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Abstract. In this paper, for 3-5 gears, the most efficient setting is to be 

demonstrated and proven, including the most efficient deployment of gears, and the 

most efficient speed of the ‘starting gear’ in a machine, which is defined as the gear 

whose movement can cause the ‘igniting gear’ to move, which is defined as the gear 

whose movement causes the machine to operate, so that it causes the machine to 

operate, by applying Conservation of momentum, some geometric principles and 

gradient. The ‘efficacy’ is defined as the total momentum obtained by the gear in a 

machine that ignites the operation of it, contributed by the momentum of the gears 

engaging it and the momentum of the air around it that strikes it, according to 

Newton’s second and third laws of motion, which can be calculated by applying the 

formula that describe the transfer of the momentum of a solid to another and the one 

of the momentum of a fluid to a solid. After calculating the total momentum of the 

‘igniting gear’ that can obtain of every deployment, by the comparison of the total 

momentum of every deployment of 3-5 gears, under what circumstances which 

deployments are the optimal ones of 3-5 gears, if there is any, is known by applying 

the definite integrals and scaling the inequalities. And it is known how to judge which 

group of gears and machine is better in ‘working efficacy’ with the same deployment 

by a law named as ‘The Zhang’s Law’ and found by the gradients, Lagrange 

Multiplier Method, functionalization and vectorization. Some examples that can 

preach how to construct the most efficient setting are also to be given in this paper. 

Keywords: deployment, Conservation of momentum, gear, Newton’s law of 

motion, definite integral, inequality scaling, gradient, Lagrange Multiplier Method, 

functionalization, vectorization.  

 

1.​ Introduction 

Not only do the qualities of the gears in a machine contribute to the working efficacy 

of it, but also the deployment of them does, eliciting the subject of the paper, aka the 

most efficient deployment of n gears. After having the idea of how to deploy the gears 

in a machine in the most efficient way, we can reduce the number of the gear of a 

machine needs. 

As is known to all, there is the conservation of momentum. When the gear, let’s say, 

the ‘starting gear’ in a machine invokes the movements of the other gears after it 



starts to move, the other gears engaging it will obtain the total momentum that is 

contributed by the momentum of the starting gear and the air striking them, according 

to Newton’s second and third laws of motion.[1]  

In collisions’ physics, in particular imperfect elastic collision, the transfer of 

momentum between a solid body to another and between two solid bodies, can be 

described with the formula:[2] 
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With such formula, we can calculate the velocities of two objects after the momentum 

of them is changed because the gear that engages one of them, viz, the engaged gear 

moves. 

It’s obvious that to make the ‘efficacy’ as high as possible, we need to make the total 

momentum transferred to the igniting gear as large as possible. 

To increase it, we are supposed to make the gears engaging the igniting gear as many 

as possible and the volume of the air around it as small as possible since the velocity 

of flow and the tempature of it are constant, given space with a certain width and 

height, by applying some geometric principles, by the most efficient deployment that 

is to be demonstrated in this paper. 

However, not only does the deployment of gears contribute to the working efficacy of 

a machine, but also the speed of the ‘starting gear’ does so as well. 

As is known to all, in vector calculus, the gradient of a scalar-valued differentiable 



function f of several variables is the vector field (or vector-valued function)  whose ∇𝑓

value at a point p gives the direction and the rate of fastest increase.[3] Further, a 

point where the gradient is the zero vector is known as a stationary point. And a 

stationary point of a differentiable function of one variable is a point on the graph of 

the function where the function's derivative is zero.[4][5][6] Informally, it is a point 

where the function "stops" increasing or decreasing (hence the name). Determining 

the position and nature of stationary points aids in curve sketching of differentiable 

functions. Solving the equation f’(x) = 0 returns the x-coordinates of all stationary 

points; the y-coordinates are trivially the function values at those x-coordinates. The 

specific nature of a stationary point at x can in some cases be determined by 

examining the second derivative: 

If f″(x) < 0, the stationary point at x is concave down; a maximal extremum. 

If f″(x) > 0, the stationary point at x is concave up; a minimal extremum. 

If f″(x) = 0, the nature of the stationary point must be determined by way of other 

means, often by noting a sign change around that point. 

Thus, we have to calculate the second derivative of the momentum transferrred from 

other gears and the one of the momentum transferred from the air to judge whether 

the specific natures of the stationary points are a maximal extremum or a minimal 

extremum or not able to be determined by the second derivatives. 
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stationary point of the gradient to maximize the working efficacy.    

The paper is to start with figuring out the most efficient deployment by the definite 

integrals and scaling the inequalities, and figure out the values that are put so that they 

maximize the working efficacy by the gradients, Lagrange Multiplier Method, 

functionalization and vectorization. 

 

2.​ Principle 

According to Newton’s third law of motion, if two bodies exert forces on each other, 

these forces have the same magnitude but opposite directions.[7] Therefore, when the 



teeth of a gear strike the air which exerts a force on the air, the air also strikes the 

teeth, which exerts a force on them and gives momentum to the gear because 

according to Newton’s second law of motion, the net force on a body is equal to the 

body's acceleration multiplied by its mass or, equivalently, the rate at which the body's 

momentum changes with time,[8] therefore, the air gives momentum to the gear, and 
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direction of the force a gear gives to the air is opposite to the one of the force the air 

gives to a gear as per Newton’s third law of motion, so that the total momentum of a 

gear is equal to the momentum transferred from other gears minus the momentum 

transferred from the air. 

 

3.​ Deployment 

Suppose the width of space is m and the height 

is n, the radii of the gears are r, and the lengths 

of the teeth of them are x and the widths are y, 

so that since the area of a gear can be 

approximately equated to the sum of the area of 

a circle and the total area of an even number of 

rectangles, the area of one gear is nearly equal 

to . π𝑟2 + 𝑘𝑥𝑦,  𝑘
2 ϵ𝑍+

The most efficient deployment is non-existent 



for only one gear, because no matter how you deploy it in a machine, it can’t ignite 

the operation of the machine, and it’s the same with 2 gears, so, let’s start with 3 

gears. 

There are only two feasible deployments that can ignite the operation of a machine. 

As can be seen, one of the only feasible deployments is just to deploy all of the gears 

in a line, as demonstrated by the figure 1 

The other deployment that all of the gears are deployed in such a 

way that if we connect the centers of every two gears, there will be a triangle whose 

vertexes are the centers of the gears, as demonstrated by the figure 2.  

For 4 gears, there are three feasible 

deployments. 

One of the deployments is that three of the 

gears are deployed in a line, and the rest one is 

placed on the vertical line that crosses the 

center of the gear in the top left corner, as 

demonstrated by the figure 3. 

The second deployment is that three of the 

gears are deployed in a line, and the rest one is 

placed on the vertical line that crosses the center 

of the gear in the top middle, as demonstrated 

by the figure 4.   

The second deployment is that three of the gears 

are deployed in a line, and the rest one is placed 

on the vertical line that crosses the center of the 

gear in the top middle, as demonstrated by the 

figure 4.   

The rest deployment is that three of the gears 

are deployed in a line, and the rest one is placed on the vertical 

line that crosses the center of the gear in the top 

right corner, as demonstrated by the figure 5.    

For 5 gears, there are four feasible deployments. 



One of the deployments is that three of the gears are deployed on a line, and the rest 

two gears are deployed engaging each other on another line, one of which also 

engages the gear in the top left corner, as demonstrated by the figure 6. 

The second deployment is that three of the gears are deployed 

on a line, and the rest two gears are deployed on another 

line not engaging each other, as demonstrated by the figure 7. 

The third deployment is that four of the gears 

are deployed on two lines not juxtaposedly, and 

the rest one is deployed on the middle line that 

is between these two lines, as demonstrated by 

the figure 8. 

The rest deployment is that three of the gears 

are deployed on a line, and the rest two gears 

are deployed engaging each other on another 

line, one of which also engages the gear in the 

top right corner, as demonstrated by the figure 9. 

