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Abstract. In this paper, for 3-5 gears, the most efficient setting is to be
demonstrated and proven, including the most efficient deployment of gears, and the
most efficient speed of the ‘starting gear’ in a machine, which is defined as the gear
whose movement can cause the ‘igniting gear’ to move, which is defined as the gear
whose movement causes the machine to operate, so that it causes the machine to
operate, by applying Conservation of momentum, some geometric principles and
gradient. The ‘efficacy’ is defined as the total momentum obtained by the gear in a
machine that ignites the operation of it, contributed by the momentum of the gears
engaging it and the momentum of the air around it that strikes it, according to
Newton’s second and third laws of motion, which can be calculated by applying the
formula that describe the transfer of the momentum of a solid to another and the one
of the momentum of a fluid to a solid. After calculating the total momentum of the
‘igniting gear’ that can obtain of every deployment, by the comparison of the total
momentum of every deployment of 3-5 gears, under what circumstances which
deployments are the optimal ones of 3-5 gears, if there is any, is known by applying
the definite integrals and scaling the inequalities. And it is known how to judge which
group of gears and machine is better in ‘working efficacy’ with the same deployment
by a law named as ‘The Zhang’s Law’ and found by the gradients, Lagrange
Multiplier Method, functionalization and vectorization. Some examples that can

preach how to construct the most efficient setting are also to be given in this paper.

Keywords: deployment, Conservation of momentum, gear, Newton’s law of
motion, definite integral, inequality scaling, gradient, Lagrange Multiplier Method,

functionalization, vectorization.

1. Introduction

Not only do the qualities of the gears in a machine contribute to the working efficacy
of it, but also the deployment of them does, eliciting the subject of the paper, aka the
most efficient deployment of n gears. After having the idea of how to deploy the gears
in a machine in the most efficient way, we can reduce the number of the gear of a

machine needs.

As is known to all, there is the conservation of momentum. When the gear, let’s say,

the ‘starting gear’ in a machine invokes the movements of the other gears after it



starts to move, the other gears engaging it will obtain the total momentum that is
contributed by the momentum of the starting gear and the air striking them, according

to Newton’s second and third laws of motion.[1]

In collisions’ physics, in particular imperfect elastic collision, the transfer of
momentum between a solid body to another and between two solid bodies, can be

described with the formula:[2]
Py TPy = p1f+p2f

with:

P = M Gri,) + G,

m —m

2m
j— 1 2 1
pzf - mz[( m +m, vu) + m +m, UZi)]

By dividing both of the hands of two expressions by m L and m ) respectively, we get:

v1f= (m+m 11) + (m+m 21)
v, = Grty) + Gipnvy)
2f m_+m 1 m1+m2 2i

With such formula, we can calculate the velocities of two objects after the momentum
of them is changed because the gear that engages one of them, viz, the engaged gear

moves.

It’s obvious that to make the ‘efficacy’ as high as possible, we need to make the total

momentum transferred to the igniting gear as large as possible.

To increase it, we are supposed to make the gears engaging the igniting gear as many
as possible and the volume of the air around it as small as possible since the velocity
of flow and the tempature of it are constant, given space with a certain width and

height, by applying some geometric principles, by the most efficient deployment that

is to be demonstrated in this paper.

However, not only does the deployment of gears contribute to the working efficacy of

a machine, but also the speed of the ‘starting gear’ does so as well.

As is known to all, in vector calculus, the gradient of a scalar-valued differentiable



function f of several variables is the vector field (or vector-valued function) Vf whose
value at a point p gives the direction and the rate of fastest increase.[3] Further, a
point where the gradient is the zero vector is known as a stationary point. And a
stationary point of a differentiable function of one variable is a point on the graph of
the function where the function's derivative is zero.[4][5][6] Informally, it is a point
where the function "stops" increasing or decreasing (hence the name). Determining
the position and nature of stationary points aids in curve sketching of differentiable
functions. Solving the equation f’(x) = 0 returns the x-coordinates of all stationary
points; the y-coordinates are trivially the function values at those x-coordinates. The
specific nature of a stationary point at X can in some cases be determined by

examining the second derivative:
If f"(x) <0, the stationary point at X is concave down; a maximal extremum.
If f"(x) > 0, the stationary point at X is concave up; a minimal extremum.

If f"(x) = 0, the nature of the stationary point must be determined by way of other

means, often by noting a sign change around that point.

Thus, we have to calculate the second derivative of the momentum transferrred from
other gears and the one of the momentum transferred from the air to judge whether
the specific natures of the stationary points are a maximal extremum or a minimal

extremum or not able to be determined by the second derivatives.

_—m 2m
Since {v. =———%v v =——>=—v _ we can figure out what values are
g m _+m - qir gear mg+mai g

air g T

supposed to be put to m.m, and v by calculating the gradient and then the
stationary point of the gradient to maximize the working efficacy.

The paper is to start with figuring out the most efficient deployment by the definite
integrals and scaling the inequalities, and figure out the values that are put so that they
maximize the working efficacy by the gradients, Lagrange Multiplier Method,

functionalization and vectorization.

2. Principle

According to Newton’s third law of motion, if two bodies exert forces on each other,

these forces have the same magnitude but opposite directions.[7] Therefore, when the



teeth of a gear strike the air which exerts a force on the air, the air also strikes the
teeth, which exerts a force on them and gives momentum to the gear because
according to Newton’s second law of motion, the net force on a body is equal to the
body's acceleration multiplied by its mass or, equivalently, the rate at which the body's

momentum changes with time,[8] therefore, the air gives momentum to the gear, and

m . —m
the momentum given by the air is equal to m, (ﬁvair), which is changed from
air g

m —m
1 2

m +m
1+2

the formula Py = ml( vu)’ so that the speed achieved from the air is equal to

m —m
air g

_—7V ..
m  +m air
air g

And since the momentum of one gear achieved from another is equal to

2m m

A ichi — 1

mg( o vg), which is changed from the formula Py mz( ey vli), so that the
. . . Zm .
speed achieved from the air is equal to v = ——<—v , after the ‘starting’ gear
gear mg+mair g
. 2m m -—m .
starts to move, the total speed of the other gears is f—py - v, since the
mg+mair g mair+mg air

direction of the force a gear gives to the air is opposite to the one of the force the air
gives to a gear as per Newton’s third law of motion, so that the total momentum of a
gear is equal to the momentum transferred from other gears minus the momentum

transferred from the air.

