data for text search is not
similar to regular STRING column data. It implies that users probably won'’t be doing other
standard filter operations (like equality) which are generally done on STRING columns and
made efficient through dictionary, inverted index etc.

For this reason, we have decided to introduce a new data type “TEXT". If the user has one
or more columns of this type in their schema, then segment generation code will
automatically create a Lucene text index on such columns (per column). With new type,
users won’t have to use any knob in SegmentGeneratorConfig or TableConfig or
IndexLoadingConfig to specifically tell Pinot to create a text index.

The underlying reader/writer for this could simply piggy-back on reader/writer for BYTES
type.

Another alternative could be to keep the types as BYTES (which we already support in
Pinot). In this case, we can control the creation of text index through knobs in
SegmentGeneratorConfig or TableConfig — something like setTextindexColumns().

Rest of the document will refer to such columns as “text columns” for the purpose of
discussion.

Storage

There will be a Lucene index per text column. These columns will not be dictionary
encoded. Creating a dictionary for such kind of data is going to be extremely heap heavy
and not useful since users are never going to run equality operations on these columns. So
we will have raw data in Pinot’s forward index and a Lucene text index — Lucene will only
index and not store the raw data.

NOTE: During initial discussions for requirements, it was brought up that users are unlikely
to project the text column. In other words, they will only be used as part of TEXT_MATCH()
predicate for filtering. This allows us to not store the raw data at all and save storage.
However, we decided to have a raw data in forward index for two reasons:

e Migration - In future, iffwhen we implement an in-house text search solution without
Lucene, then we need to migrate existing indexes which will essentially require to
re-index.

e Real-time segment conversion - When we finish building a MutableSegment and
about to convert it into ImmutableSegment, we need to have the raw data for
re-indexing.

o We discussed that for text columns, realtime segment conversion could purely
be a directory move to avoid indexing twice. However, this is unlikely to work
since the doclDs, dictionary IDs for other columns will change when we
convert the segment.

Lucene index directory and files

Lucene index is stored in a directory. Since there will be a Lucene index per text column,
there will be as many directories under the Pinot segment directory. The directory structure
will look something like this:

/Path/To/Pinot/SegmentDirectory
/text_col1_lucene_index
— index files (no subdirectories)
/text_col2_lucene_index
— index files (no subdirectories)
Iv3
— all existing segment files (.psf, index_map etc)

Under lucene index directory, number of files during segment generation are as follows:

e write_lock() — the index writer does fcntl() on this file to get exclusive access.
e Data/metadata files where Lucene writes its dictionary and index info.

As part of POC, we did experiments to understand the number of files etc. For a single
segment, we tried with Smillion documents and 3 TEXT columns. So during segment

generation, 4 files (3 from Lucene) and 1 for Pinot’s raw forward index were opened per text
column.

Once the writer finishes, Lucene also builds a compound file (.CFS), so during querying,
there is one file opened per text column. Note that it is not opened for each query. When
we do ImmutableSegment.load() to mmap the segment, at that time we also load the Lucene
index (which also mmaps the compound file) and the file descriptor remains open
thereafter. More on the query execution further in the document.

| don’t think we need to worry about the number of open files during segment generation.
However, during querying we may run into problems for tables with several thousands of
segments on a single server. For example, if there are 3 TEXT columns and 20k segments
on a server we are going to have 60k open file descriptors. This is something that users of
this features should be aware of.

NOTE: If users look into the Lucene index directory, they should see some additional
metadata files which are quickly opened and closed. | don’t see them being opened as part
of any long running operation. For example, the write_lock file doesn’t disappear once the
writer finishes building/committing the index. It will be there but not opened. The CFS file is
the only one that is kept open.

NOTE: There are some interesting relations between the number of files and heap
overhead. Further information on this is captured in heap overhead section where we did
experiments to understand the number of files under different situations.

Offline

We look at the design from both realtime and offline side. This section talks about building,
loading and execution from offline perspective. Realtime is covered separately.

Building Text Index

SegmentColumnarindexCreator will drive the index creation just like it does today as part of
indexRow(GenericRow row) method as and when each row arrives.