 

 

 

 

 

     

 

 

 

 



4.​ Calculation 

Seeing from the formula , it does not take any {𝑣
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genius to figure out that we must obtain the rotational speed and the mass of the gear 

and the air to be able to apply this formula, while all of them are certain, and let’s just 
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concise as we can, so,  = kα, . 𝑚
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Let’s start with calculating the total momentum of the ‘igniting’ gear for the 

deployment demonstrated by the figure 1: 

If we number the three gears as 1, 2, and 3 respectively, then the gear 3 is just the 

‘igniting gear’.  
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For the deployment demonstrated by the figure 2: 

If we number the three gears as 1, 2, and 3 respectively, then the gear 3 is just the 

‘igniting gear’.  

∵   {𝑣
𝑔

=
𝑚

𝑎𝑖𝑟
−𝑚

𝑔

𝑚
𝑎𝑖𝑟

+𝑚
𝑔

𝑣
𝑎𝑖𝑟

 𝑣
𝑔𝑒𝑎𝑟

=
2𝑚

𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣

𝑔
 

∴  =  -  =  - , (because the total surface area 𝑣
𝑔

1

' 𝑣
𝑔

1

 
𝑚

𝑎𝑖𝑟
−𝑚

𝑔
1

𝑚
𝑎𝑖𝑟

+𝑚
𝑔

1

𝑣
𝑎𝑖𝑟

𝑣
𝑔

1

2𝑘
3 α−𝑚

𝑔
1

2𝑘
3 α+𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

𝑘
2 ϵ𝑍+

of the teeth of the gear striken by the air is approximately two-thirds more than the 

total surface area) 

∴  =  = (  - ),  𝑣
𝑔

2

2𝑚
𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣

𝑔
1

' 2𝑚
𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣

𝑔
1

2𝑘
3 α−𝑚

𝑔
1

2𝑘
3 α+𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

𝑘
2 ϵ𝑍+

∴  =  -  = (  - ) - , 𝑣
𝑔

2

' 𝑣
𝑔

2
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𝑎𝑖𝑟

−𝑚
𝑔

2

𝑚
𝑎𝑖𝑟
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𝑎𝑖𝑟

2𝑚
𝑔

𝑚
𝑔
+ 2𝑘

3 α
𝑣

𝑔
1

2𝑘
3 α−𝑚

𝑔
1

2𝑘
3 α+𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

4𝑘
5 α−𝑚

𝑔
2

4𝑘
5 α+𝑚

𝑔
2

𝑣
𝑎𝑖𝑟

𝑘
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(because the total surface area of the teeth of the gear striken by the air is 

approximately four-fifths more than the total surface area) 

∴  =  = [ (  - ) - ],  𝑣
𝑔

3

2𝑚
𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣
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𝑔
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𝑔
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𝑣
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𝑘
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∴  =  -  =   - = [ (  - 𝑣
𝑔

3

' 𝑣
𝑔

3

𝑚
𝑎𝑖𝑟
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𝑚
𝑎𝑖𝑟
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𝑔

𝑚
𝑔
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3 α
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𝑔

𝑚
𝑔
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3 α
𝑣

𝑔
1



) - ] - , (because the total surface area of 
2𝑘
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𝑔
1
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𝑔
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𝑔
3

2𝑘
3 α+𝑚

𝑔
3

𝑣
𝑎𝑖𝑟

𝑘
2 ϵ𝑍+

the teeth of the gear striken by the air is approximately two-thirds more than the total 

surface area) 

∴  =  = [ (  - ) - ] - 𝑝
𝑔

3

𝑚
𝑔

3

𝑣
𝑔

3

' 𝑚
𝑔

1

{
2𝑚

𝑔
1

𝑚
𝑔

1

+ 2𝑘
3 α

2𝑚
𝑔

1

𝑚
𝑔

1

+ 2𝑘
3 α

𝑣
𝑔

1

2𝑘
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1
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2
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}  
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𝑔
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𝑣
𝑎𝑖𝑟

,  𝑘
2 ϵ𝑍+

Therefore, the ‘efficacy’ of this deployment is [ (  - 𝑚
𝑔

1

{
2𝑚

𝑔
1

𝑚
𝑔

1

+ 2𝑘
3 α

2𝑚
𝑔
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1

) - ] - }, . 
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𝑔
1

𝑣
𝑎𝑖𝑟

𝑘
2 ϵ𝑍+

 

For the deployment demonstrated by the figure 3: 

Because there is also only one gear engaging the ‘igniting gear’ and the total surface 

area of it striken by the air is also half more than the total surface area of it, being the 

same as the ‘efficacy’ of the deployment demonstrated by the figure 1, the one of this 

deployment is also [  -  - 𝑚
𝑔

1

4𝑚
𝑔

1

2

(𝑚
𝑔

1

+ 𝑘α
2 )²

(𝑣
𝑔

1

 −   
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For the deployment demonstrated by the figure 4: 

Because there is also only one gear engaging the ‘igniting gear’ and the total surface 

area of it striken by the air is also half more than the total surface area of it, being the 

same as the ‘efficacy’ of the deployment demonstrated by the figure 1, the one of this 

deployment is also [  -  - 𝑚
𝑔

1

4𝑚
𝑔

1

2

(𝑚
𝑔

1

+ 𝑘α
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(𝑣
𝑔

1

 −   
𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚
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𝑔
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], . 𝑘
2 ϵ𝑍+

 



For the deployment demonstrated by the figure 5: 

Let’s number the three gears in the upper line as 1, 2, and 3 respectively. 

∵  {𝑣
𝑔

=
𝑚

𝑎𝑖𝑟
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𝑔

𝑚
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area of the teeth of the gear striken by the air is approximately half more than the total 

surface area) 
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2
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the total surface area of the teeth of the gear striken by the air is approximately half 

more than the total surface area) 

∴  =  = (  - ) - , (because the 𝑣
𝑔

3

2𝑚
𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣

𝑔
2

' 4𝑚
𝑔

1

𝑚
𝑔

1

+ 𝑘
2α

𝑣
𝑔

1

 
𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

𝑘α
2 −2𝑚

𝑔
2

𝑘α
2 +𝑚

𝑔
2

𝑣
𝑎𝑖𝑟

𝑘
2 ϵ𝑍+

total surface area of the teeth of the gear striken by the air is approximately 0) 

∴  =  = (  - ) - ],  𝑝
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Therefore, the ‘efficacy’ of this deployment is (  - ) - 𝑚
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For the deployment demonstrated by the figure 6: 

Let’s number all of the gears in the upper line as 1, 2, and 3 respectively. 

∵  {𝑣
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For the deployment demonstrated by the figure 7: 

Let’s number all of the gears in the upper line as 1, 2, and 3 respectively. 
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𝑎𝑖𝑟

+𝑚
𝑔

𝑣
𝑎𝑖𝑟

 𝑣
𝑔𝑒𝑎𝑟

=
2𝑚

𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣

𝑔
 

∴   =  = (because the total surface area of the teeth of the 𝑣
𝑔

2

 
2𝑚

𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣

𝑔
1

2𝑚
𝑔

2

𝑚
𝑔

2

+ 𝑘α
2

𝑣
𝑔

1

gear striken by the air is approximately half more than the total surface area) 

∴  =  -  =   - ,  𝑣
𝑔

2

' 2𝑚
𝑔

2

𝑚
𝑔

2

+ 𝑘α
2

𝑣
𝑔

1

𝑚
𝑎𝑖𝑟

−𝑚
𝑔

𝑚
𝑎𝑖𝑟

+𝑚
𝑔

𝑣
𝑎𝑖𝑟

2𝑚
𝑔

2

𝑚
𝑔

2

+ 𝑘α
2

𝑣
𝑔

1

𝑘α
2 −𝑚

𝑔
2

𝑘α
2 +𝑚

𝑔
2

𝑣
𝑎𝑖𝑟

𝑘
2 ϵ𝑍+
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(because the total surface area of the teeth of the gear striken by the air is 
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Therefore, the ‘efficacy’ of this deployment is  - . 𝑚
𝑔
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For the deployment demonstrated by the figure 8: 

Let’s number all of the gears in the upper line as 1 and 2 respectively, the gear in the 

middle line between the upper line and the lower line as 3, and all of the gears in the 

lower line as 4 and 5 respectively. 
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area of the teeth of the gear striken by the air is approximately five-sixths more than 

the total surface area) 
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∴  =  = [ (  - ) - ], 𝑣
𝑔
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(because the total surface area of the teeth of the gear striken by the air is 

approximately one-third more than the total surface area) 

∴  =  -  = [ (  - ) - ] - 𝑣
𝑔
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Therefore, the ‘efficacy’ of this deployment is [ (  - 𝑚
𝑔

1

{
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1
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+ 5𝑘α
6

𝑣
𝑔

1

 
𝑘α
3 −𝑚
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For the deployment demonstrated by the figure 9: 

Let’s number all of the gears in the upper line as 1,2 and 3 respectively, and all of the 

gears in the lower line as 4 and 5 respectively. 