3. Deployment

Suppose the width of space is m and the height
is n, the radii of the gears are r, and the lengths
of the teeth of them are x and the widths are v,
so that since the area of a gear can be
approximately equated to the sum of the area of
a circle and the total area of an even number of

rectangles, the area of one gear is nearly equal

2
tomr + kxy, %EZ-I-.
Fig 1

The most efficient deployment is non-existent




for only one gear, because no matter how you deploy it in a machine, it can’t ignite
the operation of the machine, and it’s the same with 2 gears, so, let’s start with 3

gears.

There are only two feasible deployments that can ignite the operation Wy

As can be seen, one of the only feasible deployments is just to deplo

in a line, as demonstrated by the figure 1

The other deployment that all of the gears are deployed in such a
way that if we connect the centers of every two gears, there will be a triangle whose

vertexes are the centers of the gears, as demonstrated by the figure 2.

For 4 gears, there are three feasible

deployments.

One of the deployments is that three of the
gears are deployed in a line, and the rest one is

placed on the vertical line that crosses the

center of the gear in the top left corner, as
demonstrated by the figure 3.

The second deployment is that three of the

gears are deployed in a line, and the rest one is
placed on the vertical line that crosses the center

of the gear in the top middle, as demonstrated

by the figure 4.

The second deployment is that three of the gears
are deployed in a line, and the rest one is placed
on the vertical line that crosses the center of the

gear in the top middle, as demonstrated by the

figure 4.

The rest deployment is that three of the gears

are deployed in a line, and the rest one is placed on the vertical

Fig 4

line that crosses the center of the gear in the top

right corner, as demonstrated by the figure 5.

For 5 gears, there are four feasible deployments.



One of the deployments is that three of the gears are deployed on a line, and g

two gears are deployed engaging each other on another line, one of wk

engages the gear in the top left corner, as demonstrated by the figure 8

The second deployment is that Fig 5 three of the gears ;
on a line, and the rest two gears are deployed on another

line not engaging each other, as demonstrated by the figure 7.

The third deployment is that four of the gears
are deployed on two lines not juxtaposedly, and
the rest one is deployed on the middle line that
is between these two lines, as demonstrated by

the figure 8.

The rest deployment is that three of the gears
are deployed on a line, and the rest two gears

are deployed engaging each other on another

line, one of which also engages the gear in the

Fig 6

top right corner, as demonstrated by the figure 9.



4. Calculation

. —m 2m
Seeing from the formula {v =——%v v = ——%%—v | it does not take any
g m . +mg air gear mg+mai g

alr T

genius to figure out that we must obtain the rotational speed and the mass of the gear
and the air to be able to apply this formula, while all of them are certain, and let’s just
name them as v ,m , and m _ respectively.
g g atkr
Furthermore, m  =p V =1225V ,andV _ isequal to the total surface area of
atr alr air atr air
the surface area of all of the teeth of a gear that are exposed to the air times the

thickness of them, let’s name, t, which varies by deployment, thus, Vair = kxyt, %EZ i
,s0,m = 1.225kxyt, %EZ " Let’s stand for 1.225xyt by a to make the right-hand as
. k o+
concise as we can, so, m _ =ka,—-€Z .
alr

Let’s start with calculating the total momentum of the ‘igniting’ gear for the

deployment demonstrated by the figure 1:

If we number the three gears as 1, 2, and 3 respectively, then the gear 3 is just the

‘igniting gear’.

m . —m 2m
{U =" d9 v — g
9 mair+mg air - gear mg+mair g
' m _ —m
air 9,
v, v m  +m
gl g air h air
ng ' ng mmr_mgl
v o= = v - v )
g m+m . g m +m . g m _+m = air
2 g air g air air 9,
m_ —-m m_ —m m_ —m
! air g, 2mg P air 9, air 9,
v =v - = v - v )- v
g g m  +m air m +m . g m +m air m . +m air
2 2 air 9, air 1 air 9, air 9,
ng mg Tnair_rngl malr_mgz
Vo= [ (O ) — v ]
g m +m m +m g m  +m air m  +m air
3 g ai g air 1 air | air g,
! 2m qu rnair_‘rng1 rnalr_‘rng2 malr_m93
v.o= [ (O ) — ]
g m +m m +m . g m  +m air m +m air m  +m air
3 g at g air 1 air 1 air 2 air 3
2
, 4mg ma,r—mg ng mair—mg malr—mg
L
1 1 1 1 1
-V = v - 1% - (% - v
g (m +m )32 ( g m _ +m air) m+m . m _+m agir m_ _+m - qir
9, air 1 air 9, 9, air air 9, air 9,
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4m m _ —m 2m )
_ 9, air 9, 9, air 9, air 9,
po=m [——=w - v )- v - v ]
g g - (m +m ) g m _+m air m +m _m _+m air m__+m air
3 1 9, air 1 air 9, 9, air air 9, air 9,

Because the total surface area of the teeth of all of the gears striken by the air is

approximately half more than the total surface area,

4m ° K m
. . g 2 g
Therefore, the ‘efficacy’ of this deployment ism [————@Wv - ——v )-
9, (m +5)* © g, - +tm - air
9, 2 2 9,
2 ka
k()(—mg1 ?—mgl "
k 2 17alr ka vair 7 €
o — .
3 t+m) 2 -l-mg1

For the deployment demonstrated by the figure 2:

If we number the three gears as 1, 2, and 3 respectively, then the gear 3 is just the

‘igniting gear’.

