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The GOOS best practice endorsement process has been developed by the GOOS and the Observation
Coordination Group (OCG) in conjunction with the Ocean Best Practices System (OBPS).

The aim is for global networks (eg the International Argo programme through GOOS OCG) or groups of
experts (eg. the GOOS Biogeochemical Panel) to endorse and share methods which have reproduced
superior results for confidence in and uptake by the broader ocean community.

The  endorsed methods can range from standard operating procedures to field manuals and have been
adopted by community review as ‘globally’ accepted methods. Following best practices improves the
reproducibility of science research, and interoperability across disciplines and datasets by standardizing
methods and data collection. It allows for research to be more efficient, leads to quality datasets, and
supports future proofing data.

Endorsed GOOS best practices have been through a strong identifying process. They have been adopted

and used by established ocean observers and therefore represent a strong basis for the ocean science

community.
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Chapter 0: Quick Start Guide
The OOI Biogeochemical Sensor Data Best Practices and User Guide is intended to provide
current and prospective users of data generated by biogeochemical (BGC) sensors deployed on
the Ocean Observatories Initiative (OOI) arrays with the information and guidance needed for
them to ensure that the data are science-ready. This guide is aimed at researchers with an
interest or some experience in ocean biogeochemical processes. We expect that users of this
guide will have some background in oceanography; however, we do not assume any prior
experience working with BGC sensors or their data.

Scope of the guide
While initially envisioned as a “cookbook” for end users seeking to work with OOI BGC sensor
data, our Working Group and Beta Testers realized that the processing required to meet the
specific needs of all end users across a wide range of potential scientific applications and
combinations of OOI BGC data from different sensors and platforms couldn’t be synthesized
into a single “recipe”. We therefore provide here the background information and principles
needed for the end user to successfully identify and understand all the available “ingredients”
(data), the types of “cooking” (end user processing) that are recommended to prepare them,
and a few sample “recipes” (worked examples) to support end users in developing their own
“recipes” consistent with the best practices presented here.

This is not intended to be an exhaustive guide to each of these sensors, but rather a synthesis
of the key information to support OOI BGC sensor data users in preparing science-ready data
products. In instances when more in-depth information might be helpful, references and links
have been provided both within each chapter and in the Appendix.

Structure of the guide
This guide is split into 5 chapters, with an Introduction (Chapter 1) providing information relevant
to all OOI BGC sensor data users and four subsequent chapters covering four groups of BGC
variables and associated sensors:

● Chapter 2: Dissolved oxygen
● Chapter 3: Nitrate
● Chapter 4: Carbonate system chemistry
● Chapter 5: Bio-optical measurements

Chapter 1, intended as a starting point for all users of this guide, includes:
● An overview of the OOI program, its arrays, and the BGC data they collect, including

Table 1.1 summarizing the BGC sensors deployed across all OOI arrays.
● A summary of how OOI processes data internally before providing it to the end user,

including human-in-the-loop (HITL) and automated quality assurance/quality control
(QA/QC) procedures.
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● An overview of how to access OOI data, emphasizing pointers to OOI-created
resources.

● An overview of additional QA/QC procedures that we recommend be completed by
the end user of OOI BGC sensor data to prepare science-ready datasets for analysis,
including a flowchart (Figure 1.1) highlighting key processing steps for all OOI BGC
sensor types.

The following four chapters each provide specific information on a subset of BGC sensors, with
each chapter arranged in a parallel format that includes:

● An introduction to the sensors used by OOI to measure this BGC variable, including a
table with key information about the sensors covered in the chapter and the OOI
platforms on which they are deployed.

● OOI standard practices for deployment and calibration of the BGC sensor(s)
covered in the chapter.

● A summary of the internal-to-OOI data processing for this BGC variable, with the
processing from raw sensor output to end user ready variables synthesized in a
flowchart for each sensor type.

● Common data quality issues that end users should be aware of when working with
data from this type of BGC sensor(s).

● Recommendations for end user data processing to prepare analysis-ready data
products from this type of BGC sensor(s), summarized in a sensor-specific end user
data processing flowchart for each chapter.

● A worked example, illustrating how to apply the recommended end user data
processing described in the chapter & flowchart to an example OOI dataset. Each
example includes pseudo-code to support users in developing their own data analysis
pipeline suited to their specific application in the programming language of their choice.
The code used by this guide’s authors to prepare the examples is provided as a
supplementary resource, but was not tested for application to other example datasets.

How to use this guide
Each of the chapters are designed to build on the general information given in Chapter 1, but to
be independent from each other. We recommend that all users familiarize themselves with the
content in Chapter 1 before proceeding to the sensor-specific chapters that follow. For example,
a user who is primarily only interested in working with bio-optical sensor data should read
Chapter 1 to find the general information related to the configuration of the OOI arrays and data
access, and then proceed to Chapter 5 to find the more specific information related to
processing data from bio-optical sensors.

The flowcharts in each chapter summarizing both the internal-to-OOI data processing and
recommended end user data processing are intended as both a starting point and as a
reference to return to while the user completes their own data processing:
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Internal-to-OOI Data Processing Flowcharts:
● Dissolved oxygen
● Nitrate
● Carbonate system chemistry
● Bio-optical measurements

Recommended end user Data Processing Flowcharts:
● Overview for all OOI BGC sensors
● Dissolved oxygen
● Nitrate
● Carbonate system chemistry
● Bio-optical measurements

The worked examples and the accompanying pseudo-code at the end of each chapter illustrate
the key steps shown in the recommended end user data processing flowcharts, but are not an
exhaustive template for the user to follow in addressing all data QA/QC and calibration issues
discussed in each chapter. All code and calculations used in processing the worked examples
are provided as a supplementary resource (see Section A5), though these are intended solely
as a reference. We emphasize that it is beyond the scope of this guide to provide full code
pipelines for data processing. This is in part because we recognize that there is no single coding
language of choice within the oceanographic community, and in part due to the magnitude of the
task required to develop and maintain a codebase that would cover all cases of required end
user data processing across all the OOI arrays, platforms, and sensor types discussed here.
Users of this guide are recommended to develop their own data processing code suited to their
specific application of OOI BGC sensor data, and to share their tools with other users through
the OOI Discourse channels.

We recognize that working with OOI BGC data can, at first glance, be a daunting task. The
number of different methods for accessing and downloading data, integrating multiple sources of
data, the different sensors with their individual characteristics, and the sheer quantity of data
can require a sizable investment of effort. The intention of this document is to lower the barrier
to entry and support users in accessing and making use of the rich BGC datasets collected and
provided by the OOI.
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Chapter 1: Introduction

1.1 Scope and Goals
The Ocean Observatories Initiative (OOI) deploys sensors that measure key biogeochemical
properties on both moored and mobile autonomous platforms across ocean observing arrays in
the Atlantic, Pacific, and Southern Oceans (Smith et al., 2018; Trowbridge et al., 2019). These
sensors provide great potential to support the oceanographic community in studying a wide
range of important and interdisciplinary questions. However, OOI biogeochemical (BGC) sensor
data have thus far been underutilized by the oceanographic community. Studies making primary
use of OOI's suite of BGC sensors make up less than 15% of published studies to date known
to have used OOI data. One reason for this underutilization of OOI BGC sensor data is that
research quantifying biogeochemical fluxes and addressing many questions of scientific interest
(e.g., rates of air-sea CO2 flux, productivity, and export; comparison across sites; monitoring of
long-term changes) require effective calibration and validation, including post-deployment
human-in-the-loop (HITL) processing outside of the scope of what OOI is charged to implement.

This OOI Biogeochemical Sensor Data Best Practices and User Guide is the result of a
grass-roots community effort to broaden the use of OOI BGC sensor data and increase
community capacity to produce analysis-ready data products. This effort brought together an
international group of 39 ocean observing experts, across all career stages, from 19 institutions
and 5 countries, each of whom brings expertise on BGC sensors, data analysis and ocean
observing infrastructure as well as research expertise in ocean biogeochemistry. The initial OOI
Biogeochemical Sensor Data (OOI BGC) Working Group was formed in July 2021 through an
open application process. A three-day virtual meeting in July 2021 launched the activities of the
Working Group, with consensus-building activities to develop the scope and structure of the
Best Practices and User Guide. From July 2021 to June 2022, the Working Group drafted a beta
version of this Best Practices and User Guide that went through two rounds of internal review
within the Working Group. A draft version of this document was Beta Tested by 14 current and
prospective OOI BGC data users, who joined the Working Group members for a 3-day
workshop in June 2022 to provide feedback that was subsequently used in revising and
finalizing the document.