Pre-index setup
e For each TEXT column, we need to instantiate the Lucene index creators/writers just
like we do for forward index, inverted index.

o As part of POC, a new interface “TextindexCreator” was introduced. However,
since Lucene index is just another inverted index we should leverage (and
enhance) the existing InvertedindexCreator interface and subclass it to write
a new concrete implementation for building Lucene index.

e SegmentColumnarindexCreator already knows the segment index directory. We
create a lucene index directory under that for each text column as shown earlier.
LuceneTextindexCreator should handle all of that internally

indexRow(GenericRow row)
e For each TEXT column, call its textindexCreator.add(columnValue) to add the column
value in Lucene’s inverted index.
e Add it to Pinot’s forward index.

Lucene Text Index Creator

The text index creator is initialized per TEXT column by SegmentColumnarindexCreator. It
uses Lucene IndexWriter to add documents to the index. The following code snippet shows
how the index creator adds information to the Lucene index.

docTolndex.add(TextField(columnValue.toString()
Field.Store.NO))

docTolndex.add(StringField(
String. valueOfdocldCounter), Field.Store.)

_docTolndex is the custom document/row object that we are adding to Lucene with two fields

o TextField with name _textColumn (this is a Pinot TEXT column)

o columnValue is the text data that will be tokenized and indexed.

o FIELD.STORE.NO instructs Lucene to not store the text data and just simply
index it.

e StringField with name DOC_ID_COLUMN_NAME

o A monotonically increasing doclID counter controlled by
SegmentColumnarindexCreator.

o The purpose of adding this field is to identify each document uniquely within
Lucene index such that during filter processing we can use these doclIDs.

o ldeally there should be no need for this field as Lucene internally maintains
doclID (as part of it’s inverted index and this is based on insertion order) and
this works perfectly for us. However, some Lucene documentation indicates
that internal docID could change and users should not rely on it externally.

Once all the calls to indexRow() are over, for each text search column, we would have added
as many documents into its respective lucene text index as there are rows in Pinot segment.
Finally, when the segment generation finishes, we release the resources associated with
index writer as part of SegmentColumnarindexCreator.close() which closes (and commits)
each text index writer. Commit essentially fsync’s the lucene index directory and makes the
changes available to reader.

The key thing here is the buffering threshold that we need to control. This threshold is used
by Lucene to flush the buffered index data to index directory. The default value (Lucene’s) is
16MB. In the POC code, we started with 500MB and did some experiments with this value to

http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/index/IndexWriter.html
http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/index/IndexWriterConfig.html#DEFAULT_RAM_BUFFER_SIZE_MB

understand the heap overhead and come up with a suitable value. The heap overhead
section further in the document has more information on this.

Loading Text Index

When the server loads (mmaps) the ImmutableSegment as part of
ImmutableSegmentLoader.load(), we create index containers for each column. The index
container has pointers to readers for forward, inverted index, dictionary etc. All of this
information is then available as part of ColumnDataSource.

For TEXT column, we have to do the exact same thing. During
ImmutableSegmentLoader.load(), when we build the PhysicalColumnindexContainer, for
each TEXT column, we create a corresponding Lucene text index reader.

NOTE: As part of POC, a new interface “TextindexReader” was introduced. However, since
Lucene index is just another inverted index we should leverage (and enhance) the existing
InvertedindexReader interface and subclass it to write a new concrete implementation for
reading Lucene index.

Lucene Text Index Reader

Created per TEXT column. Uses the Lucene IndexReader and IndexSearcher to mmap the
index directory (compound file specifically). It provides a search(query_string) method which
is invoked by the filter operator (see the next section). The query_string is the search
expression as is that user specifies as part of TEXT_MATCH)().

Per call to search(query_string), we parse the search query using Lucene query parser and
search the index. The result of search is a set of matched documents which are returned
back to the operator to iterate upon later.

Similar to LuceneTextindexCreator, the reader is also instantiated exactly once per
column during the segment load and the reference to it is available via ColumnDataSource
for use by queries. This is exactly how other indexes are loaded and used in Pinot during
execution.

Querying Text Index

This section talks about the query execution related changes to query the lucene index for a
given query that has TEXT_MATCH(.....) as part of WHERE clause.