m,~m, ng
Wy = 7 Yair Vgear = Tam
g mair mg air - gear mg mair 9
2k
, m . —m S a—m
. air 9, 9, k +
.V =V - ——v  =v -———v ,—€Z (because the total surface area
94 9, mair+mg ar 9, Ta'l'mg air’ 2
! 1

of the teeth of the gear striken by the air is approximately two-thirds more than the

total surface area)

' 2a—m
_ ng _ ng 3 g, L Z+
vg T m +m g, m+m (vg T 2k oum vair)’ 2 €
2 air g air 1 3 9,
m -m 2 q—m K a—m
.. B s WA L R S
g g m,tm_ —air +2q g Zot+m air Hotm air’ 2
2 2 air g, T3 1 3 9, 5 9,

(because the total surface area of the teeth of the gear striken by the air is

approximately four-fifths more than the total surface area)

2k 4k

2m 2m 2m To‘_mgl Ta—mgz k +
v = v = T (v -x vV o)-h v -],TGZ
g3 mg+mair m "T(X m +?a gl T(x+m air Ta+m air
g, g g g, g,
' _ Wlalr_‘n’lgq _ 2m mair_mg; _ qu qu p
v v T m +m air 2k v T m +m l]alr_ 2k [ T
9, 9, air ' g, mg+ 3 A g ar” g, g+ﬂ3 +3 9,
2



2k 4k 2k
T(X mgl Ta mgz Ta mg3 k +
) - v ]-———v , 5€Z (because the total surface area of

v . % .
—a+m atr ?oH—m atkr —a+m atr
g

3 gl gZ 3 3

the teeth of the gear striken by the air is approximately two-thirds more than the total

surface area)

' ng ng Ta—mg ?(X—mg
= v = . L /‘U : - : v -
p93 9, 9, 91{ m +23—"a[ +2%4 g, ZTkoH-mg alr) Aatm air)
1 1 1 2
2k m
3 g +
- v}, —€Z
T(x+m air
3
2mg ng
Therefore, the ‘efficacy’ of this deployment is m { — —(v -
91 m +—oa m +--« gl
g9, 3 g9, 3
2k m Ak —m 2k —m
3 q, 5 9, 3 9, k +
2k v ) 4k ] 2k },—EZ
——a+m air —a+m air “Za+m air’’ 2
3 9, 5 9, 3 9,

For the deployment demonstrated by the figure 3:

Because there is also only one gear engaging the ‘igniting gear’ and the total surface
area of it striken by the air is also half more than the total surface area of it, being the

same as the ‘efficacy’ of the deployment demonstrated by the figure 1, the one of this

2 ko 2 ka
4mg 2 m, k(x—mg 2 m,
deploymentisalsom [———wW —- —/——v )- —p - :
kay2 LLS air K 2 Tair ko air
9, (m91+ >) 9, 2 -Hrlg1 (Ta+mgl) 2 +7nqu

], %EZJF.

For the deployment demonstrated by the figure 4:

Because there is also only one gear engaging the ‘igniting gear’ and the total surface
area of it striken by the air is also half more than the total surface area of it, being the

same as the ‘efficacy’ of the deployment demonstrated by the figure 1, the one of this

2 ka 2 ka
4m ——m ka—m ——m
deployment is also m [——— v - — %y - Sy - v

ka2 ka : 2 . ko ,
gl (mg + 2 ) gl S +mg air (kza +m ) air - +mg air
1 1 g 1

9,

1

], %EZJF.



For the deployment demonstrated by the figure 5:

Let’s number the three gears in the upper line as 1, 2, and 3 respectively.

. { mair_m Zm
v o= v v =—%y
g mair+mg air  gear mg+mair g
' m . —m
air 9,

v =v - v

gl gl "nair-l-rng1 atr

' ka
2m 2m 2 _m91 k +

v o= f—py = —( - =——v ), S €Z (because the total surface

9 MM Mmoo 91 tm o ar

9, A

area of the teeth of the gear striken by the air is approximately half more than the total

surface area)

m —m ka_ ka m
! air g, zmq p 2 9, 2 g, k +
[ e —(v - — v o) - v, €Z (because
9, 9, g, M mAT gy Tytm, @ Skm, A

the total surface area of the teeth of the gear striken by the air is approximately half

more than the total surface area)

' ka ka
4 ——2
. 2mg myl 2 mgl 2 mgz k +
v Em—=v = ——(V - oV ) -~V _,—€Z (because the
g ; m +-—" g - tm_ o ar - tm oar
3 g air gz 9, 2a 1 2 9, 2 9,

total surface area of the teeth of the gear striken by the air is approximately 0)

4m K m K _om
- - % L =% et
p =m v =m [ +L(v " Ty vo)- Ty v 1,5 €
93 93 9, 9, mgl 2w 9 2 mgl 2 mgz
ka
¢ ) . . 4-mg1 7—mg1
Therefore, the ‘efficacy’ of this deployment is m [——(v - ——v ) -
9, mg +5 9 T+mg air
ka
s ] kgt
ﬂ+ air > 2 :
2 9,

For the deployment demonstrated by the figure 6:

Let’s number all of the gears in the upper line as 1, 2, and 3 respectively.

mair—mg ng
fv =—77v v =—v
g mair+mg air - gear mg+mair g



2m

v =——=—pv = 2v (because the total surface area of the teeth of the gear
gZ mg+mair 'gl 'gl

striken by the air is approximately 0)

m 2m
. g k +
V= L—py = —v , —€Z (because the total surface area of the teeth of
95 MgtMa 9, mot+5 9% 2
3

the gear striken by the air is approximately half more than the total surface area of it)

ka

. mm—mg3 2mng 2 ., +
v =v m +m = ka ka _EZ
9, 9 wr g, WP m kT Gy SAmy Al
ka
2m - =
! g, 2 g, k +
=m = v ), €
pgs 93 9, 91( m, +% 9, % m alr)’ 2
2mg kTa_mg k +
Therefore, the ‘efficacy’ of the deployment is m ( —y -V ), €Z
9y m o+ g, m a2
1 1