∵  {𝑣
𝑔

=
𝑚

𝑎𝑖𝑟
−𝑚

𝑔

𝑚
𝑎𝑖𝑟

+𝑚
𝑔

𝑣
𝑎𝑖𝑟

 𝑣
𝑔𝑒𝑎𝑟

=
2𝑚

𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
𝑣

𝑔
 

∴  = , (because the total surface 𝑣
𝑔

1

' = 𝑣
𝑔

1
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𝑚

𝑎𝑖𝑟
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𝑚
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1
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2 +𝑚

𝑔
1
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𝑎𝑖𝑟

𝑘
2 ϵ𝑍+

area of the teeth of the gear striken by the air is approximately half more than the total 

surface area) 

∴  =  = ( , (because the total surface area of 𝑣
𝑔

2

2𝑚
𝑔

𝑚
𝑔
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2 +𝑚

𝑔
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𝑎𝑖𝑟

) 𝑘
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the teeth of the gear striken by the air is approximately 0) 

∴  =  = 4( , (because the total surface area of 𝑣
𝑔
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𝑔
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𝑣
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𝑔
1

𝑣
𝑎𝑖𝑟

) 𝑘
2 ϵ𝑍+

the teeth of the gear striken by the air is approximately 0) 
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the teeth of the gear striken by the air is approximately 0) 

∴  =  -  = 20( , (because the total 𝑣
𝑔
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𝑔
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+𝑚
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) 𝑘
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surface area of the teeth of the gear striken by the air is approximately 0) 

Therefore, the ‘efficacy’ of the deployment is 20( , . 𝑣
𝑔

1

 −  
𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

) 𝑘
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5.​ Discussion 

To elicit the vital conclusion, we have to showcase the ‘efficacies’ of all of the 

deployments: 

Deployment Efficacy 

1 
[  -  - 𝑚

𝑔
1

4𝑚
𝑔
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(𝑚
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8 
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The deployments 1 and 2 are for 3 gears; The deployments 3 and 4 are for 4 gears; 

The deployments 5, 6, 7, 8 and 9 are for 5 gears. 

Now we are to find out the most efficient deployments for 3-5 gears: 

For 3 gears: 

∵ [  -  - ] - 𝑚
𝑔
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∴ For 3 gears, the deployment 2 is the more efficient deployment. 

 

For 4 gears: 

∵ [  -  - ] - [ 𝑚
𝑔
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∴ For 4 gears, the working efficacies of the deployments 3 and 4 are equal. 

 



For 5 gears, obviously, we can’t know the most efficient deployment, since whether 

 is larger or smaller than 1 is unknown, as well as whether , as well as  and 𝑚
𝑔

1

𝑘α 𝑘α
2

, is larger or smaller than  by subtraction or ratio, but it will be by definite 𝑘α
3 𝑚

𝑔
1

integral, since if , then f(x) ＞ g(x)[9]. 
𝑎

𝑏

∫ 𝑓(𝑥)𝑑𝑥 >
𝑎

𝑏

∫ 𝑔(𝑥)𝑑𝑥

But don’t straightforward get down to calculating the definite integrals without 

thinking of what values are put to a and b beforehand so that the calculations will be 

way simpler than the ones if we put some values to them that will make mischief, and 

by taking a glance at the expressions, it does not take any genius to figure out we 

should put 0 and 1 to a and b respectively to simplify the calculations. 
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integrate  into the integrands for any of the expressions of the working 𝑚
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efficacies of the deployments 5, 6, 7 and 8 because all of them contain the factor ‘
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𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

∭
0
1(

𝑘α
2 −2𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

𝑑𝑚
𝑔

1

𝑣
𝑔

1

 𝑣
𝑎𝑖𝑟

= d d d d  -  ∭
0
1(

4𝑚
𝑔

1

𝑚
𝑔

1

+ 𝑘α
2

𝑣
𝑔

1

)𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

 −  ∭
0
1(

4𝑚
𝑔

1

𝑚
𝑔

1

+ 𝑘α
2

)(
𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

)𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

 ) d d  ∭
0
1(

𝑘α
2 −2𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= 2 - ln(  -  + 2k  - ln(  - 2 - ln( +1 𝑘α 𝑘α+2
𝑘α ) 2𝑘2α2

1+𝑘α α 𝑘α 𝑘α+2
𝑘α ) 3𝑘α

4
𝑘α+2

𝑘α )

= (- ln(  -  + 2k  + 1 11
4 𝑘α) 𝑘α+2

𝑘α ) 2𝑘2α2

1+𝑘α α

= (- ln(  +  + 1,  11
4 𝑘α) 𝑘α+2

𝑘α ) 2𝑘α
1+𝑘α

𝑘
2 ϵ𝑍+

 



d d  ∭
0
1(

2𝑚
𝑔

1

𝑚
𝑔

1

+ 𝑘α
2

𝑣
𝑔

1

 −  
𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

)𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= d d  - d d  ∭
0
1 2𝑚

𝑔
1

𝑚
𝑔

1

+ 𝑘α
2

𝑣
𝑔

1

𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

∭
0
1

𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= 1 - ln(  - ln(  +  𝑘α
2

2+𝑘α
𝑘α ) 𝑘α

2
2+𝑘α

𝑘α ) 1
2

=  - ln( ,  3
2 𝑘α 2+𝑘α

𝑘α ) 𝑘
2 ϵ𝑍+

d d   ∭
0
1(

4𝑚
𝑔

1

𝑚
𝑔

1

+ 𝑘α
2

𝑣
𝑔

1

 −  
𝑘α−𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

)𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= 2 d d   ∭
0
1(

2𝑚
𝑔

1

𝑚
𝑔

1

+ 𝑘α
2

𝑣
𝑔

1

 −  
𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

)𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= 3 - 2 ln( ,  𝑘α 2+𝑘α
𝑘α ) 𝑘

2 ϵ𝑍+

 

∭
0
1{

2𝑚
𝑔

1

𝑚
𝑔

1

+ 𝑘α
3

[
2𝑚

𝑔
1

𝑚
𝑔

1

+ 5𝑘α
6

(𝑣
𝑔

1

 −   
𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

) −  
5𝑘α

6 −𝑚
𝑔

1

5𝑘α
6 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

] −  
𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

}𝑑𝑚
𝑔

1

d d  𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= d d  ∭
0
1[

𝑚
𝑔

1

(𝑚
𝑔

1

+ 𝑘α
3 )(𝑚

𝑔
1

+ 5𝑘α
6 )

(4𝑚
𝑔

1

𝑣
𝑔

1

− 4
𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

− 𝑣
𝑎𝑖𝑟

)]𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= d d (we change ∭
0
1[

𝑚
𝑔

1

(𝑚
𝑔

1

+ 𝑘α
3 )(𝑚

𝑔
1

+ 5𝑘α
6 )

(4𝑚
𝑔

1

𝑣
𝑔

1

− 4
𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

− 𝑣
𝑎𝑖𝑟

)]𝑑𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

𝑚
𝑔

1

the order of the variables that are to be integrated to simplify the calculations, as can 

be seen afterwards) 

= d d  ∬
0
1[

𝑚
𝑔

1

(𝑚
𝑔

1

+ 𝑘α
3 )(𝑚

𝑔
1

+ 5𝑘α
6 )

(2𝑚
𝑔

1

− 4
𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

− 𝑣
𝑎𝑖𝑟

)] 𝑣
𝑎𝑖𝑟

𝑚
𝑔

1

= d  
0

1

∫[
𝑚

𝑔
1

(𝑚
𝑔

1

+ 𝑘α
3 )(𝑚

𝑔
1

+ 5𝑘α
6 )