Building BrokerRequest

When the AST is walked to build the BrokerRequest, the information for WHERE clause is
stored in an expression tree (FilterQueryTree) serialized into BrokerRequest. Just like how
each PredicateAstNode is responsible for building it's FilterQueryTree (as a root node or as
a child), TextMatchPredicateAstNode will do the same.

Example:

http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/index/IndexReader.html
http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/IndexSearcher.html

WHERE int_col = 2000 AND text_match(text_col, “\’machine learning\”)

The root of the FilterQueryTree will be the AND predicate (FilterOperator AND) with the
following two children.

e int_col = 2000 for FilterOperator type EQUALITY
e text_match(....) for FilterOperator type TEXT_ MATCH.

The FilterQueryTree will be then serialized into BrokerRequest.

Physical (execution planning) per segment

FilterPlanNode looks into the BrokerRequest, deserializes the FilterQueryTree and walks it
to build the filter operator(s). For TEXT_MATCH, it does 3 new things:

e Read FilterQueryTree and get the information to build TextMatchPredicate. This will
stash away the info on column name and search string.
Use the predicate to build evaluator - raw value based text predicate evaluator
Create a leaf level FilterOperator — TextMatchFilterOperator
o TEXT_MATCH() unlike AND, OR is a leaf level filter operator

The TextMatchFilterOperator will contain the column data source, predicate evaluator and
override the getNextBlock() method of the FilterOperator interface.

Filter processing

The filter processing for text_match will happen just like it happens for any other filter
operator in Pinot. The below diagram shows how the execution will happen when we have a
where clause as WHERE text_match(text_column_name, “search string”). Now whether we
have one text_match() filter expression or multiple or a combination (using AND/OR) of this
with others like EQUALITY, IN, BETWEEN etc, the execution flow will work as it does today.

The search query string is available to the filter operator through the predicate evaluator that
was built earlier during execution planning. The text filter operator calls search() on lucene
index reader exactly once for a query and gets the result. The result is then encapsulated
inside the iterator because that is what is used by the rest of the execution code that works
on doclDs.

Note that multiple queries will use the same LuceneTextiIndexReader to search the text index
with their respective query strings via TextMatchFilterOperator.

{ DataSource J LucenelndexReader J
I I

iterate over getTextindex (1) search(query (2) search

doc ids string) result
| L] J
\

[Selection/Aggregation DoclDSetOperator TextMatchFilter

operator Operator
(4) return _J (3) create to iterate
FilterBlock on search result
Execution l
planning
[FilterBlock J

[TextMatchPredicate]
create

(column name, query string)

create from
) . LuceneDocIDSet,
FilterQueryTree 4{ FilterPlanNode }— [Iterator }

Server combine and broker reduce

No changes are needed since the changes in filter processing code path are enough for this
feature to fit into Pinot’s execution engine.

Realtime

Lucene’s IndexWriter which creates and maintains the index buffers the data (document’s
added to the index) and flushes them periodically to the index directory. However, the data is
not visible to the IndexReader (and IndexSearcher) until the writer commits/closes which
essentially fsync’s the lucene index directory.

The index reader always looks at a point-in-time snapshot (of committed data) of the index
as of the time reader was opened. As mentioned in previous section, for offline segments
this works well since we load the index once during ImmutableSegment.load().

If we want to enable this feature for real-time (or hybrid tables), we need to be able to search
the index (with some lag) as the writer is in progress.

Lucene supports NRT (near real-time) search by allowing to open a reader from a live writer
and essentially allowing the reader to look at all the uncommitted index data from the writer.
Again, just like any other index reader in Lucene, the NRT reader is also a point-in-time
snapshot reader. This implies that the real-time reading code will have to periodically reopen
the NRT reader (since the live writer would have made further progress since NRT reader
was opened).