For the deployment demonstrated by the figure 7:

Let’s number all of the gears in the upper line as 1, 2, and 3 respectively.

m_ —m 2m
* {v — Mv v — —gv
g mair+mg air gear mg+mair g
2m ng
v o= f—py = —1 (because the total surface area of the teeth of the
9, MMy 9, m o +5- 9

2

gear striken by the air is approximately half more than the total surface area)

ka
' 2m m —-m 2m = —m

. g i g 2 g k +
V= —y -—tp = =V - Tm V€L
9, mgty 9y Mty air o m 45 g S4moair
2 2 2
ka
, 2m —_— 4m koa—m
_ ng _ 9, 2 9, _ 9y 9, k +
. vg = vg = 2( =V, T vair)— +Lavg "I v TEZ
3 g ar 92 Mg T2 1 2Ty My 1 Ty

2 1

(because the total surface area of the teeth of the gear striken by the air is

approximately 0)




4m ka—m
. . ) 9 k +
Therefore, the ‘efficacy’ of this deployment is m_( —V -———v ), —€Z .
9, m +5 g —tm a2

For the deployment demonstrated by the figure 8:

Let’s number all of the gears in the upper line as 1 and 2 respectively, the gear in the
middle line between the upper line and the lower line as 3, and all of the gears in the

lower line as 4 and 5 respectively.

m_ -—m 2m
. — air Y
fv = ) = v
g mair+mg air  gear mg+mair g
ka
, m _—m —
. air g, 3 9, k +
V=V - v =V - v, —€Z (because the total surface area
9, 9, m, . +tm air 9, “4m air

of the teeth of the gear striken by the air is approximately one-third more than the
total surface area)

2m , 2m %—m

Tvo= f—py = % (v d
* Ska - ka

g3 mg+mair 91 m + 6 91 ?+m

+
- vair), %EZ (because the total surface

9,

area of the teeth of the gear striken by the air is approximately five-sixths more than

the total surface area)

ka Ska
, m _ —-m 2m - —m —
_ air g, _ 9, 3 9, 6 g, k +
S v = sk WV © Tk ) - €l
g g m +m air m 42 S m air LY air’ 2
3 3 air g, 9, 6 1 3 9, 6 \
ka Ska
, 2m 2m - —m -
— qu — 9y 93 Ve 3 9, 6 95 k +
v = v = k [ Ska \ " Tk v o) - Ska v |, €Z
g m+m g m4+— m +— " g —tm air = +m air’ 2
2 g air 93 g, 3a 9, 6 1 3 9, 6 9,

(because the total surface area of the teeth of the gear striken by the air is

approximately one-third more than the total surface area)

, m . —-m 2m 2m %—m 51;“—
v o= %, = % r % (v — ) —v ]
" m +m ; ka L Ska \ T ka ) T Ska o
g, g, artMg, @it m 5T 45 g, s tm, o ar o tm, air
ka
3 g k +
—vV ,—€/
2 m air’ 2
3 9,
ka Ska ka
_ 2m2 - ngq P T_mg1 6 g, 3 g, Z+
p =m sk VT T ) Ska v ]' K v },—E



. . g g 3 9
Therefore, the ‘efficacy’ of this deploymentis m { — — vV - ——v
g, m +— + 9 3 T air
1 gl gl
Ska -m kl—m
6 g 3 g k +
) - T v |-% v}, 5€Z .
+m  air Lam air’’ 2
6 g, 3 Ty

For the deployment demonstrated by the figure 9:

Let’s number all of the gears in the upper line as 1,2 and 3 respectively, and all of the

gears in the lower line as 4 and 5 respectively.

mair—mg 2mg
. {17 = _+17 % = n
g mair mg air - gear mg mair g
e
. ' mair_m 2 - 9, k +
LV =V — vV =v = v, —€Z (because the total surface
9, 9, m,tm = air g, Mom air 2

area of the teeth of the gear striken by the air is approximately half more than the total
surface area)
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2m 2 My kKt
v =——y =2(v — ——v ), €Z (because the total surface area of
g, mgm, ig 9 S-+m air

1 2 9,
the teeth of the gear striken by the air is approximately 0)
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1 2 9,
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surface area of the teeth of the gear striken by the air is approximately 0)
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1
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5. Discussion
To elicit the vital conclusion, we have to showcase the ‘efficacies’ of all of the
deployments:
Deployment Efficacy
1 4mg 2 %—mg ka—mg 2
g [ (m +11¢7a (vg - ﬂ+m 1 air i} ka 1 2 vair B
1 9, 2 1 2 9, (T+mg)
1
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—eZ
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m { 9, 9, (v 3 9, v ) 5 9,
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1
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2k —m
3 9, +
v —€eZ
Zatm air} ’
1
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1 Lez?
ke Tair? 2
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1 g, 2 1 2 9, (T+mgl)
LI
2 9, +
— v |,—€Z
“Lim air
2 9,
Lk ko
5 4mqu ) mg1 ) 2mqu . +
m [ ka (U ka -)_ ka ¥ ]7_€Z
g.tm +Fe g ke air e m air’’ 2
1 g2 1 2 9, 2 9,
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m ( — — v ), —€Z
9, m +5- 9, Stm ar
‘gl ‘ql
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8 2m, 2m, I‘T‘x—mg 51;(1_ ;
1 r 1 y 1 1
m - v . )- v |-
gl{m _I_kTaLm +5§a \ g, kTa+m a”,) Slga m air
‘gl gl gl gl
ka —-m
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ST Nral 4
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1
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The deployments 1 and 2 are for 3 gears; The deployments 3 and 4 are for 4 gears;
The deployments 5, 6, 7, 8 and 9 are for 5 gears.