(2𝑚
𝑔

1

− 2
𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

−  1
2 )] 𝑚

𝑔
1



= 4 d  (3 − 2𝑘α)
0

1

∫[( 1
3𝑚

𝑔
1

+ 5𝑘α
2

− 1
3𝑚

𝑔
1

+𝑘α )(𝑚
𝑔

1

−
𝑘α−3𝑚

𝑔
1

𝑘α+3𝑚
𝑔

1

−  1
4 )] 𝑚

𝑔
1

= 4

(3 − 2𝑘α)
0

1

∫[
𝑚

𝑔
1

3𝑚
𝑔

1

+ 5𝑘α
2

−
𝑘α−3𝑚

𝑔
1

(3𝑚
𝑔

1

+ 5𝑘α
2 )(𝑘α+3𝑚

𝑔
1

)
− 1

12𝑚
𝑔

1

+10𝑘α −
𝑚

𝑔
1

3𝑚
𝑔

1

+𝑘α +
𝑘α−3𝑚

𝑔
1

(𝑘α+3𝑚
𝑔

1

)2 + 1
12𝑚

𝑔
1

+4𝑘α

]d  𝑚
𝑔

1

= 4 (  +   -  +  + (3 − 2𝑘α) 1
3 − 5𝑘α

6 𝑙𝑛 6+5𝑘α
5𝑘α

1
3 𝑙𝑛 6+5𝑘α

5𝑘α − 1
12 𝑙𝑛 6+5𝑘α

5𝑘α
1
3

𝑘α
9 𝑙𝑛 3+𝑘α

𝑘α

ln  + ln ) 2𝑘α−1
3

3+𝑘α
𝑘α

1
12

3+𝑘α
𝑘α

= (12-8 )(  + ) 𝑘α 3−10𝑘α
12 𝑙𝑛 6+5𝑘α

5𝑘α
28𝑘α−9

36 𝑙𝑛 3+𝑘α
𝑘α

= (3-2 )(  + ),  𝑘α 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α
28𝑘α−9

9 𝑙𝑛 3+𝑘α
𝑘α

𝑘
2 ϵ𝑍+

d d  ∭
0
120(𝑣

𝑔
1

 −  
𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

)𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= 10 - 20 d d  ∭
0
1( 

𝑘α
2 −𝑚

𝑔
1

𝑘α
2 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

)𝑑𝑚
𝑔

1

𝑣
𝑔

1

𝑣
𝑎𝑖𝑟

= 10 - 10 )  
0

1

∫(
𝑘α−2𝑚

𝑔
1

𝑘α+2𝑚
𝑔

1

𝑑𝑚
𝑔

1

= 10 - 10[ ) - ) ] 𝑘α
0

1

∫( 1
𝑘α+2𝑚

𝑔
1

𝑑𝑚
𝑔

1 0

1

∫(
2𝑚

𝑔
1

𝑘α+2𝑚
𝑔

1

𝑑𝑚
𝑔

1

= 10 - 10[ ) - ] 𝑘α
0

1

∫( 1
𝑘α+2𝑚

𝑔
1

𝑑𝑚
𝑔

1 0

1

∫ 1𝑑𝑚
𝑔

1

+ 𝑘α
0

1

∫( 1
𝑘α+2𝑚

𝑔
1

)𝑑𝑚
𝑔

1

= 10 - 10( ln -1) 𝑘α 2+𝑘α
𝑘α

= 10(2 - ln ,  𝑘α 2+𝑘α
𝑘α ) 𝑘

2 ϵ𝑍+

 

As can be seen, except that the working efficacy of the deployment 7 is definitely 

higher than the one of the deployment 6, it’s actually tentative whether the working 

efficacy of the deployment 5 is higher than the one of the deployment 8 or not, 



depending on the value of , and the value of  that makes the working efficacy of 𝑘α 𝑘α

the deployment 5 higher than the one of the deployment 8 and the value of  that 𝑘α

makes the working efficacy of the deployment 5 not higher than the one of the 

deployment 8 are supposed to be attained by solving inequalities. 

Since we can’t attain the result of the comparison between the working efficacy of the 

deployment 5 and the one of the deployment 8 by whether the ratio of them, namely 

 is larger than 1 or else, it necessitates it to solicit 
(− 11

4 𝑘α)𝑙𝑛( 𝑘α+2
𝑘α ) + 2𝑘α

1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α  + 28𝑘α−9
9 𝑙𝑛 3+𝑘α

𝑘α )

the result of the comparison from Inequality Scaling. 

And because , , and  are all bigger than 1, 𝑘α+2
𝑘α

6+5𝑘α
5𝑘α

3+𝑘α
𝑘α

 is definitely smaller than , 
(− 11

4 𝑘α)𝑙𝑛( 𝑘α+2
𝑘α ) + 2𝑘α

1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α  + 28𝑘α−9
9 𝑙𝑛 3+𝑘α

𝑘α )

(− 11
4 𝑘α)+ 2𝑘α

1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3  + 28𝑘α−9

9 )

and if  is smaller than 1, then of course so will be 
(− 11

4 𝑘α)+ 2𝑘α
1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3  + 28𝑘α−9

9 )

, whereby we don’t need to integrate the logarithms 
(− 11

4 𝑘α)𝑙𝑛( 𝑘α+2
𝑘α ) + 2𝑘α

1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α  + 28𝑘α−9
9 𝑙𝑛 3+𝑘α

𝑘α )

into the fraction.  

  = , which solicits Inequality Scaling 
(− 11

4 𝑘α)+ 2𝑘α
1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3  + 28𝑘α−9

9 )

𝑘α[(− 11
4 )+ 2

1+𝑘α ]

(3−2𝑘α)( 3−10𝑘α
3  + 28𝑘α−9

9 )

again. 

∵  − 2𝑘α +  3 >  − 2𝑘α 

∴  <  =  
𝑘α[(− 11

4 )+ 2
1+𝑘α ]

(3−2𝑘α)( 3−10𝑘α
3  + 28𝑘α−9

9 )

𝑘α[(− 11
4 )+ 2

1+𝑘α ]

𝑘α( 3−10𝑘α
3  + 28𝑘α−9

9 )

(− 11
4 )+ 2

1+𝑘α
3−10𝑘α

3  + 28𝑘α−9
9

If  is smaller than 1, then of course so will be 
(− 11

4 )+ 2
1+𝑘α

3−10𝑘α
3  + 28𝑘α−9

9

. 
(− 11

4 𝑘α)𝑙𝑛( 𝑘α+2
𝑘α ) + 2𝑘α

1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α  + 28𝑘α−9
9 𝑙𝑛 3+𝑘α

𝑘α )

∵  =  =  =  =  = 
(− 11

4 )+ 2
1+𝑘α

3−10𝑘α
3  + 28𝑘α−9

9

(− 99
4 )+ 18

1+𝑘α

9−30𝑘α+28𝑘α−9

(− 99
4 )+ 18

1+𝑘α

−2𝑘α

−99+ 72
1+𝑘α

−8𝑘α
−99(1+𝑘α)+ 72

−8𝑘α

 =  =  > 1  −99−99𝑘α+ 72
−8𝑘α

−27−99𝑘α
−8𝑘α

27+99𝑘α
8𝑘α

Unfortunately we find out it is larger than 1, so it turns out that we can’t prove 



 as smaller than 1 by scaling down 
(− 11

4 𝑘α)𝑙𝑛( 𝑘α+2
𝑘α ) + 2𝑘α

1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α  + 28𝑘α−9
9 𝑙𝑛 3+𝑘α

𝑘α )

 to , however the idea is elicitted that 
𝑘α[(− 11

4 )+ 2
1+𝑘α ]

(3−2𝑘α)( 3−10𝑘α
3  + 28𝑘α−9

9 )

(− 11
4 )+ 2

1+𝑘α
3−10𝑘α

3  + 28𝑘α−9
9

 are separated from each other, so that we can know the 𝑘α
3−2𝑘α  𝑎𝑛𝑑 

(− 11
4 )+ 2

1+𝑘α
3−10𝑘α

3  + 28𝑘α−9
9

values of  that make   smaller than 1. 𝑘α
𝑘α[(− 11

4 )+ 2
1+𝑘α ]

(3−2𝑘α)( 3−10𝑘α
3  + 28𝑘α−9

9 )