The best practices outlined here encompass four groups of BGC variables and associated
sensors which have been widely deployed across the OOI arrays and are also commonly used
in other ocean observing and autonomous BGC sensor programs.

1) Dissolved oxygen, measured by two sensor types: Aanderaa (now a subsidiary of
XYLEM) optodes, used on most platforms, and Sea-Bird electrochemical sensors, used
on some profiler moorings.

2) Nitrate, measured by two similar instruments using the same optical principles: the In
Situ Ultraviolet Spectrophotometer (ISUS) and the Satlantic (now part of Sea-Bird)
Submersible Ultraviolet Nitrate Analyzer (SUNA).
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3) Carbonate system chemistry (pH and pCO2), measured by Sunburst SAMI sensors
using similar colorimetric reagent methods for both variables, and a Pro-Oceanus sensor
deployed on surface buoys to measure air and surface seawater pCO2 using a
nondispersive infrared detection method.

4) Chlorophyll fluorescence, optical backscatter and fluorescent dissolved organic
matter (FDOM), measured optically by Sea-Bird’s WETLab fluorometer series.

This document is intended to support current and potential users of OOI BGC data from across
the oceanographic research community by synthesizing existing knowledge about best
practices for calibration and validation of the types of BGC sensor data collected by OOI and
context specific to the OOI program. We do not assume any prior knowledge of OOI systems or
procedures, nor does the user need detailed knowledge of the operation of the various sensors
covered in the following chapters in order to implement the procedures described therein. We
have endeavored to ensure that all information is up to date at the time of writing (completed
December 2022) and to point to internal-to-OOI resources that will continue to be updated to
reflect future developments in the OOI program.

In the remainder of Chapter 1, we provide information intended as a starting point and overview
for end users working with any type of OOI BGC data. The following 4 chapters provide
information specific to each of the 4 groups of variables covered here (Dissolved oxygen,
Nitrate, Carbonate system chemistry, and Bio-optical measurements). For a summary of the
overall Best Practices & User Guide document structure and links to key resources, see the
Chapter 0: Quick Start Guide.

1.2 Overview of OOI program and OOI BGC data

1.2.1 Summary of OOI Arrays
The Ocean Observatories Initiative (OOI) is a US National Science Foundation (NSF) funded
major research facility that includes five arrays currently in operation as well as two arrays in the
Southern Hemisphere that were decommissioned in 2017 (with the Southern Ocean Array
collecting data until January 2020, with support from the UK’s Natural Environment Research
Council). All data, including that collected from the now-decommissioned arrays, is publicly
available through the OOI cyberinfrastructure (see Data Access section below). Detailed
descriptions of the OOI program’s development, motivation, and design are available elsewhere
(see especially Smith et al., 2018; Trowbridge et al., 2019, and the current OOI Science Plan:
OOIFB, 2021). Here we provide a summary of the OOI arrays, with a focus on platforms and
instruments collecting the BGC data types addressed in this document.

The OOI includes three array types, each with its own configuration of platforms and
instruments:

● Global Arrays, including two Northern Hemisphere arrays with ongoing measurements,
in the subarctic Northeast Pacific (Global Station Papa Array) and the subpolar North
Atlantic (Global Irminger Sea Array), as well as two now-decommissioned Southern
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Hemisphere arrays (the Global Southern Ocean Array and the Global Argentine Basin
Array).

● Coastal Arrays, including the Coastal Endurance Array, permanently deployed off the
coast of Washington and Oregon, and the Pioneer Array, deployed from the time OOI’s
inception through 2022 at the New England shelf-break front (Pioneer - NES) but
designed to be relocatable and currently being moved to the southern Mid-Atlantic Bight
(Pioneer - MAB), where it will begin operation in 2024.

● Regional Cabled Array (RCA), instrumenting the Juan de Fuca tectonic plate in the
Northeast Pacific, uses two electro-optical cables to stream real-time data from water
column, seafloor, and sub-seafloor sensors. The coastal component of the RCA
(including Slope Base, Southern Hydrate Ridge, and the Oregon Offshore and Shelf
sites connected to the Endurance Array) and offshore at the base of Axial Seamount
include profiling and seafloor platforms equipped with BGC sensors within the scope
discussed here. The network also includes seafloor sensors at Axial Seamount and
Hydrate Ridge focused on understanding connections between volcanism, seismicity,
biogeochemical fluxes, and life in extreme environments which are outside the scope of
this document.

Schematic drawings of each of the OOI arrays, with accompanying captions identifying the
locations within each array of all BGC sensors covered in this Best Practices & User Guide are
provided in the Appendix (Section A7, Figures A.1-A.6).

The OOI program encompasses operations coordinated across multiple institutions to deploy
and maintain these arrays and to provide access to the collected data. As of October 2018,
Woods Hole Oceanographic Institution (WHOI) hosts the OOI Program Management Office,
which coordinates operations across the entire program. The Global Arrays and the Pioneer
Array are operated by the WHOI; the Endurance Array is operated by Oregon State University
(OSU); the Regional Cabled Array is operated by the University of Washington (UW); and OSU
is responsible for the Cyberinfrastructure. While the full operational structure and history of OOI
(see the OOI Science Plan, OOIFB, 2021) are beyond the scope of this document and are not
intended to be information needed by the end data user, it can be helpful to be aware of
differences in institutional operators especially when comparing data across multiple arrays
operated by different institutions.

The OOI arrays include three main types of platforms equipped with BGC sensors:

● Moorings with sensors at fixed depths - these include both surface moorings, which
have instrumented surface buoys, and sub-surface moorings; in both cases sensors are
deployed at multiple fixed depths through the water column.

● Profiler moorings - these moorings collect regular vertical profiles, using a combination
of profiler technologies customized for the OOI program: sub-surface Wire-Following
Profilers based on the McLane Moored Profiler deployed on the Coastal and Global
Arrays and as Cabled Deep Profilers at the RCA; winched Cabled Shallow Profiler
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Moorings at the RCA; and Coastal Surface-Piercing Profilers on the Endurance Array
that sample across the air-sea interface as well as through the water column.

● Mobile platforms including gliders and autonomous underwater vehicles (AUVs) -
Slocum gliders from Teledyne Webb Research transit the arrays, collecting profile data
through the water column. Glider missions include collecting data in portions of the water
column not sampled with the moorings (i.e., collecting profiles that include the upper
water column above sub-surface profiler moorings) and array transits that pass by the
moorings in a regular pattern. AUVs are deployed at the Pioneer Array during
turn-around cruises.

Table 1.1 summarizes the BGC sensors deployed across each of these platform types across
each of the OOI arrays. Each sensor type is discussed in detail in the chapters that follow in the
remainder of this document. Additional details about the configuration of the platforms within
each array can be found through the OOI website and the current OOI Science Plan (OOIFB,
2021) and detailed information on the observation and sampling approaches for all data
collected by mobile and moored sensors are provided here.

BGC sensor distribution within each of the array platforms is aimed to optimize for
measurements of maximal scientific interest; for instance, fixed depth BGC sensors on Global
Array moorings are all found within the top 130 m of the water column, and most densely
concentrated on the surface buoy (1 m) and near-surface instrument frame (12 m). The four
Global arrays have similar configurations but differ in the exact number and configuration of
sensors: for instance, the number of profiler sensors is halved at the Irminger Sea site because
separate deep and shallow profilers are not needed due to the shallower water depth, and the
number of fixed sensors is significantly reduced at Station Papa because OOI does not deploy a
surface mooring due to the presence of a NOAA surface mooring at that site.

During deployments, instruments are set to both transmit data and, for those with onboard
storage, record internally. Additionally, data is recorded by the mooring computers.. OOI
provides data in near-real time, streamed from the Regional Cabled Array, and telemetered from
surface moorings and gliders on the Global and Coastal Arrays. Telemetered data provided in
near real time is generally decimated, due to the limitations of transmitting large amounts of
data in challenging conditions and with limited battery power, particularly for glider and
sub-surface mooring data being transmitted by the gliders. Recovered data, added after
deployments have been completed and all assets have been recovered, are more complete, but
at times may be missing data that was previously telemetered (for instance, if a sensor or
platform experienced a major failure or was lost part way through the deployment).
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Table 1.1. Summary of BGC sensors included in the scope of this document and numbers
deployed across all OOI arrays. Deployed sensors of each type are summarized among all fixed-depth
mooring deployments, profiler moorings, and gliders at each site. Since the number of active gliders has
varied across deployments, here we assume two gliders deployed at a time per array. This summary
excludes autonomous underwater vehicles (AUVs) deployed at Pioneer during turn-around cruises.
Benthic experiment packages at the Endurance Array are included in the “fixed” platform count.