Now we are to find out the most efficient deployments for 3-5 gears:

For 3 gears:
4-mg 2 Zku -m, f—mg ? zka -m, ng
1 — 1 1 1 1
g [ +Ky2 (vg LI Uair) Tk 2 Uair ) LI Uair] ) mg { 12k,
RS 1 2T (e tm,) 2y, A
2k 4k 2k
2m —a—m —a—m —a—m
9, 3 9, 5 9, 3 9, _
[ 2k (17 2k v ) 4k v 2k v -
+—a 9, +m air —a+m air —at+m atr
g, 3 3 9, 5 g, 3 9,
am * L. K ? k_ 2m
g, 2a g, « g, 2a 9, 9,
g { +Ky2 ( g kg V! ~ k LT L Vair ~ +- 2k [
1 (m 20() 1 2a mg (§+mg1) 2a mgl . 3 a
2k 4k 2k
2m S a-m — a-m S a-m
9, Ve 9, 9, 9,
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.. For 3 gears, the deployment 2 is the more efficient deployment.
For 4 gears:
2 k k 2 k
4m Se—m m ——m
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g [ (m +5)? (Ug B R vair) ) k z vair T km vair] ) mg[
1 9, 2a 1 2 Ty E+mgl) a g, 1
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9, 2a 1 2a 9, Z+mg1) 2a g

.. For 4 gears, the working efficacies of the deployments 3 and 4 are equal.




For 5 gears, obviously, we can’t know the most efficient deployment, since whether

mg is larger or smaller than 1 is unknown, as well as whether ka, as well as % and
1

%, is larger or smaller than m, by subtraction or ratio, but it will be by definite
1

b b
integral, since if [ f(x)dx > [ g(x)dx, then f(x) > g(x)[9].

But don’t straightforward get down to calculating the definite integrals without
thinking of what values are put to a and b beforehand so that the calculations will be
way simpler than the ones if we put some values to them that will make mischief, and
by taking a glance at the expressions, it does not take any genius to figure out we

should put 0 and 1 to a and b respectively to simplify the calculations.

- - v . ) — —v |dm dv dv _(we don’t need to
T+mg air T—Hng air 91 91 air
1 1

integrate m, into the integrands for any of the expressions of the working
1

efficacies of the deployments 5, 6, 7 and 8 because all of them contain the factor *
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the order of the variables that are to be integrated to simplify the calculations, as can

be seen afterwards)
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As can be seen, except that the working efficacy of the deployment 7 is definitely
higher than the one of the deployment 6, it’s actually tentative whether the working
efficacy of the deployment 5 is higher than the one of the deployment 8 or not,



depending on the value of ka, and the value of ka that makes the working efficacy of
the deployment 5 higher than the one of the deployment 8 and the value of ka that
makes the working efficacy of the deployment 5 not higher than the one of the

deployment 8 are supposed to be attained by solving inequalities.

Since we can’t attain the result of the comparison between the working efficacy of the

deployment 5 and the one of the deployment 8 by whether the ratio of them, namely

11, ka+2 2ka
( 4 ka)in( ka )+ 1+ka

3—10k: 645k 28ka—9 3+k
(3—2k0()( 3 Lin Skaa + ;1 In kaa)

is larger than 1 or else, it necessitates it to solicit

the result of the comparison from Inequality Scaling.

ka+2 6+5ka 3+ka .
And  because p— T nd o are all bigger than 1,
(kDI i . : (kDT i
3—-10ka 6+5ka 28ka—9 3+ka 18 deﬁnltely Smaller than 3—10ka 28ka—9 \
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11 2ka
(—4 kO+ e

and if — -
(3=2ka)(® 130ku + zsk: EN

is smaller than 1, then of course so will be

2ka

o zgi:f‘;l ——, Whereby we don’t need to integrate the logarithms

(3—2ka)( 3 In Shal + 9 e )

(—ke)in(FE2y 4

into the fraction.

11 2ka 1 2
e - s 2 g which solicits Inequality Scaling
G2+ T @2k (Y
again.

V= 2ka + 3 > — 2ka

11 2 11 2 11 2
kol (— )+ 15,1 k(=) + ] )
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Unfortunately we find out it is larger than 1, so it turns out that we can’t prove
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When ka >

2m 2m
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ka [
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Therefore, when ka > %, the working efficacy of the deployment 5 is lower than

the one of the deployment 8; when 0 < ka <
deployment 5 is higher than the one of the deployment 8.
And it’s better to straightforward compare the working efficacy of the deployment 8

with the one of the deployment 7 by subtraction than doing so however with having

beforehand and cumbersomely compared the working efficacy of one deployment

6
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U .
K air

—+m air

3 9,
ki
- m2m
‘gl
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L air
2
1
ko
3 g
1
U .
ke air
3 g
1

the working efficacy of the

except the deployment 8 with the one of another except the deployment 7.

When ka = %,
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<(3 — 2ka )(3 10ka + 28ka—9 _1)

_(3 — 2ka )(3 10ka + 28ka—9 1)
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“{3—-2ka<0 —9—2ka< — 12
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Therefore the working efficacy of the deployment 8 is higher than the one of the
deployment 7, so we are supposed to compare the one of the deployment 8 with the

one of the deployment 9.

But if we know which one is higher still by definite integral of three variables, the
definite integral of three variables of the working efficacy of the deployment 9 will be
easy to attain, but the one of the working efficacy of the deployment 8 will be
extremely hard to attain, so, so as to simplify the calculations, we can firstly attain the

definite integrals of only v, and v of the working efficacies so that the difficulty of