When  < 1 𝑘α
3−2𝑘α  · 

(− 11
4 )+ 2

1+𝑘α
3−10𝑘α

3  + 28𝑘α−9
9

 <   𝑘α
3−2𝑘α

8𝑘α
27+99𝑘α

 <   1
3−2𝑘α

8
27+99𝑘α

 < 8 27+99𝑘α
3−2𝑘α

 < 0  27+99𝑘α−8(3−2𝑘α)
3−2𝑘α

 < 0  115𝑘α+3
3−2𝑘α

( )(  115𝑘α + 3 2𝑘α − 3) > 0

∵ >0 𝑘α

∴ When ,  < 1 𝑘α ≥  3
2

(− 11
4 𝑘α)𝑙𝑛( 𝑘α+2

𝑘α ) + 2𝑘α
1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α  + 28𝑘α−9
9 𝑙𝑛 3+𝑘α

𝑘α )

When ,  > 1 0 < 𝑘α < 3
2

(− 11
4 𝑘α)𝑙𝑛( 𝑘α+2

𝑘α ) + 2𝑘α
1+𝑘α

(3−2𝑘α)( 3−10𝑘α
3 𝑙𝑛 6+5𝑘α

5𝑘α  + 28𝑘α−9
9 𝑙𝑛 3+𝑘α
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And ∵ When ,  𝑘α ≥  3
2 ∭

0
1[
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𝑔

1

𝑚
𝑔
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2
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𝑔
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𝑔
1
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𝑔
1

𝑣
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1

𝑘α
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𝑣
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𝑔

1
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1

𝑣
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1

𝑚
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+ 𝑘α
3

[
2𝑚

𝑔
1

𝑚
𝑔

1

+ 5𝑘α
6

(𝑣
𝑔

1
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𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

) −  
5𝑘α

6 −𝑚
𝑔

1

5𝑘α
6 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟
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𝑘α
3 −𝑚

𝑔
1

𝑘α
3 +𝑚

𝑔
1

𝑣
𝑎𝑖𝑟

}𝑑𝑚
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𝑣
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∴ When ,  < 𝑘α ≥  3
2
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𝑔

1

𝑚
𝑔

1

+ 𝑘α
2

(𝑣
𝑔
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𝑘α
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Therefore, when , the working efficacy of the deployment 5 is lower than 𝑘α ≥  3
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the one of the deployment 8; when 0 < , the working efficacy of the 𝑘α <  3
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deployment 5 is higher than the one of the deployment 8.  

And it’s better to straightforward compare the working efficacy of the deployment 8 

with the one of the deployment 7 by subtraction than doing so however with having 
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except the deployment 8 with the one of another except the deployment 7. 
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Therefore the working efficacy of the deployment 8 is higher than the one of the 

deployment 7, so we are supposed to compare the one of the deployment 8 with the 

one of the deployment 9. 

But if we know which one is higher still by definite integral of three variables, the 

definite integral of three variables of the working efficacy of the deployment 9 will be 

easy to attain, but the one of the working efficacy of the deployment 8 will be 

extremely hard to attain, so, so as to simplify the calculations, we can firstly attain the 

definite integrals of only  and  of the working efficacies so that the difficulty of 𝑣
𝑔

1

𝑣
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the integration of the working efficacy of the deployment 9 is lowered extremely a lot 

since  is constantized when integrating the working efficacy, then see what ranges 𝑚
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of value  lies within so that one of the working efficacies is higher than or lower 𝑚
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than or equal to the other, and finally see whether  can lie within the ranges of 𝑚
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value. If  can’t lie within certain ranges of value, then it means one of the working 𝑚
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efficacies is always higher than or lower than or equal to the other.  
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∴ It’s tentative whether the working efficacy of the deployment 8 is higher than the 

one of the deployment 9 or not. We need to discuss the results of the comparison 

betwen the working efficacy of the deployment 8 and the one of the deployment 9 by 

the category of what ranges of value  lies within. However it’s impossible to attain 𝑚
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) - 10 +  = 0 and the ones of the equation (  +  + 10
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equations be functions and by the properties of these two fuctions, we can attain the 

solution sets. 

∵  
𝑑[ 

2𝑚
𝑔1

2𝑚
𝑔1

+1 (−
8𝑚

𝑔1

2−16𝑚
𝑔1

3

6𝑚
𝑔1

+3 −
5𝑚

𝑔1

4𝑚
𝑔1

+5 − 1
2 𝑚

𝑔
1

+ 1
4 ) − 10 + 10

3+4𝑚
𝑔1

]

𝑑𝑚
𝑔

1

= -  -  +  +  -  
8𝑚

𝑔
1

2−16𝑚
𝑔

1

3

6𝑚
𝑔

1

+3

5𝑚
𝑔

1

4𝑚
𝑔

1

+5

𝑚
𝑔

1

2
10

4𝑚
𝑔

1

+3
39
4

If we let + ) - 10 +  be f( ) as 
2𝑚

𝑔
1

2𝑚
𝑔

1

+1 (−
8𝑚

𝑔
1

2−16𝑚
𝑔

1

3

6𝑚
𝑔

1

+3 −
5𝑚

𝑔
1

4𝑚
𝑔

1

+5 − 1
2 𝑚

𝑔
1

 1
4

10
3+4𝑚

𝑔
1

𝑚
𝑔

1

a function, then we can figure out that f( ) increases after  ≈ 2.25045 and 𝑚
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f(2.25045) = 0, so when  > about 2.25045, the working efficacy of the deployment 𝑚
𝑔
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8 is higher than the one of the deployment 9. 

By the same method, we can also figure out when  ＞ 0, the 𝑎𝑏𝑜𝑢𝑡 2. 25045 ＞ 𝑚
𝑔

1

working efficacy of the deployment 9 is higher than the one of the deployment 8, and 

when  is equal to about 2.25045, they are the same. 𝑚
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When 0 < , 𝑘α <  3
2
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And ∵ When  = 0, 3( -  > 0 𝑘α 𝑘α 1+ 5𝑖
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Therefore, when 0 < , the working efficacy of the deployment 7 is higher 𝑘α <  3
2

than the one of the deployment 8, thus we should compare the working efficacy of the 

deployment 7 with the one of the deployment 9. 
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0 <  10 -  +  ≤ 10 + ,  10
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∴ let  - 10 be f( ), when , f( ) increases, and 
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 - 10＞0. Therefore, when , the working efficacy of 
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the deployment 7 is higher than the one of the deployment 9; let -  be g( ), g(
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efficacy of the deployment 7 is equal to the one of the deployment 9. 
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Therefore, the working efficacy of the deployment 5 is higher than the one of the 

deployment 9. 
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Therefore, the working efficacy of the deployment 7 is higher than the one of the 

deployment 5. 

To recap, the working efficacy of the deployment 7 is definitely higher than the one of 

the deployment 6. When , the working efficacy of the deployment 7 is 𝑘α ≥  3
2



higher than the one of the deployment 5, and the one of the deployment 8 is higher 

than the one of the deployment 7, and when  > about 2.25045, the working 𝑚
𝑔

1

efficacy of the deployment 8 is higher than the one of the deployment 9, and when 

 ＞ 0, the working efficacy of the deployment 9 is higher than 𝑎𝑏𝑜𝑢𝑡 2. 25045 ＞ 𝑚
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equal to the one of the deployment 9, and both the working efficacy of the 

deployment 7 and the one of the deployment 9 are higher than the one of the 

deployment 5. 

 

6.​ Gradient 

Since the total momentum of a gear achieves is quantitatively positively related to 
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𝑎𝑖𝑟
 =  0 

∴ 

{2𝑣
𝑎𝑖𝑟

[
𝑚

𝑎𝑖𝑟
(𝑚

𝑎𝑖𝑟
+𝑚

𝑔
)−2𝑚

𝑎𝑖𝑟
𝑚

𝑔
+𝑚

𝑔
−𝑚

𝑎𝑖𝑟

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)³ ] = 0 2𝑚

𝑔
𝑣

𝑎𝑖𝑟
[

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)2−2(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)(𝑚

𝑔
+𝑚

𝑎𝑖𝑟
)

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)4 ] = 0 2

𝑚
𝑔
(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)2  =  

∴ 

{𝑚
𝑎𝑖𝑟

(𝑚
𝑎𝑖𝑟

+ 𝑚
𝑔
) − 2𝑚

𝑎𝑖𝑟
𝑚

𝑔
+ 𝑚

𝑔
− 𝑚

𝑎𝑖𝑟
= 0 (𝑚

𝑔
+ 𝑚

𝑎𝑖𝑟
)2 − 2(𝑚

𝑎𝑖𝑟
− 𝑚

𝑔
)(𝑚

𝑔
+ 𝑚

𝑎𝑖𝑟
) = 0 𝑚

𝑎

∴  = 0 which is impossible. 𝑚
𝑎𝑖𝑟

= 𝑚
𝑔

We have known that this function does not have any stationary point. Although we 

can’t obtain the stationary points of this function by gradient, Lagrange Multiplier 

Method can be derived and it is applicable for obtaining the extrema.[10] 

However, without any constraint condition, it can’t be applied.  