Array Platform

Dissolved oxygen
(Chapter 2)

Nitrate
(Chapter 3)

Carbonate system chemistry
(Chapter 4)

Bio-optics
(Chapter 5)

Aanderaa Sea-Bird SUNA/ISUS pH:
SAMI

pCO2:
SAMI

pCO2:Pro-
Oceanus

WetLabs
fluorometers

Global
Irminger

Fixed 7 0 2 4 4 1 7

Profiler 1 0 0 0 0 0 1

Gliders 2 0 1 0 0 0 2

Global
Papa

Fixed 2 0 0 2 0 0 2

Profiler 2 0 0 0 0 0 2

Gliders 2 0 1 0 0 0 2

Global
Argentine
(suspended
Jan. 2018)

Fixed 2 0 2 3 3 0 5

Profiler 2 0 0 0 0 0 2

Gliders 2 0 1 0 0 0 2

Global
Southern
(suspended
Jan. 2020)

Fixed 4 0 2 4 3 1 5

Profiler 2 0 0 0 0 0 2

Gliders 2 0 0 0 0 0 2

Coastal
Pioneer
(NES)

Fixed 6 0 3 6 3 3 3

Profiler 0 7 0 0 0 0 7

Gliders 2 0 2 0 0 0 2

Coastal
Endurance

Fixed 13 0 6 13 9 4 8

Profiler 5 2 5 1 1 0 8

Gliders 2 0 0 0 0 0 2

Cabled
Fixed 4 0 0 2 0 0 2

Profiler 2 2 2 2 2 0 6

OOI program total 64 11 27 37 25 9 72
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1.2.2 Charge of the OOI program
OOI’s charge is to deploy and maintain the arrays and to ensure the delivery of the data, but
intentionally separates data analysis and interpretation from the operation of the program. The
OOI data delivery is supported by a wide range of activities, and the purview of the OOI
includes:

● Designing, building, and deploying all platforms within the arrays
● Regular turn-around cruises (1 or 2 times per year) to service each array, including

recovery of previously-deployed moorings and gliders, deployment of new moorings and
gliders that will collect data over the next deployment period, and collection of data and
discrete samples from CTD casts co-located with OOI assets

● Maintenance of all sensors deployed on the array platforms, including ensuring that
instruments are calibrated and tested in accordance with vendor-supplied instructions

● Making publicly available to the community all data collected by all deployed sensors,
data collected during shipboard deployment/recovery cruises, and documentation of
metadata related to the platforms, instruments and operation of the arrays

This final point, making the data publicly available, is the key product of the OOI program. It is
important to note, however, that OOI’s purview does not include curating the data to produce
final analysis-ready data products. However, OOI does undertake preliminary data processing
steps for all sensors, with raw sensor data undergoing a standard set of processing and QA/QC
procedures prior to being served to end users via the OOI cyberinfrastructure. These steps are
summarized in Section 1.3 below.

Particularly for the BGC sensors and data types covered in this document, development and
implementation of comprehensive QA/QC procedures needed to produce analysis-ready data
products requires significant HITL effort. A 2012 report from the COL-NASA Data QA/QC
Workshop, convened as OOI prepared for initial operations, estimated that 20 people’s full-time
effort would be necessary to provide this comprehensive QA/QC for the entire OOI program;
however, funding constraints prevented inclusion of this level of effort internal to the OOI
program. Recognizing the importance of this work, OOI has recently increased the amount of
full-time equivalent effort from 4 to 5.85 people. The efforts of the OOI BGC Working Group and
the information provided in this document are therefore aimed at supporting end users in
understanding the data processing and QA/QC that is completed internally by OOI, as well as
implementing additional QA/QC steps to produce their own analysis-ready data products for
scientific applications.

1.3 Internal to OOI Data Processing and QA/QC procedures
Although it is beyond the OOI scope to produce their own analysis-ready data products for the
BGC sensors, OOI does undertake initial data processing as well as some basic QA/QC. In this
section we describe the data processing and QA/QC steps that are uniform across all sensor
types, with sensor-specific details contained within each of the individual data type chapters.
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1.3.1 Overview of processing steps common to all sensor types
Here we provide an overview of the approach that OOI applies to processing all data types, with
detailed BGC sensor-specific information on these data processing steps covered within each of
the following chapters. Flowcharts summarizing the internal-to-OOI data processing to
produce user-ready output from each BGC sensor type are included in each chapter.

Data are received by OOI either streaming via the cabled network in real time, or in batches
telemetered to shore via an Iridium or broadband (e.g., cellular) modem. Additional data may be
downloaded from the instruments and from the platforms hosting the instruments after the
platforms and instruments are recovered during normal maintenance cruises. OOI parses all
data received into tables in an internal-only Cassandra database, with each table in the
database corresponding to a specific instance of a site, node, sensor, data delivery method and
stream name. These individual tables constitute the unique data sets representing the more
than 800 instruments served by OOI.

The received data are parsed and stored into the tables essentially unchanged, although in
some cases date/time strings are converted into time in seconds since 1900-01-01, or bitmaps
are decoded to access error flags. Additionally, copies of the unparsed data are stored and
archived by OOI in the Raw Data Archive. Within each parsed data set, individual parameters
(or variables) may be identified by OOI as a Science Data Product. Each of the Science Data
Products may have one or more processing levels associated with it. OOI classifies those
processing levels as Level 0, 1 or 2.

● Level 0, or L0 Data Products are unprocessed parameters within a data set reported by
the instrument in native instrument/sensor units and resolution. No QC tests are applied
to L0 data products.

Example: raw chlorophyll-a fluorescence data reported by the Sea-Bird Electronics
ECO-Triplet (FLORT) sensor in counts (CHLAFLO-L0).

● Level 1, or L1 Data Products may be derived from L0 data products. They may also be
reported directly by the instrument in the data set. They represent parameters that have
been processed using vendor-provided calibration values and/or algorithms, or values
derived from pre-deployment procedures, and that are in scientific units. L1 data
products have usually also undergone some QA/QC procedures, utilizing simple
automated techniques and human inspection. More information on QA/QC procedures
routinely performed by OOI are outlined in detail below. The processing steps that were
performed to transform an L0 Data Product to an L1 Data Product are recorded in the
associated metadata of the L1 data product if OOI performed the conversion.

Example: L0 count data from fluorometers are converted to the L1 fluorometric Chlorophyll-a
concentration (CHLAFLO-L1) using manufacturer’s conversion factors.

● Level 2, or L2 Data Products are derived quantities created via an algorithm that draws
on multiple L1 Data Products. L2 data products may be based on combined L1 data
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products from the same instrument or a combination of L1 and/or L2 data products from
separate instruments.

Example: L1 conductivity (CONDWAT-L1), temperature (TEMPWAT-L1), and pressure
(PRESWAT-L1) data products are used to calculate the L2 practical salinity data product
for the CTDs used by OOI. For multiple of the BGC sensors, L1 temperature
(TEMPWAT-L1) and L2 practical salinity (PRACSAL-L2) data products are then used in
conjunction with BGC sensor L0 and/or L1 output to produce an L2 product.

It is important to understand how OOI uses the term Science Data Product, and their associated
processing levels, as their usage differs from common expectations. Rather than considering an
entire data set as an L0, L1, or L2 data product with distinct processing steps and levels
between each data set, individual parameters within the data set are identified as data products.
It is possible for a data set to contain multiple parameters identified as Science Data Products,
with potentially multiple processing levels for those parameters included, in addition to other
parameters that are not classified as data products. For example, data sets from Aanderaa
dissolved oxygen sensors deployed on surface moorings contain 21 parameters, only 4 of which
are identified as Science Data Products (2 L0’s, 1 L1, and 1 L2). The user-ready output for
each sensor type is described in each chapter and highlighted in the flowchart
summarizing the internal-to-OOI data processing for that sensor.