1
the integration of the working efficacy of the deployment 9 is lowered extremely a lot

since m, is constantized when integrating the working efficacy, then see what ranges
1

of value m, lies within so that one of the working efficacies is higher than or lower
1

than or equal to the other, and finally see whether m can lie within the ranges of
1

value. If m can’t lie within certain ranges of value, then it means one of the working
1

efficacies is always higher than or lower than or equal to the other.
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". It’s tentative whether the working efficacy of the deployment 8 is higher than the
one of the deployment 9 or not. We need to discuss the results of the comparison
betwen the working efficacy of the deployment 8 and the one of the deployment 9 by

the category of what ranges of value m, lies within. However it’s impossible to attain
1

ng 8m 2—16mg3 5mg 1 1

the solution sets of the ineqaulity ———— (- 61mg = am =~ nglJr ) -

1 1 1
b0 g ; 2m, ) 2m, 12mg12 16m +32m : 0<0
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2mg gm ‘—16m ° Smg 1 1

by attaining the roots of the equation —— = (— 6lmg = am, e Trng1+ e
1 1 1



2m 2m 12m °

) - 10 + 3;}?” = 0 and the ones of the equation ———(5- il yo 115
gl gl gl gl
16m “+32m °
s ) = 0, which are impossible to attain after all. We have to let these two

1

equations be functions and by the properties of these two fuctions, we can attain the

solution sets.
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If we let 57— ( 6m +3 am +5 2y ) - 10+ 55 —be f(mg)as
9, L 9, 1 g, 1
a function, then we can figure out that f(mg) increases after mg ~ 2.25045 and
1 1

(2.25045) = 0, so when m, > about 2.25045, the working efficacy of the deployment

1

8 is higher than the one of the deployment 9.

By the same method, we can also figure out when about 2.25045 > m > 0, the

‘gl
working efficacy of the deployment 9 is higher than the one of the deployment 8, and

when m is equal to about 2.25045, they are the same.
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Therefore, when 0 < ka < %, the working efficacy of the deployment 7 is higher

than the one of the deployment 8, thus we should compare the working efficacy of the

deployment 7 with the one of the deployment 9.
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. let ™ 4m:1 - 10 be f(m ) when m > + 3‘2}.@, f(mgl) increases, and
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31+4mg1 - 10>0. Therefore, when m91> - T £20 , the working efficacy of

1
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the deployment 7 is higher than the one of the deployment 9; let -
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9, s . .
mg ) decreases, and whenm <0, - > >0, but mg can’t be negative, so there is no

1 gl 1

range of values within which m lies so that the working efficacy of the deployment
1

9 is higher than the one of the deployment 7. When m = zio + %, the working
1

efficacy of the deployment 7 is equal to the one of the deployment 9.
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Therefore, the working efficacy of the deployment 5 is higher than the one of the

deployment 9.
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." When m, < —, g”(m ) > 0; when m > 1—0, g”(m ) <0
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.. 3, 409 _ ka
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And " g(55 + g larger than —5- + g
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Therefore, the working efficacy of the deployment 7 is higher than the one of the
deployment 5.

To recap, the working efficacy of the deployment 7 is definitely higher than the one of

the deployment 6. When ka >

—, the working efficacy of the deployment 7 is



higher than the one of the deployment 5, and the one of the deployment 8 is higher
than the one of the deployment 7, and when m > about 2.25045, the working

1
efficacy of the deployment 8 is higher than the one of the deployment 9, and when
about 2.25045 > m, > 0, the working efficacy of the deployment 9 is higher than

1

the one of the deployment 8, and when m is equal to about 2.25045, they are the

1

same; when 0 < ka < %, the working efficacy of the deployment 5 is higher than the

one of the deployment 8, and when m, >2—30 + 3@, the working efficacy of the
1

deployment 7 is higher than the one of the deployment 9, the working efficacy of the

deployment 5 is higher than the one of the deployment 9 and the working efficacy of
the deployment 7 is higher than the one of the deployment 5. And when m, <0, -

1

5m

Tgl>0, but m, can’t be negative, so there is no range of values within which m
1 1

lies so that the working efficacy of the deployment 7 is higher than the one of the

409

>0 the working efficacy of the deployment 7 is

deployment 9. When m = 2—30 +

equal to the one of the deployment 9, and both the working efficacy of the
deployment 7 and the one of the deployment 9 are higher than the one of the
deployment 5.

6. Gradient

Since the total momentum of a gear achieves is quantitatively positively related to
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e (G e Uair) and quantitatively negatively related to —"’-m T Uy SUPpOSE f(
g alr atr g atr g
ng Mo ™y d m_—m
m.,m ,v )= v Yandgim ,m ,v )= .
g air’ air) m +m (m _+m air) &( g’ air’ air) m _+m  air
g air air g air g

Obviously we have to make f(m ,m ,v )as large as possible,andgim ,m ,v .
g alr alr g alr air

) as small as possible.

uf = My L Ofy 4 0f7
'Vf_axx+6yy+azz



(mg+mair)2_2(ma[r_mg)(m +mair) m (mair_m )
Co2muv | g ]=02—+— ¢ —
(mg+mair)

m _(m _ +m)-2m m+m -m
air air g air g g alr]

i 3 . 4
air (mg-i—mair) g air (mg+mair)

{2v

2
fm (m 4+m)—-2m m +m —-m_ =0(m +m ) —2(m_ —-—m)(m +m _)=0m
air air g air g g air g air air g g air a

g m,=m= 0 which is impossible.

We have known that this function does not have any stationary point. Although we
can’t obtain the stationary points of this function by gradient, Lagrange Multiplier

Method can be derived and it is applicable for obtaining the extrema.[10]
However, without any constraint condition, it can’t be applied.
To derive a constraint condition, we have to apply Conservation of momentum:

Firstly we have to isolate the ‘starting gear’ of a machine and the air ‘touching’ it into
a physical system, and we can’t isolate any of the other gears of it and the air

‘touching’ them into a physical system, because we don’t know the total momentum

2m m  —m

of the other gears, not to mention that v _ in the expression e (————%v )is
air mg+mair muir+mg atr

equal to the speed of the air ‘touching’ the ‘starting gear’ and m . is the mass of the

air ‘touching’ it, so that if you derive the constraint condition by isolating the other
gear of a machine and the air ‘touching’ it into a physical system, you need to find out
the quantitative relationship between the flow velocity of the air ‘touching’ the gear

and the one of the air ‘touching’ the ‘starting gear’, which is impossible.