To derive a constraint condition, we have to apply Conservation of momentum: 

Firstly we have to isolate the ‘starting gear’ of a machine and the air ‘touching’ it into 

a physical system, and we can’t isolate any of the other gears of it and the air 

‘touching’ them into a physical system, because we don’t know the total momentum 

of the other gears, not to mention that  in the expression ) is  𝑣
𝑎𝑖𝑟

2𝑚
𝑔

𝑚
𝑔
+𝑚

𝑎𝑖𝑟
(

𝑚
𝑎𝑖𝑟

−𝑚
𝑔

𝑚
𝑎𝑖𝑟

+𝑚
𝑔

𝑣
𝑎𝑖𝑟

equal to the speed of the air ‘touching’ the ‘starting gear’ and  is the mass of the 𝑚
𝑎𝑖𝑟

air ‘touching’ it, so that if you derive the constraint condition by isolating the other 

gear of a machine and the air ‘touching’ it into a physical system, you need to find out 

the quantitative relationship between the flow velocity of the air ‘touching’ the gear 

and the one of the air ‘touching’ the ‘starting gear’, which is impossible. 

Secondly, by applying Conservation of momentum, we get: 

 𝑝
1𝑖

+ 𝑝
2𝑖

=  𝑝
1𝑓

+ 𝑝
2𝑓



Therefore  =  𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑎𝑖𝑟

(𝑣
𝑎𝑖𝑟

+ 𝑣
𝑔
) + 𝑚

𝑔
𝑣

𝑔
 

So let , ) = -(  + ) be the constraint condition. φ(𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑚
𝑎𝑖𝑟

𝑣
𝑔

𝑚
𝑔
𝑣

𝑔

Next, as per Lagrange Multiplier Method, we have to suppose a Lagrange function: F(

, , ) = f( , , ) + , ). 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

λφ(𝑚
𝑔

𝑚
𝑎𝑖𝑟

Finally, we have to solve an equation group: 

{𝐹'
𝑥
 = 𝑓'

𝑥
(𝑥, 𝑦,  𝑧) +  λφ'

𝑥
(𝑥, 𝑦) =  0 𝐹'

𝑦
 = 𝑓'

𝑦
(𝑥, 𝑦,  𝑧) +  λφ'

𝑦
(𝑥, 𝑦) =  0 𝐹'

𝑧
 = 𝑓'

𝑧
(𝑥, 𝑦,  𝑧) =

 

∴ 

{𝑓'
𝑚

𝑔

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
,  𝑣

𝑎𝑖𝑟
) +  λφ'

𝑚
𝑔

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
) =  0 𝑓'

𝑚
𝑎𝑖𝑟

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
,  𝑣

𝑎𝑖𝑟
) +   λφ'

𝑚
𝑎𝑖𝑟

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
) =  0 𝑓'

𝑣

∴

 {2𝑣
𝑎𝑖𝑟

[
𝑚

𝑎𝑖𝑟
(𝑚

𝑎𝑖𝑟
+𝑚

𝑔
)−2𝑚

𝑎𝑖𝑟
𝑚

𝑔
+𝑚

𝑔
−𝑚

𝑎𝑖𝑟

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)³ ] −  λ𝑣

𝑔
 =  0 2𝑚

𝑔
𝑣

𝑎𝑖𝑟
[

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)2−2(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)(𝑚

𝑔
+𝑚

𝑎𝑖𝑟
)

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)4 ] −  λ𝑣

𝑔
=  0 2

∴ 

{2𝑣
𝑎𝑖𝑟

[
𝑚

𝑎𝑖𝑟
(𝑚

𝑎𝑖𝑟
+𝑚

𝑔
)−2𝑚

𝑎𝑖𝑟
𝑚

𝑔
+𝑚

𝑔
−𝑚

𝑎𝑖𝑟

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)³ ] −  λ𝑣

𝑔
 =  0 2𝑚

𝑔
𝑣

𝑎𝑖𝑟
[

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)2−2(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)(𝑚

𝑔
+𝑚

𝑎𝑖𝑟
)

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)4 ] −  λ𝑣

𝑔
=  0  𝑚

∴  𝑚
𝑎𝑖𝑟

= 𝑚
𝑔

Therefore, the minimal value of f( , , ) is 0, while there is no maximal 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

value. 

∵  +  +  ∇𝑓 =  ∂𝑓
∂𝑥

∂𝑓
∂𝑦

∂𝑓
∂𝑧

∴  +  +  ∇𝑔 =  ∂𝑔
∂𝑚

𝑔

∂𝑔
∂𝑚

𝑎𝑖𝑟

∂𝑔
∂𝑣

𝑎𝑖𝑟

When  +  +  =  ∇𝑔 =  ∂𝑔
∂𝑚

𝑔

∂𝑔
∂𝑚

𝑎𝑖𝑟

∂𝑔
∂𝑣

𝑎𝑖𝑟

 { ∂𝑔
∂𝑚

𝑔
= 0 ∂𝑔

∂𝑚
𝑎𝑖𝑟

= 0 ∂𝑔
∂𝑣

𝑎𝑖𝑟
 =  0 



∴  {(− 2𝑣
𝑎𝑖𝑟

)[
𝑚

𝑎𝑖𝑟

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)² ] = 0 2𝑣

𝑎𝑖𝑟
[

𝑚
𝑔

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)2 ] = 0 

𝑚
𝑎𝑖𝑟

−𝑚
𝑔

𝑚
𝑎𝑖𝑟

+𝑚
𝑔

 =  0 

∴  = 0 which is impossible  𝑚
𝑎𝑖𝑟

= 𝑚
𝑔

We have known that this function does not have any stationary point. However we can 

also apply Lagrange Multiplier Method for obtaining the extrema: 

Suppose F( , , ) = f( , , ) + , ) 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

λφ(𝑚
𝑔

𝑚
𝑎𝑖𝑟

Then we have to solve an equation group: 

{𝐹'
𝑥
 = 𝑓'

𝑥
(𝑥, 𝑦,  𝑧) +  λφ'

𝑥
(𝑥, 𝑦) =  0 𝐹'

𝑦
 = 𝑓'

𝑦
(𝑥, 𝑦,  𝑧) +  λφ'

𝑦
(𝑥, 𝑦) =  0 𝐹'

𝑧
 = 𝑓'

𝑧
(𝑥, 𝑦,  𝑧) =

∴ 

{𝑔'
𝑚

𝑔

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
,  𝑣

𝑎𝑖𝑟
) +  λφ'

𝑚
𝑔

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
) =  0 𝑔'

𝑚
𝑎𝑖𝑟

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
,  𝑣

𝑎𝑖𝑟
) +   λφ'

𝑚
𝑎𝑖𝑟

(𝑚
𝑔
,  𝑚

𝑎𝑖𝑟
) =  0 𝑔'

∴ 

{(− 2𝑣
𝑎𝑖𝑟

)[
𝑚

𝑎𝑖𝑟

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)² ] −  λ𝑣

𝑔
 =  0 2𝑣

𝑎𝑖𝑟
[

𝑚
𝑔

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)2 ] −  λ𝑣

𝑔
 =  0 

𝑚
𝑎𝑖𝑟

−𝑚
𝑔

𝑚
𝑎𝑖𝑟

+𝑚
𝑔

 = 0 − (𝑚
𝑎𝑖𝑟

𝑣
𝑔
 +  𝑚

𝑔

∴  {𝑣
𝑔
 =  0   𝑚

𝑎𝑖𝑟
= 𝑚

𝑔
 

Therefore, the minimal value of g( , , ) is 0, while there is no maximal 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

value. 