The background task wakes up after
the configurable delay, polls the head,
refreshes a realtime lucene reader and

adds it back T end of queue l

maintains a concurrent

RealtimeLucenelndexReader: circular queue of all realtime
Refresh Task (thread) lucene readers (across all

realtime segments)

Static initialization with
scheduled thread pool of size 1 . .
and configurable delay between Creates a realtime lucene index

successive executions reader per TEXT column and
adds to the circular queue

MutableSegmentimpl]

Creates when
consumption starts

LLRealtimeSegmentData
Manager

e There is a single background task (thread) on the server that maintains a concurrent
circular queue across all the realtime lucene readers (across all realtime segments).

o The task wakes up every X secs, polls the queue to get the realtime lucene
reader at the head, refreshes it and adds it back to the queue.

o We could also consider partitioning this queue at table level as a second level
optimization. In that case, there will be as many background tasks as there
are tables.

e Similar to OFFLINE (and similar to how we have today in Pinot), there is a Realtime
Lucene reader per TEXT column.

e The reader is created by MutableSegmentimpl during its initialization. It is also added
to the queue maintained by the refresh task.

Building and querying text Index in real-time

MutableSegmentimpl drives the consumption of rows for the in-memory real-time segment.
As part of that, for TEXT columns, we will create raw forward index and Lucene based
inverted index. This whole thing will be driven by existing index(GenericRow, RowMetadata)
method in MutableSegmentimpl.

Note that currently realtime code supports no dictionary columns only for fixed width types. A
separate change will be needed here to implement a variable width reader/writer that writes
the raw forward index for variable width TEXT column.

Per TEXT column, an instance of RealtimeLucenelndexReader is created and maintained by
MutableSegmentimpl. This is similar to how today we have RealtimelnvertedindexReader.
As mentioned above in the offline section, the lucene reader and writer interfaces were

separate from InvertedindexCreator and InvertedindexReader in POC implementation.
However, we should try to enhance the existing Invertedindex{Creator|Reader} interfaces
and write a new concrete implementation by extending them for Lucene.

Unlike the offline text index reader for Lucene, the real-time reader is both a reader and a
writer. This is again similar to Realtimelnvertedindex reader is implemented. It acts as both
writer and reader while the segment is being consumed.

The reader will be available to the TextMatchOperator during query execution via the
ColumnDataSource. So the query execution will happen as it happens today -- oblivious to
the fact if the segment is offline or realtime.

How is the reader refreshed, reference counting and thread safety?

The realtime lucene reader maintains a SearcherManager -- a reference manager for thread
safe management of IndexReader.

When the server query execution thread searches the text index through
TextMatchFilterOperator, it acquires an IndexSearcher by bumping (atomically) up the
reference count in SearcherManager. The searcher is then used to search the index for the
query string and retrieve a set of matched documents. The IndexSearcher is then released
through the searcher manager which decrements (atomically) the reference count. This use
of searcher is similar to how it is done in offline except for acquire and release semantics.

In the beginning when SearcherManager is instantiated (that is during creation of Realtime
lucene reader), it creates an IndexReader and a CURRENT searcher with reference count of
1. A call to acquire() in the foreground by the query thread will return the CURRENT
reference of searcher. This reference could be of two kinds:

e A refreshed one (indicating different than the one returned by the previous call to
acquire)
e Same as previous one

In both cases, the reference count would be bumped up by 1.

Concurrently in the background, the refresh task picks a realtime lucene reader from the
queue and invokes a refresh() call on the reader’s searcher manager. If the refresh is
successful (implying index was really changed since the last time), the CURRENT searcher
reference inside the searcher manager is swapped with the new one. If the refresh didn’t do
anything, then the CURRENT searcher reference inside the searcher manager will remain
the same. The refresh() takes care of the fact that if index hasn’t moved, nothing happens.

Any call to acquire the searcher in the foreground by the query thread will return this new
searcher (if previous call to refresh wasn’t a NOOP) and consequently will see the increased
number of documents.

http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/SearcherManager.html
http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/IndexSearcher.html

What happens if the call to refresh() by the background task is made at the same time as the
call to acquire a CURRENT searcher in foreground by the query thread? The reference
counting takes care of it.

Periodic reopening/refreshing of the NRT reader from the live writer is theoretically
equivalent to flushing the writer followed by getting a new reader (at least this is what some
Lucene documentation implies). But still for the initial iteration, the proposal is to go through
the SearcherManager based refreshing instead of doing the flush ourselves (after every
certain number of documents are added) in the real-time consumption code. It is yet to be
determined conclusively if we can correctly abstract this out into two calls of flush() followed
by reopen.