Secondly, by applying Conservation of momentum, we get:

Pyt Py = p1f+p2f



Thereforem v =m (v +v) +muv
alr at atkr atr g g

g

r

Soletg(m ,m )=-(m v +m v ) be the constraint condition.
g air air g g g

Next, as per Lagrange Multiplier Method, we have to suppose a Lagrange function: F(

mg’ mair’ Uair) - f(mg’ mair’ vair) T A (mg’ mair)'

Finally, we have to solve an equation group:

{F'x :f'x(x,y, z) + )\(p'x(x,y) = OF'y :f'y(x,y, z) + )\(p'y(x,y) = 0F'Z :f'z(x’y’ 7) =

{f'mg(mg' mair' vair) + }\(p'mg(mg' mair) - Of'

2
m _(m +m)—2m m +m —m (mg+mair) _Z(mair_mg)(m tm,)
air air g air g

2v L] — A =02muv £ — A = 0;
{ air (mg"'mair)3 ] g g air[ (m +m ) | 9 ‘
g air
2
mair(mair+mq)—Zmairmq+mq—mair (mg+mair) _Z(mair_mg)(mq+mair)
{2v | 3 | — Av = 02mv | m ] — Av = 01
air (mg+mair) g g air (m +m ) g
g air
“m._ =m

air g
Therefore, the minimal value of f{(m , m , v ) is 0, while there is no maximal
9 alr atlr

value.
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m . m .
. _ air _ g — air g —
- 2vair)[ (mg—i—mair)z] =0 Zvair[ (m +m ')2] =0 m,tm =0
g air
S.m _=m =0 which is impossible
air g

We have known that this function does not have any stationary point. However we can

also apply Lagrange Multiplier Method for obtaining the extrema:

Suppose F(mg, m . vair) = f(mg, m. vair) + A (mg, mair)

Then we have to solve an equation group:

{F'x :f'x(x'y' Z) + }\(P'x(x;Y) = OF'y :f'y(x:y; Z) + }\(P'y(x,y) = OF'Z :f'Z(x,y, Z) =

{gn%ﬁnjvnmﬂ1gw) + K@nzﬁnj7nmg ::()gn%fnz,nzﬁ,vmg + A@n%fnb’"%w) =0g
mair mg mair—mg
{(— Zvair)[w] — Avg = OZvair[—(m +m‘)2] — Avg = O—mair o 0 - (mairvg + m,
g air
fv =0m_=m
g air g

Therefore, the minimal value of g(mg, m . vair) is 0, while there is no maximal

value.

But here comes the contradiction that, if we put m . to m_ orm tom to

minimalize gfm , m , v ), then f(m , m , v ) = 0, which makes the working
g atr atkr g air alr

efficacy of a machine 0, so we have to figure out one way to maximize f(mg, m ..

vair) and meanwhile minimalize g(mg, m., vair), which can’t be realized by finding

roair

out the maximal value of f(m , m , v ) and the minimal value of glm ,m ,v )
g air’  air g ai

to maximalize the working efficacy.

7. Function

As said before, the working efficacy is positively quantitatively related to f(mg, m..



vair) and negatively quantitatively related to g(mg, m .. vair), eliciting the idea that,

suppose the working efficacy as w(f(mg, m.. vair), g(mg, m .. vair)).

Here comes another problem: Should be the quantitative relationship curvilinear or

linear?
We have to establish an expression that is definitely positively related to f(mg, m..

vair) and negatively related to g(mg, m .. vair) as the one of w(f(mg, m.. vair), g(

mg’ mair’ vair))'

If in the expression the relationship between f{(m ,m ,v )andgim ,m ,v )is
g alr awr g alr alr

curvilinear, then w(flm ,m ,v ),g(m ,m _, v _))will not be as desired.
g alr alr g awr awr

Thus it does not take any genius to figure out that the relationship should be linear.
So it’s lawful to make the expression of w(f(mg, m . vair), g(mg, m . vair)) as jf(

m,m.. vair) + kg(mg, m .. vair), where j is positive and k is negative.
And we are to apply gradient for this function to obtain the extrema.

Y = Ly gLy O

S Vf o= ax + ay + 0z z

—

ow ow ow
o = X y z
Vf aom + om + v
g air air
w ow Y ow 0
= X y zZ = 0
When Vf 5 + pe +
g air air
dw dw aw
{6m 0 om 0 av =0
g alr alr

m _(m _ +m)-2m m +m —
alr atlr g

2
(mg+mair) —Z(ma[r—mg)(m +

g

{2jv [ o m,, ) ] + (- Zkvair)[—(mg Tm 7] =0 ijgvair[

air

Because j and k are not 0, M, =m;

We can get {vair =0m _ =m .

4
(mg+mair)



So this function has infinite stationary points(as long as m,=m, and v = 0, this
point is a stationary point).

So after having tried all of the methods, sadly we only find out that the working
efficacy of a machine does not have a maximal value while the minimum value of it is

0, which can be projected correctly intuitively.

But can we learn anything from the whole rigmarole?

8. Discussion

The figure composed of infinite points whose mg—coordinates are equal to m.

-coordinates is a straight line that comes from the inside of this paper to the

outside of it and intersects both the mg—axis and the mair—axis by -45°, as

demonstrated by the figure 10.

Since 0 is the minimal value of w(flm , m ,v ), gm ,m ,v )
g atr atr g atr atr

when mo=m, and v.o= 0, the larger the distance from a point to Fig 10

the line is, the higher the value of w(f(mg, m. vair), g(mg, m . vair)) 18,

since when a function reaches its stationary points, the values of it are the extrema and

in this case, whenm = m andv . = 0, the value of wf(m ,m v ), g(m ,
g air air g air’ ~ air g

m__, v ))is 0 as the minimal value of it.
alr awr

To calculate the distance, firstly, we need to choose a point A that is not on the line,
say, (m , m__, v ), and then find a point B on the line, say, (m ', m ', 0); Next,
g alr ailr g g

—_—

connect them with a line; Finally, vectorize the line, and let’s name the vector as 4B

and the coordinate of itis(m '-m m'—m , —v ).
g g g air air

Any line has a direction vector,[11] and this line can’t exempt from having one. For

this line, the direction vector is (1,1,0),[12] since the function of line is

mg -m_ = 0, and let’s name it as d.