 

But here comes the contradiction that, if we put  to  or  to  to 𝑚
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑔

𝑚
𝑎𝑖𝑟

minimalize g( , , ), then f( , , ) = 0, which makes the working 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

efficacy of a machine 0, so we have to figure out one way to maximize f( , , 𝑚
𝑔

𝑚
𝑎𝑖𝑟

) and meanwhile minimalize g( , , ), which can’t be realized by finding 𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

out the maximal value of f( , , ) and the minimal value of g( , , ) 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

to maximalize the working efficacy. 

 

7.​ Function 

As said before, the working efficacy is positively quantitatively related to f( , , 𝑚
𝑔

𝑚
𝑎𝑖𝑟



) and negatively quantitatively related to g( , , ), eliciting the idea that, 𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

suppose the working efficacy as w(f( , , ), g( , , )). 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

Here comes another problem: Should be the quantitative relationship curvilinear or 

linear? 

We have to establish an expression that is definitely positively related to f( , , 𝑚
𝑔

𝑚
𝑎𝑖𝑟

) and negatively related to g( , , ) as the one of w(f( , , ), g(𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

, , )). 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

If in the expression the relationship between f( , , ) and g( , , ) is 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

curvilinear, then w(f( , , ), g( , , )) will not be as desired.  𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

Thus it does not take any genius to figure out that the relationship should be linear. 

So it’s lawful to make the expression of w(f( , , ), g( , , )) as jf(𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

, , ) + kg( , , ), where j is positive and k is negative. 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

And we are to apply gradient for this function to obtain the extrema. 

∵  +  +  ∇𝑓 =  ∂𝑓
∂𝑥

∂𝑓
∂𝑦

∂𝑓
∂𝑧

∴  +  +  ∇𝑓 =  ∂𝑤
∂𝑚

𝑔

∂𝑤
∂𝑚

𝑎𝑖𝑟

∂𝑤
∂𝑣

𝑎𝑖𝑟

When  +  +  =  ∇𝑓 =  ∂𝑤
∂𝑚

𝑔

∂𝑤
∂𝑚

𝑎𝑖𝑟

∂𝑤
∂𝑣

𝑎𝑖𝑟

 { ∂𝑤
∂𝑚

𝑔
= 0 ∂𝑤

∂𝑚
𝑎𝑖𝑟

= 0 ∂𝑤
∂𝑣

𝑎𝑖𝑟
 =  0 

∴ 

{2𝑗𝑣
𝑎𝑖𝑟

[
𝑚

𝑎𝑖𝑟
(𝑚

𝑎𝑖𝑟
+𝑚

𝑔
)−2𝑚

𝑎𝑖𝑟
𝑚

𝑔
+𝑚

𝑔
−𝑚

𝑎𝑖𝑟

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)³ ] + (− 2𝑘𝑣

𝑎𝑖𝑟
)[

𝑚
𝑎𝑖𝑟

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)² ] = 0 2𝑗𝑚

𝑔
𝑣

𝑎𝑖𝑟
[

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)2−2(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)(𝑚

𝑔
+

(𝑚
𝑔
+𝑚

𝑎𝑖𝑟
)4

Because j and k are not 0, . 𝑚
𝑎𝑖𝑟

= 𝑚
𝑔

We can get  . {𝑣
𝑎𝑖𝑟

= 0 𝑚
𝑎𝑖𝑟

= 𝑚
𝑔
 



So this function has infinite stationary points(as long as , this 𝑚
𝑎𝑖𝑟

= 𝑚
𝑔
 𝑎𝑛𝑑 𝑣

𝑎𝑖𝑟
= 0

point is a stationary point). 

So after having tried all of the methods, sadly we only find out that the working 

efficacy of a machine does not have a maximal value while the minimum value of it is 

0, which can be projected correctly intuitively. 

But can we learn anything from the whole rigmarole?  

 

8.​ Discussion 

The figure composed of infinite points whose -coordinates are equal to 𝑚
𝑔

𝑚
𝑎𝑖𝑟

-coordinates is a straight line that comes from the inside of this paper to the 

outside of it and intersects both the -axis and the -axis by -45°, as 𝑚
𝑔

𝑚
𝑎𝑖𝑟

demonstrated by the figure 10. 

Since 0 is the minimal value of w(f( , , ), g( , , )) 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

when , the larger the distance from a point to 𝑚
𝑔
 =  𝑚

𝑎𝑖𝑟
 𝑎𝑛𝑑 𝑣

𝑎𝑖𝑟
= 0

the line is, the higher the value of w(f( , , ), g( , , )) is,  𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

since when a function reaches its stationary points, the values of it are the extrema and 

in this case, when , the value of w(f( , , ), g( , 𝑚
𝑔
 =  𝑚

𝑎𝑖𝑟
 𝑎𝑛𝑑 𝑣

𝑎𝑖𝑟
= 0 𝑚

𝑔
𝑚

𝑎𝑖𝑟
𝑣

𝑎𝑖𝑟
𝑚

𝑔

, )) is 0 as the minimal value of it. 𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

To calculate the distance, firstly, we need to choose a point A that is not on the line, 

say, ( , , ), and then find a point B on the line, say, ( , , ); Next, 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔
' 𝑚

𝑔
' 0

connect them with a line; Finally, vectorize the line, and let’s name the vector as  

and the coordinate of it is (  - . 𝑚
𝑔
' 𝑚

𝑔
, 𝑚

𝑔
' − 𝑚

𝑎𝑖𝑟
,  − 𝑣

𝑎𝑖𝑟
) 

Any line has a direction vector,[11] and this line can’t exempt from having one. For 

this line, the direction vector is (1,1,0),[12] since the function of line is 

, and let’s name it as . 𝑚
𝑔
 − 𝑚

𝑎𝑖𝑟
 = 0

If ·  = 0, then the ‘norm’ of  is just the distance.[13] 



∵ ·  = 0 

∴  - +  = 0[14] 𝑚
𝑔
' 𝑚

𝑔
𝑚

𝑔
' − 𝑚

𝑎𝑖𝑟

∴  =  𝑚
𝑔
'

𝑚
𝑔
+𝑚

𝑎𝑖𝑟

2

∴  = ( ) 
𝑚

𝑎𝑖𝑟
−𝑚

𝑔

2 ,
𝑚

𝑔
−𝑚

𝑎𝑖𝑟

2 , − 𝑣
𝑎𝑖𝑟

∴ | | =  =  (
𝑚

𝑎𝑖𝑟
−𝑚

𝑔

2 )
2

+ (
𝑚

𝑔
−𝑚

𝑎𝑖𝑟

2 )
2

+ 𝑣
𝑎𝑖𝑟

2 (𝑚
𝑎𝑖𝑟

−𝑚
𝑔
)2

2 + 𝑣
𝑎𝑖𝑟

2

So, the larger  is, the higher the working efficacy of a machine 
(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)2

2 + 𝑣
𝑎𝑖𝑟

2

is. 

Therefore, we should suppose p( , , ) = , and when the 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

(𝑚
𝑎𝑖𝑟

−𝑚
𝑔
)2

2 + 𝑣
𝑎𝑖𝑟

2

value of this function is maximal, the working efficacy of a machine is maximal. 

Firstly we should consider if gradient can be applied for obtaining the maximum 

value of it. 