1.3.2 Current OOI QC procedures for BGC data streams
The OOI data QC procedures are designed to meet the following U.S. Integrated Ocean
Observing System (IOOS) Quality Assurance of Real Time Ocean Data (QARTOD) quality
control standards (Toll, 2012):

● Every real-time observation must be accompanied by a quality descriptor
● All observations should be subject to automated real-time quality tests
● Quality flags and test descriptions must be included in the metadata
● Observers should describe methods/calibration in the metadata
● Observers should quantify level of calibration accuracy and expected error

In order to achieve these standards, OOI data are evaluated with both manual and automated
QC tests. Manual tests are performed by data evaluators, and include “Quick Look” tests where
evaluators perform a first pass evaluation of the data with automated tools, and “Deep Dives”
where evaluators more closely inspect data flagged as failed or suspect and may consult further
with subject matter experts. Data that are flagged as failed or suspect during manual inspection
are annotated as such HITL Data Annotations are described in Section 1.3.3). In addition to the
manual tests, data products are also processed through automated QC procedures.

Over the period that this Best Practices & User Guide was written (2021-2023), OOI has been in
the process of transitioning from its original set of automated QC algorithms to new
implementation of QARTOD tests. These QARTOD tests represent best practices developed
and disseminated by IOOS. For up-to-date information on OOI’s internal quality control
practices, users should refer to OOI’s Quality Control webpage. This webpage provides the
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rollout plan and implementation timeline for new quality control tests, as well as regularly
updated information on which quality control tests are currently available to end users. It also
provides information on the now-deprecated set of automated QC algorithms implemented by
OOI prior to the QARTOD rollout.

Where implemented, data products that have been tested using QARTOD style tests will have
two additional parameters added with _qartod_results and _qartod_executed added to the
parameter name. The _qartod_results variables are integer values between 1 and 9 that follow
the QARTOD flagging conventions, where:

● 1 = Pass: Data have passed critical real-time QC tests and are deemed adequate for
use as preliminary data.

● 2 = Not Evaluated: Data have not been QC-tested, or the information on quality is not
available.

● 3 = Suspect or of High Interest: Data are considered to be either suspect or of high
interest to operators and users. They are flagged to draw further attention to them by
operators.

● 4 = Fail: Data are considered to have failed one or more critical real-time QC checks. If
they are disseminated at all, it should be readily apparent that they are not of acceptable
quality.1

● 9 = Missing Data: Data are missing; used as a placeholder.

The _qartod_results variables are summary flags, representing the maximum flag value from all
of the tests applied. The _qartod_executed variables are strings with a list of the individual
results of each test performed. The metadata associated with each of these variables includes
descriptions of the tests, the results, and the order of the results. At this time, OOI is focused on
implementing the Gross Range and Climatology tests from QARTOD for all sensors. As of
March 2023, these tests have been implemented for CTDs, pH, and pCO2 sensors, with tests for
dissolved oxygen and fluorometric chlorophyll sensors in process. The test limits used for the
older QC tests and the newer QARTOD tests can be found in this GitHub repository.

1.3.3 Human-in-the-Loop (HITL) Data Annotations
Automated QC flags are supplemented within OOI’s internal data processing by Annotations
that provide technical notes or qualitative data assessments of the instrument added by staff
from the institutions operating the sensors. They represent the first HITL QC review of the data
coming from the sensor. Annotations are ideal for removing known and identified bad data from
a dataset before further processing. While it is not within the purview of OOI to comprehensively
flag all such issues, existing annotations will provide valuable and time-saving information to
support end user analysis.

Annotations contain important information about the state of the sensors and/or the platforms
they are deployed on. This can include known data gaps, sensor or platform failures, power or

1 OOI is committed to delivering all data, whether flagged as “Fail” or not.
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communications disruptions, changes in instrument configuration or sampling rate, data quality,
and suspect/interesting data values. There are a number of pre-set flags which may be
associated with these annotations to indicate their topic: fail, not_available, not_evaluated,
not_operational, pass, pending_ingest, suspect, or "note" (which means it doesn't fit the other
categories). Depending on the type of information being annotated, annotations may either be
open-ended, with a start time and no end time, or may have both a start and end time. Similarly,
some annotations will indicate issues that affect an entire platform, while others will indicate
more specific concerns with a particular sensor or data stream.

End users are recommended to review all annotations that appear in a search for their
target BGC data stream to evaluate any potential impacts. Annotations are "live" in that they
are constantly being updated/added to as deployments start/stop and/or instruments are
reviewed. End users might therefore want to revisit the annotations from time to time to see if
there have been any issues noted since the last time they requested the data.

1.4 OOI Data Access
The goal of this best practices and user guide document is to serve as a resource to users
accessing data through any of OOI’s supported approaches, including through future planned
changes in OOI’s supported data access tools. This document is therefore not intended as a
guide for how to access OOI data. The OOI website includes a starting page on “How to
Access Data” that synthesizes a variety of different approaches for accessing the data collected
by the OOI program. This page is regularly updated and should be a user’s primary resource for
information and guidance on how to access OOI data.

There are two main sensor data access tools we recommend and use in examples throughout
the rest of this document. In 2021, OOI deployed a new tool, the Data Explorer, intended as a
new primary means for users to access and visualize OOI data.The OOINet Data Portal was
the primary means of accessing OOI data before the Data Explorer was developed. As of
December 2022, not all data streams were available through the Data Explorer; however, all
data streams will eventually be available. The Data Explorer and OOINet Data Portal are the
primary sources for sensor data and HITL annotations discussed throughout the rest of this
document, although other data access options may be preferred for some user applications.
Both the Data Explorer and OOINet Data Portal provide data visualizations that can assist end
users in the preliminary steps of identifying data that may be suitable for their target analyses.
Once target BGC data has been identified, however, end users should download or pull these
datasets for further inspection and processing to prepare the datasets for analysis.

The GitHub repository for Worked Examples provided as a supplementary resource to this
document (see Section A5) also includes two data access examples for users who would like to
see an application of current data access methods for OOI BGC datasets.
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Figure 1.1. Summary of recommended end user quality control and data processing steps
common to all of the OOI BGC sensors.
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1.5 Overview of end user QA/QC recommended for all sensor
types

To prepare analysis-ready data products from OOI BGC sensor data, end users must undertake
additional QA/QC and calibration steps beyond those completed internally by OOI. We describe
here recommended end user quality control and data processing steps common to all of the
BGC sensors, which are summarized by an accompanying flowchart (Figure 1.1). Chapters 2-5
provide detailed instructions on the sensor-specific application of these processing steps, with
additional flowcharts in each chapter illustrating the sensor-specific application of these
processing steps.

1.5.1 Assemble data
The end user data processing workflows recommended in this document are predicated on
users assembling three types of data that are needed to create analysis-ready BGC datasets.
These data assembly steps can be completed using any OOI-supported data access approach
of the end user’s choice (see Section 1.4 on OOI Data Access).

1. Sensor data. This includes:
a. The BGC sensor data the user intends to prepare for analysis
b. Flags from OOI’s currently-implemented QC tests (see Section 1.3.2), which

should be automatically included along with the BGC sensor data
c. Data from a co-located CTD (temperature, salinity, pressure/depth, and

timestamp for alignment with the BGC sensor data), deployed alongside all BGC
sensors in the OOI program. In cases where CTD variables are used in OOI’s
internal processing of the BGC data stream, those variables will be provided
along with the BGC sensor data stream. For many BGC variables, however,
some or all CTD data are not included and the end user will need to separately
download and align the BGC and CTD data streams.

2. OOI HITL Annotations (see Section 1.3.3) for all sensor data streams. End users can
access OOI’s data Annotations through both the Data Explorer and OOINet Data Portal.
These annotations can be viewed directly in designated “Annotations” tabs within the
web interfaces for these tools, as well as downloaded for later review. In Data Explorer,
annotations can be directly downloaded as a csv table from the Annotations tab. In the
OOINet Data Portal, the user can check the box for “Download Annotations” when
downloading their desired data streams.

3. Turn-around cruise data. Discrete sample data collected on turn-around cruises are
available through the Data Explorer, and can also be accessed through an OOI
managed document storage system called Alfresco. The Alfresco server is a repository
of all turn-around cruise data and array documentation, including: vendor documentation
on delivery, recalibration, and refurbishment of instruments, OOI’s internal design
documents and pre- and post-deployment testing documentation for all instrument and
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platforms, cruise reports for all turn-around cruises to service the arrays, and all data
collected on those cruises, including CTD cast and discrete bottle sample data.