Please see the POC code to understand the current implementation of
RealtimeLucenelndexReader and refresh task. As part of POC, we had unit tests for testing
the reference counting, multi threaded real-time and a cluster integration test to test the
realtime functionality separately.

How often should the refresh happen?

This can be a configurable number and also depends on how the queue is managed. If we
have a single queue across all realtime tables (and their segments), then the threshold
should be lower (100ms between successive executions regardless of whether a single
execution took more than 100ms). If the queue is managed on a per table basis (thus we
have a refresh task to manage all the realtime segments of a table), then the threshold could
be slightly higher (5secs between successive executions).

Another important factor in choosing a suitable default value is the consistency and
performance trade-off. Assuming realtime index is really moving forward constantly:

e |[f the threshold is low, we flush too often and bear potentially lots of small I/Os.
However, the realtime reader queries will get to see the new documents quickly
e |[f the threshold is high, we flush less often which increases the lag.

As part of productionizing the POC code, we need to do some more performance tests to get
to a reasonable default value. This is also something that will vary on each use case basis.

Realtime to offline segment conversion?

Since we maintain a raw forward index, we will do whatever is done today for other columns
-- re-index. One of the better ways to do this would be to handle the conversion for TEXT
columns as simple directory move. However, this will not work since during segment
conversion, the dictionary IDs and doclIDs will change and the doclDs already there in the
lucene index will be incorrect. So reindexing is necessary.

https://github.com/apache/incubator-pinot/pull/4715/files#diff-cbe53e4ef9d70007c739dfc3baa53aed

Performance Evaluation

Please see the section in POC document.

Heap overhead, GC, CPU

Some experiments were done as part of POC to understand the heap overhead, CPU and
GC. This was done for offline segments for both (1) write path -- index building and (2) query
path

The experiment was done for a single segment with Smillion documents and 3 TEXT
columns. For each column, the lucene TEXT index size was 137MB, 150MB and 150MB
respectively. The raw data size was 1.2GB, 1GB and 1GB respectively for each column.

Write Path

As mentioned earlier in building text index section, Lucene IndexWriter buffers data in
memory until a configurable threshold and flushes it once the threshold is hit. This data is
buffered in JVM heap. Lucene’s internal default value for this is 16MB and we experimented
with multiple values of this parameter to estimate the heap overhead during segment
generation.

Segment generation heap overhead when the 3 TEXT columns are stored as regular
STRING -- dictionary, forward index, inverted index but no lucene inverted index.

Heap Young gen Old gen GC time CPU usage
overhead due | (Eden, SO0)
to Lucene
objects
1.2GB 1GB, 252MB | 1.8GB 34 collections | 10-25%
8secs Stayed at 10% with spiking to 20-25% during

GC. No major spikes.

Segment generation heap overhead when we create Lucene index on 3 TEXT columns

Since the test code itself has a non-trivial overhead -- 5million GenericRow objects and the
hashmap nodes inside each one of them, the best way to look at the comparison between
this and the previous table is to look at the second column in table below. This was gathered
directly after taking heap dump and extracting the heap size associated with objects
referenced by Lucene.

https://docs.google.com/document/d/1P38NvfNfATiTzd8W_ZBzPyAnP50_lyFk-qm6syqeD2E/edit#heading=h.idgz7yj1sspq
http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/index/IndexWriterConfig.html#DEFAULT_RAM_BUFFER_SIZE_MB

IndexWriter | Additional Young gen Old gen GC time CPU usage
Buffer Size | Heap (Eden, S0)
overhead
due to
Lucene
objects
500MB ~1GB 728MB, 1.5MB | 3GB 62 collections | 10-25%
18secs Stayed at 10% with spiking to
20-25% during GC.
Two major spikes showed CPU
usage at 70% when there was
high GC activity
256MB ~400MB 37MB, 295MB | 2.7GB 63 collections | 10-25%
14secs Stayed at 10% with spiking to
20-25% during GC.
One major spikes showed CPU
usage at 70% when there was
high GC activity
128MB ~250MB 50MB, 0 1.8GB 61 collections | 10-25%
13secs No major spike unlike the previous
two.
16MB <100MB

Considerations for choosing the threshold:

Lower the value, higher the number of times flush is invoked by Lucene during
segment generation to flush the in-memory index state to index directory.
Note only this, a flush results in a file.
o With 500MB: at the end of segment generation we had 1 compound file per
TEXT column -- this is the file that will later be kept opened for querying when

the segment is loaded.

o With 256MB and 128MB, there were 2 and 4 files respectively per TEXT
column. These numbers can obviously be different depending on the nature
of data (index size).

o With 16MB, the number of files were extremely high.