∵  +  +  ∇𝑓 =  ∂𝑓
∂𝑥

∂𝑓
∂𝑦

∂𝑓
∂𝑧

∴  +  +  ∇𝑝 =  ∂𝑝
∂𝑚

𝑔

∂𝑝
∂𝑚

𝑎𝑖𝑟

∂𝑝
∂𝑣

𝑎𝑖𝑟

When  +  +  =  ∇𝑝 =  ∂𝑝
∂𝑚

𝑔

∂𝑝
∂𝑚

𝑎𝑖𝑟

∂𝑝
∂𝑣

𝑎𝑖𝑟

 { ∂𝑝
∂𝑚

𝑔
= 0 ∂𝑝

∂𝑚
𝑎𝑖𝑟

= 0 ∂𝑝
∂𝑣

𝑎𝑖𝑟
 =  0 

∴  {
𝑚

𝑎𝑖𝑟
−𝑚

𝑔

(𝑚
𝑎𝑖𝑟

−𝑚
𝑔
)2

2 +𝑣
𝑎𝑖𝑟

2

= 0 
𝑚

𝑔
−𝑚

𝑎𝑖𝑟

(𝑚
𝑎𝑖𝑟

−𝑚
𝑔
)2

2 +𝑣
𝑎𝑖𝑟

2

= 0  
𝑣

𝑎𝑖𝑟

(𝑚
𝑎𝑖𝑟

−𝑚
𝑔
)2

2 +𝑣
𝑎𝑖𝑟

2

=  0 

∴ When , =0, the function reaches the stationary points of it. 𝑚
𝑎𝑖𝑟

= 𝑚
𝑔

𝑣
𝑎𝑖𝑟

We can only know the minimal value of the distance is 0. We still need to know the 



maximum value of it, if it is existent, and whether it is existent can be proven by 

applying Lagrange Multiplier Method, with the same constraint condition used above. 

Suppose F( , , ) = p( , , ) + , ) 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

λφ(𝑚
𝑔

𝑚
𝑎𝑖𝑟

Then we have to solve an equation group: 

{𝐹'
𝑥
 = 𝑝'

𝑥
(𝑥, 𝑦,  𝑧) +  λφ'

𝑥
(𝑥, 𝑦) =  0 𝐹'

𝑦
 = 𝑝'

𝑦
(𝑥, 𝑦,  𝑧) +  λφ'

𝑦
(𝑥, 𝑦) =  0 𝐹'

𝑧
 = 𝑝'

𝑧
(𝑥, 𝑦,  𝑧) =

∴ 

{
𝑚

𝑎𝑖𝑟
−𝑚

𝑔

2
(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)2

2 +𝑣
𝑎𝑖𝑟

2

−  λ𝑣
𝑔
 =  0 

𝑚
𝑔
−𝑚

𝑎𝑖𝑟

2
(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)2

2 +𝑣
𝑎𝑖𝑟

2

−  λ𝑣
𝑔
 =  0 

𝑣
𝑎𝑖𝑟

(𝑚
𝑎𝑖𝑟

−𝑚
𝑔
)2

2 +𝑣
𝑎𝑖𝑟

2

 = 0 − (𝑚
𝑎𝑖𝑟

𝑣
𝑔
 +  𝑚

𝑔
𝑣

∴   {𝑚
𝑎𝑖𝑟

 =  𝑚
𝑔
 𝑣

𝑎𝑖𝑟
 = 0 𝑣

𝑔
= 0 

So unfortunately, it has been proven that this function does not have a maximal value. 

It seems that we are inable to attain ,  and  that can generate the highest 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

working efficacy of a machine, however, if we investigate into the function p( , 𝑚
𝑔

, ) = , we can find out that the value of this function is 𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

(𝑚
𝑎𝑖𝑟

−𝑚
𝑔
)2

2 + 𝑣
𝑎𝑖𝑟

2

positively related to , since  is an increasing function,[15] and 
(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)2

2 + 𝑣
𝑎𝑖𝑟

2 𝑥

because  is positively related to | | + , when we 
(𝑚

𝑎𝑖𝑟
−𝑚

𝑔
)2

2 + 𝑣
𝑎𝑖𝑟

2 𝑚
𝑎𝑖𝑟

− 𝑚
𝑔

𝑣
𝑎𝑖𝑟

compare the working efficacies different values of , ,  can generate, we can 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

calculate | | +  and see which result of the values of , ,  is 𝑚
𝑎𝑖𝑟

− 𝑚
𝑔

𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

higher, then the values whose result is higher can generate higher working efficacy. 

We can exegete that, the higher the difference between  and  is, or the higher 𝑚
𝑎𝑖𝑟

𝑚
𝑔

 is, the higher working efficacy the values of , ,  can generate is, viz, 𝑣
𝑎𝑖𝑟

𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

the higher the difference between the mass of the air in a machine and the mass of the 

gears of it is, or the higher the flow velocity of the air of it is, the higher the working 

efficacy of it is, let’s name, ‘The Zhang’s Law’. 

 

9.​ Examples 



1.​ Suppose there are two groups of gears whose mass is 10g and 20g 

respectively, which are in two machines whose mass of the air is 5g and 10g 

respectively and flow velocity of the air is 0.5m/s and 0.8m/s respectively. Which 

machine does have the higher working efficacy, if the numbers of the gears are equal 

and the deployments are also equal? 

By applying ‘The Zhang’s Law’, the result of | | +  of the first machine 𝑚
𝑎𝑖𝑟

− 𝑚
𝑔

𝑣
𝑎𝑖𝑟

is equal to | | +  = 0.505, and the one of the second machine is equal 0. 005 − 0. 01 0. 5

to | | + 8 = 0.81.  0. 01 − 0. 02 0.

So as can be seen, the second machine has the higher working efficacy. 

 

2.​ Suppose there are 3 gears. Which of the deployment 1 and 2 is the more 

efficient one? The deployment 2. 

 

3.​ Suppose there are 4 gears. Which of the deployment 3 and 4 is the more 

efficient one? The working efficacies of the deployment 4 and the one 5 are equal. 

 

4.​ Suppose there are 5 gears, which have 8 teeth and whose mass is 10g and 

volume is . Which of the deployment 5, 6, 7, 8 and 9 is the most efficient 1𝑥10−6𝑚3

one?  

The working efficacy of the deployment 7 is definitely higher than the one of the 

deployment 6, when 0 <  < , the working efficacy of the deployment 5 is higher 𝑘α 3
2

than the one of the deployment 8, and when , the working efficacy of the 𝑚
𝑔

1

＞
𝑘α
10  

deployment 7 is higher than the one of the deployment 5, and the working efficacy of 

the deploymewnt 5 is higher than the one of the deployment 9, therefore, the most 

efficient deployment is the deployment 7. 

 

10.​ Conclusion 



To sum up, the higher the difference between  and  is, or the higher  is, the 𝑚
𝑎𝑖𝑟

𝑚
𝑔

𝑣
𝑎𝑖𝑟

higher working efficacy the values of , ,  can generate is, viz, the higher 𝑚
𝑔

𝑚
𝑎𝑖𝑟

𝑣
𝑎𝑖𝑟

the difference between the mass of the air in a machine and the mass of the gears of it 

is, or the higher the flow velocity of the air of it is, the higher the working efficacy of 

it is, let’s name, ‘The Zhang’s Law’. 

And for 3 gears, the deployment 2 is the more efficient deployment; For 4 gears, the 

working efficacies of the deployments 3 and 4 are equal; For 5 gears, To recap, the 

working efficacy of the deployment 7 is definitely higher than the one of the 

deployment 6. When , the working efficacy of the deployment 7 is higher 𝑘α ≥  3
2

than the one of the deployment 5, and the one of the deployment 8 is higher than the 

one of the deployment 7, and when  > about 2.25045, the working efficacy of the 𝑚
𝑔

1

deployment 8 is higher than the one of the deployment 9, and when 

 ＞ 0, the working efficacy of the deployment 9 is higher than 𝑎𝑏𝑜𝑢𝑡 2. 25045 ＞ 𝑚
𝑔

1

the one of the deployment 8, and when  is equal to about 2.25045, they are the 𝑚
𝑔

1

same; when 0 <  < , the working efficacy of the deployment 5 is higher than the 𝑘α 3
2

one of the deployment 8, and when , the working efficacy of the 𝑚
𝑔

1

＞
3

20 + 409
20

deployment 7 is higher than the one of the deployment 9, the working efficacy of the 

deployment 5 is higher than the one of the deployment 9 and the working efficacy of 

the deployment 7 is higher than the one of the deployment 5. And when ＜0, -𝑚
𝑔

1

＞0, but  can’t be negative, so there is no range of values within which  
5𝑚

𝑔
1

2 𝑚
𝑔

1

𝑚
𝑔

1

lies so that the working efficacy of the deployment 7 is higher than the one of the 

deployment 9. When  = , the working efficacy of the deployment 7 is 𝑚
𝑔

1

3
20 + 409

20

equal to the one of the deployment 9, and both the working efficacy of the 

deployment 7 and the one of the deployment 9 are higher than the one of the 

deployment 5. 
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