Sampling logs and summary sheets for discrete water samples collected upon
deployment and recovery can be found on the Alfresco Server using the following path:

OOI > {Array ID} > Cruise Data > {Cruise ID} > Ship Data >
Water Sampling

Further details about the turn-around cruise data and documentation on accessing data
and documentation from the Alfresco server are provided on OOI’s “Cruise Data”
webpage.

1.5.2 Evaluation and cleaning
The initial steps in recommended end user processing for all OOI BGC sensor datasets focus
on preparation of a “cleaned” dataset, applying both automated and HITL QA/QC. This
encompasses end user application of the QA/QC steps completed as part of the internal-to-OOI
data processing described above, as well as recommendations for additional processing steps
not yet implemented by OOI or that require special attention for working with BGC sensor data.

The flowchart summary of this step (Figure 1.1) emphasizes the iterative nature of the process
of preparing a “cleaned” dataset ready for further processing. We recommend that users begin
by plotting and inspecting the sensor data, and then following each of the subsequent steps
iteratively to identify data that may need to be filtered or removed.

1. Evaluate and apply the OOI-provided HITL Data Annotations. The Data Annotations
process completed internally within OOI is the first HITL step in identifying commonly
known issues. End users should precede their own data inspection by reviewing these
annotations, which will identify many known issues, such as from platform malfunctions
or instrument failures.

2. Evaluate and apply the OOI-provided data quality flags. These tests are a valuable
initial step in identifying suspect data points. Note that data flagged by these QC
algorithms are not necessarily bad, but “of interest” and require further human scrutiny.
These data could be flagged by the system because of a sensor issue or because of a
previously unobserved phenomenon. At the time of writing this document, the majority of
these QC algorithms are still in development by the OOI data team for automated
application to BGC data.

3. Apply additional QA/QC algorithms based on published QARTOD
recommendations. We recommend that end users currently working with these data
streams apply their own automated algorithms for QARTOD tests included in the IOOS
Real-time Quality Control Manuals that have not yet been implemented by the OOI data
team. These manuals distinguish tests as “required,” “strongly recommended, or
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“suggested,” providing guidance on prioritization as users determine which tests to
implement themselves. Chapters 2-5 provide more detailed information, context and
recommendations for development and application of automated QARTOD algorithms
for each of the BGC sensor data types.

4. Manually inspect data to identify and address commonly-known issues. Since
comprehensive HITL inspection of all datastreams is not within the OOI purview,
additional end user HITL data cleaning is needed. This is critical to identify issues such
as biofouling, offsets from factory-supplied sensor calibration, or drift over the course of
a deployment. Each of the sensor-specific chapters that follow within this document
highlight known issues which are especially common for these sensor types, or to which
these data types are especially sensitive.

1.5.3 Sensor-specific quality control
Chapters 2-5 provide descriptions and examples of sensor-specific issues that require additional
inspection by the end user to identify and address to produce a clean, analysis-ready final
dataset. End users should be sure to reference the sensor-specific flowcharts and section on
Common Data Quality Issues within each chapter, and inspect their own datasets for these
issues before proceeding.

1.5.4 Validate and correct sensor data based on OOI turn-around cruise
data
OOI turn-around cruises to recover previously-deployed assets and deploy replacements
include routine CTD casts co-located with moored platforms and just-deployed gliders and
AUVs, and the collection of discrete samples from Niskin bottles sampled on those casts. For
all sensor types, we recommend that end users identify and include in their analysis
relevant co-located CTD cast and discrete sample bottle data.

Bottle data provide an opportunity to validate the sensor measurements against
independently-collected measurements with the accuracy and precision of wet chemistry
laboratory analyses. For some sensor types (e.g., oxygen), CTD casts will routinely include a
comparable sensor attached to the CTD collecting full depth profile data as well as discrete
bottle samples, whereas for others (e.g., carbonate system chemistry and nitrate), these
validation data are restricted only to bottle samples. Full details of the types of validation data
routinely collected by OOI for each BGC variable are discussed in detail in the individual
chapters of this document.

Interpretation and use of turn-around cruise data to validate and/or correct sensor
measurements will depend on spatial and temporal variability of the array site at the time that
these data were collected. This is especially important in highly dynamic and heterogeneous
environments, such as coastal surface waters. We therefore provide guidelines for key factors to
consider in applying these data rather than a prescriptive recipe for validation and correction:
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➔ End users should complete their own quality control on the calibration cast CTD and
discrete sample data from OOI turn-around cruises. Discrete water sampling data from
each turn-around cruise is accompanied by a README file (found in the same
sub-folder within the Alfresco server as the summary and individual variable data). We
recommend that end users review this README information about how discrete
samples were collected and perform their own manual inspection and quality control of
discrete sample data prior to comparing with the sensor data. The README files
describe sample collection and processing data flags provided by OOI in the summary
sheets, which can assist the end user in identifying issues with data collection that may
affect the end measurements.

➔ CTD data (available on OOI’s Alfresco server and the Rolling Deck to Repository (R2R))
can be used to assess alignment between data collected from cruise CTD casts and the
mooring and/or mobile platform data they are intended to validate. All BGC sensors on
OOI platforms are co-located with CTDs, facilitating this comparison. We recommend
that comparison of temperature and salinity be included alongside the biogeochemical
variable of interest in comparison of validation samples from cruise CTD casts (both from
BGC sensors and bottle samples) with mooring and/or mobile platform data.
OOI-provided CTD data has not been corrected for alignment with discrete salt samples,
so end users may want to make their own salinity corrections to the CTD data;
salinity-calibrated CTD data for several cruises to the Irminger Sea Array are available
as “Community Datasets Derived from Cruise Data” linked from OOI’s Community Tools
and Datasets webpage.

➔ Shipboard data collected from the continuous underway seawater system on turn-around
cruises (available on OOI’s Alfresco server and the Rolling Deck to Repository (R2R))
provides an additional valuable data source for assessing spatial variability. Note when
applying these data that attention to careful cleaning and calibration of shipboard
underway seawater systems may vary, and attention should also be paid to QA/QC of
these data.

➔ Approaches to comparison between turn-around cruise data and OOI-deployed sensors
will differ for moored sensors deployed at fixed depths versus for profiling assets (profiler
moorings and gliders).

◆ For profiling assets, more robust comparisons are possible by using full profiles,
incorporating validation data from multiple bottle samples and/or full-depth
profiles from sensors included in the ship’s CTD package (illustrated in the
Nitrate and Bio-Optics Worked Examples; see Sections 3.6 and 5.6). We
recommend that comparisons incorporate full depth profiles, using associated
temperature and salinity data in combination with depth to ensure alignment of
water masses. In making these comparisons, it is important to account for sensor
response time and resultant lag issues, which for some sensors will require
correction prior to making these comparisons.
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◆ For fixed depth moored sensors, the OOI discrete sampling program prioritizes
collection of discrete bottle samples at depths matching the depths of moored
sensors. To assess alignment between these individual bottle samples and the
moored sensor, we recommend that end users incorporate full CTD depth
profiles from the cast where the bottle sample(s) were collected, as well as
temporal variability as recorded by the moored sensor in question.

➔ In some cases, samples collected on turn-around cruises can be used to correct for
offsets in the sensor measurements (e.g., a gain correction). This is especially important
in cases where sensors are known to drift between the time of factory calibration and
deployment and where the sensor does not include a reference standard (e.g., oxygen
sensors). However, especially in cases where the number of samples available for
comparison is limited (e.g., fixed depth sensors being compared with a single
depth-aligned bottle sample), differentiation between potential sensor offsets requiring a
gain correction and expected spatial and temporal variability in the system may not be
possible. In these cases, samples should be used for validation that the moored sensor
measurements and cruise sample(s) fall within a mutually-consistent range given the
spatial and temporal variability at the time of sampling.

1.5.5 Comparisons among co-located data
An advantage of the design of all OOI arrays is the opportunity to intercompare observations
across multiple simultaneously-deployed sensors and platforms. We recommend that end
users identify and leverage these opportunities for intercomparison:

➔ During turn-around cruises, OOI standard operation for all uncabled arrays is to deploy
new moorings prior to recovering those currently in operation. This routinely creates an
opportunity to compare ~1-3 days of simultaneously collected data from
consecutively-deployed moorings at the same location (illustrated in the Oxygen Worked
Example, see Figure 2.6). However, note that this overlap data may be absent in cases
where ship operations were modified to adapt to adverse weather conditions, and cases
of instrument or platform failure or power loss prior to recovery. Data accessed via Data
Explorer are stitched together across multiple deployments, removing information about
individual deployments. Data accessed via the Data Portal separately provide data for
each subsequent deployment and include a “deployment” variable, and so are
recommended for assessment of overlap periods. In most cases, the co-located
calibration cast from the turn-around cruise will be timed during the period when both
moorings are in the water, providing additional context for this overlap period.