As mentioned earlier in file handling section, we need to try and keep the number of
files low. It looks like 256MB could be a reasonable default value for the buffering
threshold. Pinot users using this feature should be able to configure it.

o Secondly, since once the segment is built, index is immutable for us so we
can merge the index files before commit to a single file -- Lucene index writer
provides an API to do this.

o Soin case, we want to set a really low value to keep a tight bound on heap
usage, we can merge the files later to still have a single Lucene index file (per

TEXT column since we have an index per TEXT column). We can do this

once we finish generating the offline segment and do indexSegment.close().

Query Path

The test ran 5000 queries sequentially and monitored the heap overhead, garbage collection

and CPU. The segment has 5million documents, 3 TEXT columns (same as mentioned
above for write path experiment). For comparison, the same experiment was also done

when text data is stored in a STRING column with all the native Pinot indexes -- dictionary
encoded forward index and inverted index.

Test type Number of Young generation | Old generation GC time CPU usage
classes (Eden, S0)
loaded
Querying the 4400 300MB, 300KB 19MB 53 8%
TEXT column collections,
166ms
Querying the 3725 60MB, 64KB 19MB 588 8%
STRING column collections,
585ms

Comments:

First thing to note is that Lucene does not load the entire index in memory. It mmaps
the index directory.
A lot of short lived objects are created on the query path inside Lucene. This is true
for Pinot as well which is why all the utilization is coming from Young generation and
barely anything from Old.
o However, Lucene creates additional objects to process the query, return the
search result etc.
m Note that lucene query result caching.
m Also, search query was wrapped around ConstantScore search query
to not score the results -- all matched docs have a constant score of
1.0
o After digging into the code, one good optimization here would be to
implement the collector interface which does not use a PriorityQueue since
we aren’t really interested in top docs/scoring. In other words, instead of using
the in-built TopScoreDocCollector and TopDocsCollector, we can override the
latter and get rid of priority queue. Something there documentation also
suggests.
The fact that in both the cases we are having short lived objects but still we are
seeing relatively low number of collections for query on TEXT column probably points
towards a memory leak either in the POC code that does the Lucene query
processing or inside Lucene.

http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/TopScoreDocCollector.html
http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/TopDocsCollector.html
http://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/TopDocsCollector.html

e Another very important observation is for the number of results requested. Usually
text search queries will not be interested in seeing over 100k matched documents.
The selectivity of text search queries should be relatively low (overall text data could
be huge though).

o Lower the limit, the lesser the heap overhead inside Lucene of these short
lived objects required to store in-progress or final search result. In any case,
providing our own Collector (as noted above) will help a lot.

Impact on segment generation time

An experiment was done with 10 segments, 5million documents per segment and 3 text
columns per segment.

When building Lucene index, it took 21mins to create and load 10 segments. On the other
hand, if we disable the text index and just have the regular dictionary and Pinot's inverted
index, then it took about 7-8mins to create and load the segments.

This comparison is obviously not fair but just to give an idea that segment creation time will
go up if the segment has text columns.

	Introduction
	Primer on Lucene
	Analyzer
	Queries
	Lucene and Regex

	Input data
	Design
	Parser changes
	Data Type
	Storage
	Lucene index directory and files

	Offline
	Building Text Index
	Loading Text Index
	Querying Text Index
	Building BrokerRequest
	Physical (execution planning) per segment
	Filter processing
	Server combine and broker reduce

	Realtime
	Building and querying text Index in real-time
	How is the reader refreshed, reference counting and thread safety?
	How often should the refresh happen?
	Realtime to offline segment conversion?

	Performance Evaluation
	Heap overhead, GC, CPU
	Write Path
	Query Path

	Impact on segment generation time