If AB - d =0, then the ‘norm’ of 4B is just the distance.[13]



“m'-m+m' —m _=0[14]
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So, the larger \/ —— 4 vairz is, the higher the working efficacy of a machine

2

(m,,—m)’
Therefore, we should suppose p(m ,m ,v )= \/ —‘”2 —+ v 2, and when the
g alr aLlr alr

value of it.
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value of this function is maximal, the working efficacy of a machine is maximal.

Firstly we should consider if gradient can be applied for obtaining the maximum

. When m,=m, vairZO, the function reaches the stationary points of it.

We can only know the minimal value of the distance is 0. We still need to know the



maximum value of it, if it is existent, and whether it is existent can be proven by

applying Lagrange Multiplier Method, with the same constraint condition used above.
Suppose F(mg’ M vair) B p(mg’ M vair) A (mg’ mair)
Then we have to solve an equation group:

o =p ey 2 + 29 (xy) = 0F =p %y 2) + A (xy) = 0F =p (y 2) =

mlllT_mq mq_malr atr
{ — v =0 — v =0 =0 -(m v + m
o L 7 g [ 2 g oy g
2 valr 2 +vair 2 +vair
.fm_ =mv_ =0v =0
air g air g

So unfortunately, it has been proven that this function does not have a maximal value.
It seems that we are inable to attain m,m. and v that can generate the highest

working efficacy of a machine, however, if we investigate into the function p(mg,

(m LM )2 2 . . .
m ,v )= “—ZL + v, we can find out that the value of this function is
awr alr alr
m _—m )2 2

T4 ( air
positively related to ————

5 v since +/x 1s an increasing function,[15] and

(m —m)’

2. ..
because ———4— + v is positively relatedtojm _— m |+ v , when we
2 air air g air

compare the working efficacies different values of m ,m , v = can generate, we can
g air T

at
calculate|m . — m |+ v _ and see which result of the valuesof m ,m ,v s
atr g atr g atr atkr
higher, then the values whose result is higher can generate higher working efficacy.
We can exegete that, the higher the difference between m. and m, is, or the higher

v is, the higher working efficacy the values of m,m..,v, can generate is, Viz,

the higher the difference between the mass of the air in a machine and the mass of the
gears of it is, or the higher the flow velocity of the air of it is, the higher the working

efficacy of it is, let’s name, ‘The Zhang’s Law’.

0. Examples



1. Suppose there are two groups of gears whose mass is 10g and 20g
respectively, which are in two machines whose mass of the air is 5g and 10g
respectively and flow velocity of the air is 0.5m/s and 0.8m/s respectively. Which
machine does have the higher working efficacy, if the numbers of the gears are equal

and the deployments are also equal?
By applying ‘The Zhang’s Law’, the result of |mair — mg| tv of the first machine

is equal to |0. 005 — 0.01] + 0.5 = 0.505, and the one of the second machine is equal
t00.01 — 0.02|+0.8=0.81.

So as can be seen, the second machine has the higher working efficacy.

2. Suppose there are 3 gears. Which of the deployment 1 and 2 is the more

efficient one? The deployment 2.

3. Suppose there are 4 gears. Which of the deployment 3 and 4 is the more

efficient one? The working efficacies of the deployment 4 and the one 5 are equal.

4. Suppose there are 5 gears, which have 8 teeth and whose mass is 10g and

volume is 1x10_6m3. Which of the deployment 5, 6, 7, 8 and 9 is the most efficient

one?

The working efficacy of the deployment 7 is definitely higher than the one of the

deployment 6, when 0 < ka < i, the working efficacy of the deployment 5 is higher

ka

1o » the working efficacy of the

than the one of the deployment 8, and when m, >
1

deployment 7 is higher than the one of the deployment 5, and the working efficacy of
the deploymewnt 5 is higher than the one of the deployment 9, therefore, the most
efficient deployment is the deployment 7.

10. Conclusion



To sum up, the higher the difference between m. and m is, or the higher v is, the
higher working efficacy the values of m,m..,v, can generate is, viz, the higher

the difference between the mass of the air in a machine and the mass of the gears of it
is, or the higher the flow velocity of the air of it is, the higher the working efficacy of

it is, let’s name, ‘The Zhang’s Law’.

And for 3 gears, the deployment 2 is the more efficient deployment; For 4 gears, the
working efficacies of the deployments 3 and 4 are equal; For 5 gears, To recap, the

working efficacy of the deployment 7 is definitely higher than the one of the
deployment 6. When ka > %, the working efficacy of the deployment 7 is higher

than the one of the deployment 5, and the one of the deployment 8 is higher than the
one of the deployment 7, and when m, > about 2.25045, the working efficacy of the

1
deployment 8 is higher than the one of the deployment 9, and when
about 2.25045 > m > 0, the working efficacy of the deployment 9 is higher than

9,

the one of the deployment 8, and when m, is equal to about 2.25045, they are the

1

same; when 0 < ka < %, the working efficacy of the deployment 5 is higher than the

+ 409

3
one of the deployment 8, and when m Ty T

1

the working efficacy of the

deployment 7 is higher than the one of the deployment 9, the working efficacy of the
deployment 5 is higher than the one of the deployment 9 and the working efficacy of
the deployment 7 is higher than the one of the deployment 5. And when m <0, -

9,

5m
gl

2

>0, but m, can’t be negative, so there is no range of values within which m,
1 1

lies so that the working efficacy of the deployment 7 is higher than the one of the

deployment 9. When m, = 2—30 + \/? , the working efficacy of the deployment 7 is
1

equal to the one of the deployment 9, and both the working efficacy of the
deployment 7 and the one of the deployment 9 are higher than the one of the
deployment 5.
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