➔ Throughout each deployment, comparison is also possible among sensors measuring
the same variable at different locations within the array (Table 1.1, Figures A.1-A.6). The
inclusion of gliders that transit between the moorings throughout each deployment
provides an opportunity to compare measurements from glider profiles collected in
proximity to the moorings with both fixed-depth and profiler mooring measurements. In
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some cases, multiple fixed depth sensors may also be measuring the same water mass
(e.g., multiple measurements within a deep surface mixed layer), providing an
opportunity to check sensor agreement. Careful assessment of spatial and temporal
variability is again necessary to contextualize and identify appropriate opportunities for
these comparisons.

➔ All BGC sensors are deployed alongside CTDs providing temperature and salinity data,
and all OOI arrays include multiple BGC sensors. In addition to providing rich
opportunities to address scientific questions, these combinations of sensors are also
useful in data QA/QC. We recommend that end users leverage the combinations of
multiple variables from simultaneously-deployed sensors (e.g., property-property plots,
correlation analysis, etc.) to provide additional validation of sensor performance. This
may be especially helpful in cases of unusual signals, where a co-variation across
multiple variables measured on multiple sensors would be expected from a real
environmental signal whereas an anomaly in a single variable may instead reflect a
sensor malfunction.

➔ External-to-OOI datasets in the vicinity of the OOI arrays can provide additional
measurements of the BGC variables measured by OOI (e.g., discrete samples from
GO-SHIP repeat hydrography or Line P cruises to the Station Papa array). These data
can provide an opportunity to compare additional validation data beyond that provided
by the OOI program. We recommend that end users consider whether any such external
datasets are available and incorporate them into validation and QA/QC of OOI data
where close-enough alignment with such an external dataset makes this possible.

1.6 Outlook and Concluding Remarks
This guide aims to present the current best practices for the use of OOI BGC sensor data at the
time of its writing in 2022, while recognizing that both the OOI program and the BGC community
will continue to develop new best practices over time. As of November 2022, the Pioneer Array
ceased operation at the New England Shelf and began the process of being relocated to the
Mid-Atlantic-Bight, to start data collection in the fall of 2024. This move will entail changes to the
configuration of the array, with the possibility of the existing sensor suite being deployed in
different ways. However, in this case, the contents of this document will still apply. It is also
possible that new sensors will be added to the arrays over time, and that new array
configurations with respect to the spacing between assets or the timing overlap between
deployments may require considerations beyond the scope of this document, which is primarily
concerned with the existing individual elements of the arrays (i.e., the sensors). However, we
also envision that this guide will be reviewed and updated as needed at appropriate intervals,
taking these changes into account.

28

https://www.go-ship.org/
https://www.waterproperties.ca/linep/


Chapter 2: Dissolved oxygen

2.1 Introduction to OOI Dissolved Oxygen Sensors
There are two types of dissolved oxygen (DO) sensors within the OOI program. The first type,
the Fast Response Dissolved oxygen (DOFST, contraction of DO FAST) instrument
manufactured by Sea-Bird Electronics, is used to measure dissolved oxygen concentration on
shallow coastal profilers through strong oxygen gradients. The second type, the Stable
Dissolved oxygen (DOSTA, contraction of DO STABLE) instrument manufactured by Aanderaa,
is used on mobile assets, deep profilers, and at fixed-depths on moorings.

Table 2.1: Manufacturer, model and internal-to-OOI instrument class-series (six letter reference
indicator) for the four models of oxygen sensors operated by OOI, and the platforms on which
they are deployed. For the class-series, the class DOFST represents “Dissolved oxygen Fast Response”
(Sea-Bird sensors) and DOSTA represents “Dissolved oxygen Stable Response” (Aanderaa optodes).
The last letter of the class-series is an internal classification by OOI and represents the series
(determined by specifications related to the sampling rate, deployment duration, deployment depth, etc.).
For a summary of where oxygen sensors are deployed across the full OOI program, see Table 1.1. For
deployment locations within each array, see Figures A.1-A.6.

Manufacturer Model OOI
Class-Series

Platforms

Sea-Bird
SBE 43 DOFSTA Subset of Cabled & Endurance Profiler moorings

SBE 43F DOFSTK Pioneer Profiler moorings

Aanderaa

Optode 4330
DOSTAN Pioneer AUVs

DOSTAL Global sub-surface Profiler moorings

Optode 4831

DOSTAD Fixed depths on all array moorings; subset of
Cabled & Endurance Profiler moorings

DOSTAJ Endurance surface-piercing Profiler moorings

DOSTAM Gliders

The OOI deploys two different models of Sea-Bird SBE instruments (SBE 43 and SBE 43F) and
two different models of Aanderaa Optodes (optode 4330 and optode 4831). An overview of the
measurement principles for the Sea-Bird and Aanderaa sensors is available through the IOCCP
and BONUS INTEGRAL course for ocean biogeochemical sensors and a review paper by Bittig
et al. (2018). Briefly, the SBE sensors use a membrane-covered polarographic probe (Clark cell)
that determines dissolved oxygen concentration by measuring the flux of oxygen molecules per
second that diffuse through the membrane to the electrode, and which consumes oxygen as it is
measured. The SBE 43 is designed for use with pumped CTDs (sample water pumped through
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a tube) to provide optimal correlation with CTD measurements, whereas the 43F is easily
integrated onto moored profiling platforms. More information on the differences between SBE 43
and SBE 43F is available on the manufacturer’s website. The Aanderaa optode operates on
dynamic luminescence quenching, which measures oxygen through a non-consumptive
method. The two Aanderaa optode models are similar but have different connectors, optimal
operating depths, and response times, and are therefore deployed on different platform types.
These operating differences are described on the manufacturer’s website. The manufacturer
and model of oxygen sensors on each type of OOI platform is summarized in Table 2.1.

2.2 OOI standard practices for oxygen sensor deployment and
calibration

2.2.1 Calibration information
When purchased, both Aanderaa and Sea-Bird sensors undergo a multipoint calibration across
different combinations of temperature and dissolved oxygen saturation by their respective
manufacturers. Multi-point calibrations are required to characterize the nonlinear response of
the oxygen optode at different oxygen concentrations and temperatures.

Aanderaa Optodes
When purchased, Aanderaa optodes models 4330 and 4831 undergo a multipoint calibration
across a surface of 40 different combinations of temperature and dissolved oxygen saturation by
the manufacturer (Aanderaa, Norway). Once optodes undergo this multi-point calibration, Bittig
et al. (2018) has demonstrated that timely two-point calibrations (0 and 100% saturation) in
conjunction with the original multi-point calibrations are sufficient for maintaining accurate
calibration of sensors. Optodes within the OOI undergo a two-point calibration after being
deployed for 6 months or after two years from previous calibration, whichever comes first. If this
2-point calibration results in a large slope or intercept (slope >~1.2, intercept >~10), or a major
change from the prior 2-point calibration, the optode is returned to the manufacturer for a
multipoint calibration. The original multipoint calibration sheets provided by the manufacturer
and the 2-point calibrations performed by OOI are available on the Alfresco server:

OOI > Instrument & Platform Documents > Calibration and Repair
> {Array type - Coastal-Global or Cabled} > DOSTA

Multi-point calibration coefficients are uploaded to a calibration folder within OOI’s
asset-management Github repository as CSV files for use in the data processing pipeline. If any
sensor undergoes a subsequent two-point calibration, a new calibration file is created, adding
the slope and intercept from the two-point calibration.
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Sea-Bird Scientific Sensors
At the factory, Sea-Bird performs a multi-point freshwater calibration in a water bath across a
surface of different temperatures and DO concentrations (six different water temperatures and
three or four different oxygen concentrations at each temperature) in conjunction with a pumped
CTD. All calibrations are performed by Sea-Bird, and sensors are sent back to the manufacturer
for multi-point calibrations between deployments. The multipoint calibration sheets provided by
the manufacturer are available on the Alfresco server:

OOI > Instrument & Platform Documents > Calibration and Repair
> {Array type - Coastal-Global or Cabled} > DOFST

2.2.2 Instrument turnaround information
Before being deployed by the OOI, instruments are checked for ground faults and reasonable
data output. They are then powered up and run shoreside (for hours to two weeks) to check for
any electrical issues that may come up. Aanderaa optodes are kept wet and covered with a
sponge during this time period. The sponge and cover are removed on deck right before
deployment. Sea-Bird oxygen sensors, which are integrated into McLane profilers, are delivered
to OOI from McLane dry. OOI fills the tube connecting the CTD and Sea-Bird DO sensor with
water. The plugs on either end are removed right before deployment. Deployments take up to a
few hours, depending on the platform.

Upon recovery, sensors are photographed for signs of damage or biofouling. Sea-Bird CTD and
DO sensors are cleaned and returned to the vendor for calibration. Since mid-2021, OOI has
been performing internal two-point calibration verifications upon recovery of most Aanderaa
optodes (see Calibration Information above). OOI stores Aanderaa optodes dry and in the dark
in between deployments.

2.3 Internal to OOI Data Processing Workflow
Figures 2.1a-b summarize OOI’s internal processing workflow for data from both Aanderaa and
Sea-Bird oxygen sensors. Data processing for oxygen data products depends on the type of
instrument (Sea-Bird vs Aanderaa) and the type of deployment configuration (e.g.,
autonomously deployed, deployed through a CTD) of the oxygen sensors used. Briefly, oxygen
data are transformed from an unprocessed, Level 0 (L0) data product in raw instrument units, to
an intermediate Level 1 (L1) data product, to an OOI-provided Level 2 (L2) data product in μmol
kg-1 that has been temperature-salinity-and pressure corrected using open-source algorithm
code available on GitHub.
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Figure 2.1a-b: Summary of the internal-to-OOI processing workflow for oxygen data from a)
Aanderaa (DOSTA, previous page) and b) Sea-Bird (DOFST, this page) oxygen sensors. The
user-ready data products provided by OOI are not yet analysis-ready oxygen data and require further
processing by the end user to evaluate, clean, and apply corrections to the data. The user-ready output
from OOI’s internal data processing in these figures is the starting point sensor data for the recommended
end user data processing outlined in Section 2.5 and summarized in the flowchart in Figure 2.5.
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Detailed OOI documentation describes the computations used to calculate the L2 product for
Fast Dissolved Oxygen Sensors (Sea-Bird sensors, sensor code = DOFST; OOI Document
Control Number 1341-00521) and for Stable Response Oxygen Sensors (Aanderaa optodes,
sensor code = DOSTA; OOI Document Control Number 1341-00520). Briefly, Sea-Bird oxygen
products are calculated using an algorithm based on that of Owens and Millard (1985) that
incorporates raw voltage data from the Sea-Bird Electronics SBE 43 and 43F Dissolved oxygen
Sensor family of instruments along with L1 and L2 data products from the co-located CTD
instruments. end user products from Sea-Bird sensors are always corrected for salinity,
temperature and pressure from the co-located CTD, whereas oxygen products from Aanderaa
optodes are corrected for temperature using the sensor’s optode foil temperature (Topt)
measured by the optode’s thermistor. Topt is the preferred parameter because the permeability of
the sensor’s foil for oxygen is sensitive to the temperature directly at the sensor’s foil. After this
Topt correction, Aanderaa oxygen products are corrected for salinity and pressure and converted
from μmol L-1 to μmol kg-1 using the co-located CTD data. For both the Aanderaa and Sea-Bird
data processing workflows, instrument-specific calibration coefficients are applied during the
calculation of the Level 1/Intermediate oxygen products.

2.4 Common Data Quality Issues

2.4.1 Oxygen Sensor Drift
Both types of oxygen sensors deployed by OOI, the Aanderaa optodes (DOSTA) and Sea-Bird
SBE43 membrane sensors (DOFST) are subject to drift from factory-calibrated values. It is
critical to check and correct for sensor drift prior to any quantitative interpretation of
oxygen data. Drift in these oxygen sensors has previously been widely documented and
routinely corrected for by the oceanographic community (e.g., Nicholson et al., 2008, Bushinsky
et al., 2016, Bittig et al., 2018). Aanderaa optodes are expected to experience less drift than the
SBE43, hence their designation by OOI as the “stable” oxygen sensor and more widespread
deployment across the OOI program (see Tables 1.1 and 2.1). The tradeoff is that the Aanderaa
optodes have a slower response time than the SBE43, designated by OOI as the “fast” oxygen
sensor and used in place of the Aanderaa optode on coastal and continental shelf profiler
moorings where strong gradients are expected.

There are two types of oxygen sensor drift that need to be corrected to produce accurate
analysis-ready oxygen data: 1) pre-deployment drift between the time sensors are calibrated in
the factory and the time they are deployed (also called ex situ or storage drift; example shown in
Figure 2.2), and 2) deployment drift over the course of a sensor deployment (also called in situ
drift, example shown in Figure 2.3). Oxygen optodes drift more rapidly during storage than
during deployment (order –5% year-1 during storage, as compared to ~0.5-1 % year-1 observed
during deployment on Argo floats; Bittig et al., 2018). Drift of SBE43 Clark electrode oxygen
sensors has been less extensively characterized by the community due to the preference for the
stability of optodes during long-term deployment, but has previously been reported as 5-10%
over a 100 day deployment (Nicholson et al., 2008).
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Figure 2.2. Example of a correction for
pre-deployment storage drift on an
Aanderaa optode deployed on an Open
Ocean Glider at the Global Irminger Sea
Array in June 2018. Discrete (Winkler)
sample oxygen measurements from a
co-located CTD cast shortly after
deployment do not match the uncorrected
sensor-measured Level 2 (L2) dissolved
oxygen from the glider. This mismatch is
the result of storage drift, which can be
corrected for by using Winkler
measurements to calculate a gain
correction applied to the full profile (for
more information on gain corrections see
Section 2.5.4).

Figure 2.3: Example of in situ oxygen sensor drift during deployment of Aanderaa optodes
deployed on the Apex Profiler Mooring at the Global Irminger Sea Array. Data shown are Level 2
(L2) dissolved oxygen data along 2.5°C isotherm (~2300 m) for each of the first six years of deployment.
Oxygen concentrations at these depths are expected to remain stable and observed change over time at
these depths can be used to determine the rate of sensor drift (Takeshita et al., 2013; Palevsky and
Nicholson, 2018). The lower measured oxygen values in the first two years of deployment as compared to
later years is the result of pre-deployment storage drift, which was lessened from deployment year 3
onward by using older, pre-conditioned optodes. For more information on corrections for in situ drift, see
section 2.5.4.

35

https://doi.org/10.1002/jgrc.20399
https://doi.org/10.5670/oceanog.2018.108
https://doi.org/10.5670/oceanog.2018.108


Drift in Aanderaa oxygen optodes is attributed to changes in the sensing foil that decrease
luminescence quenching, which can result from changes in oxygen accessibility to the sensing
foil (i.e., migration of the luminophore molecules within the foil) or oxygen diffusivity within the
sensing foil (Bittig et al. 2018). Drift in optodes is most commonly downward, reflecting a
decrease in sensitivity over time, but upwards drift has also been observed (Bushinsky et al.,
2016). Drift has been observed to occur more rapidly when foils are new, with slower drift
observed in older optodes and those that have undergone a burn-in process to pre-condition
prior to calibration (Bittig et al., 2018). Aanderaa pre-treats foils with a burn-in process before
the foils are mounted on optodes for their initial multi-point calibration. To help reduce oxygen
sensor drift, OOI has added supplemental sensor burn-in as part of their routine pre-deployment
preparation for optodes with new foils, and reuses optodes unless they have been mechanically
damaged. For a comprehensive discussion of storage and deployment drift of oxygen optodes,
as well as suggested methods for minimizing and correcting errors due to drift, see Bittig et al.
(2018), and references within. Note that oxygen optode in situ drift has been most robustly
characterized in the literature for deployment on BGC-Argo floats, with drift generally within
~0.5-1% per year; however the more frequent oxygen sampling on OOI platforms can lead to
faster drift rates (>10% per year, see Table S2 in Palevsky and Nicholson, 2018, and the
Worked Example in this chapter).

Drift in the SBE43 Clark electrode oxygen sensors has different mechanistic drivers than
Aanderaa optode drift, though with a similar result of primarily downward drift over time. The
chemistry of the sensor electrolyte changes as oxygen is measured, resulting in a slow but
continuous loss of sensitivity that produces a continual, predictable drift in the sensor calibration
with time. Downward drift also results from membrane fouling, which contributes to drift by
altering the oxygen diffusion rate through the membrane, thus reducing sensitivity. Drift can
occur both during storage and deployment, with storage drift reduced if the sensor is kept in an
oxygen-free environment. For a more detailed discussion of SBE43 dissolved oxygen sensor
deployment recommendations, cleaning, and storage to minimize drift, see Sea-Bird Application
Note 64.

OOI-provided Level 2 (L2) oxygen data are not currently corrected for pre-deployment
storage drift or in situ drift, so end users must calibrate oxygen data released by OOI to
correct for drift based on concurrent reference data. Reference data can include discrete
sample oxygen measurements (from shipboard titrations), hydrographic profiles calibrated using
discrete sample oxygen measurements, and/or air measurements during surface intervals on
profiling assets (Bittig et al. 2018). For further details on recommended approaches to correct
for both types of drift, see Section 2.5.4.

2.4.2 Oxygen Sensor Time Response
Oxygen sensors have slower response times to changes in ambient conditions than
temperature or conductivity sensors, with considerably slower response times from Aanderaa
optodes than SBE electrodes (hence the designation by OOI of the SBE oxygen sensors as
“fast” for coastal profiling applications in strong oxygen gradients). The oxygen electrodes on

36

https://doi.org/10.3389/fmars.2017.00429
https://doi.org/10.1002/lom3.10107
https://doi.org/10.1002/lom3.10107
https://doi.org/10.3389/fmars.2017.00429
https://doi.org/10.3389/fmars.2017.00429
https://doi.org/10.3389/fmars.2017.00429
https://doi.org/10.5670/oceanog.2018.108
https://www.seabird.com/asset-get.download.jsa?id=54627861706
https://www.seabird.com/asset-get.download.jsa?id=54627861706
https://www.seabird.com/asset-get.download.jsa?code=251034
https://doi.org/10.3389/fmars.2017.00429


the Sea-Bird SBE instruments (SBE 43 and SBE 43F) have a 2-5 sec manufacturer-reported
response time to 63%, whereas the manufacturer-reported response time of Aanderaa optodes
is <25 sec to 63%. The longer response time of the optode is due to the diffusion of oxygen
through the boundary layer at the water-sensor interface and across the sensor foil. Sensor
response times are temperature dependent, with faster response times in warmer waters, and
are also dependent on the deployment application (see Sea-Bird Application Note 64, Bittig and
Kortzinger 2017, and Bittig et al. 2018 for further detailed discussion and characterization of
oxygen sensor response times).

Oxygen data collected on moving platforms (profiler moorings, gliders, and AUVs) need
to be corrected for oxygen sensor response times prior to analysis. Comparison of oxygen
profiles from upward-moving and downward-moving profiles on the same platform provides in
situ data that can be used to characterize oxygen sensor response times (e.g., Bittig et al. 2014,
2018, Bittig and Kortzinger, 2017, Gordon et al. 2020). Availability of paired upward-moving and
downward-moving profiles to use for response time corrections will vary across OOI platforms.
Due to the need to conserve battery power to last throughout full deployments, some OOI
moving platforms such as gliders and the Coastal Surface Piercing Profilers (CSPP) sample
only in one direction. The current OOI practice is to sample on both upwards and downwards
profiles during the initial days of a new deployment to characterize the response time of the
sensors. We recommend that users calculate the sensor- and platform-specific response time
correction based on the data collected during these periods (see Section 2.5.3 for further
details).

2.4.3 Biofouled and scratched sensors
Damage or scratches to the sensor foil and biofouling can both cause an unrealistically large
oscillation in dissolved oxygen on a 24-hr basis. Scratches on the foil can expose photosensitive
foil materials leading to increased diel oscillations. When algae form a biofilm over the foil, their
photosynthesis and respiration can cause larger diel variability in oxygen to occur at the surface
of the foil (i.e., a dramatic increase in dissolved oxygen during daylight hours and corresponding
decrease at night, see example in Figure 2.4), compared to the conditions in the water column.
This enhanced diel signal, when present, usually begins to occur a month or two after a mooring
is deployed. This issue occurs for near-surface moored instruments (i.e., in the euphotic zone).

Since this issue was identified, OOI started deploying UV lamps adjacent to the dissolved
oxygen sensor on moorings and has demonstrated the effectiveness of this approach in
preventing a biofilm from forming on the sensor (Figure 2.4). The UV approach is currently
employed on sensors in the euphotic zone on the Endurance, Pioneer, and Global arrays and
will continue to be used in the future; however, many of the early years of mooring data are
affected by biofouling. UV systems were added to euphotic zone fixed depth oxygen sensors
across the Endurance Array beginning in 2017-2018, with UV lights added to Coastal Surface
Piercing Profilers at the Endurance inshore sites in 2019. Beginning in 2018, UV lights began
being deployed alongside fixed depth oxygen sensors across the Pioneer and Global arrays.
Full details about the addition of these UV lamps to mitigate biofouling are included in OOI’s
HITL Data Annotations. If using oxygen data in the euphotic zone collected prior to
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implementation of the UV lamps, end users should scrutinize the data for potential biofouling
signals.

2.4.4 Issues with ancillary data streams
Level 2 (L2) oxygen products are corrected for temperature, salinity, and pressure using
ancillary data products from co-located CTDs. Oxygen measured using an Aanderaa optode is
corrected for temperature at the foil surface on the Aanderaa optode and then with salinity and
pressure from co-located CTDs. Oxygen measurements made with Sea-Bird sensors are
corrected with temperature, salinity and pressure from the co-located CTD. As a result, errors in
temperature, salinity, and pressure products are incorporated into L2 oxygen products. For
example, see OOI Document #3408-30001: Global Wire Following Profiler Salinity Drift
Correction for discussion of a salinity data issue, which also affects the L2 oxygen data. End
users may need to investigate the quality of ancillary data streams if their scientific purposes
require error less than what may be introduced by issues with ancillary data products.

Figure 2.4: Dissolved oxygen concentrations from the near-surface instrument frame at the
Oregon Shelf Surface Mooring of the Coastal Endurance Array. Two Aanderaa optodes were
deployed simultaneously, one with UV lights (red line) and one without UV lights (blue line). After about a
month of deployment, the Aanderaa optode without UV lights (blue line) reflects oxygen signals
associated with some combination of foil photosensitivity and photosynthesis/respiration of biofouling
growth. The addition of the UV light to the second Aanderaa optode has mitigated biofouling growth on
this dissolved oxygen sensor (red line). Also, post-recovery photos (not shown) reveal that the optode
without the UV light biofouled and the one with the UV light showed no apparent biofouling.
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Figure 2.5. Summary of recommended end user quality control and data processing steps for OOI
oxygen sensor data. These steps will allow the user to evaluate, clean, and apply corrections to the
sensor data provided by OOI (see Figure 2.1a-b) to prepare analysis-ready oxygen data products.
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2.5 Recommended end user Data Processing
The end user oxygen data processing flowchart (Figure 2.5) summarizes additional data
processing that must be performed by the end user to evaluate, clean, and apply corrections to
the OOI-provided oxygen data. These steps are essential to prepare the OOI-provided oxygen
data for scientific applications and analyses, especially those involving quantitative
interpretation.

Chapter 1 of this document provides an overview of QA/QC procedures recommended for all
OOI BGC sensors (Section 1.5), and provides a high-level walk-through and context for each
step in the recommended end user oxygen data processing summarized in Figure 2.5. We
recommend that users intending to work with OOI oxygen data use the flowchart in Figure 2.5
and instructions in Section 1.5 as a starting point and reference for each data processing step.
Here, we walk through each of the steps outlined in Figure 2.5, which synthesize the
approaches end users can take to correct OOI data products for oxygen sensor-specific
behaviors and data quality issues described in Section 2.4.

2.5.1 Assemble data
Users will need to assemble oxygen sensor data, accompanying OOI HITL annotations, and
corresponding turn-around cruise data to use in preparing their final analysis-ready oxygen
data. See Section 1.5.1 for details of each of these components.

Ancillary CTD data (pressure, temperature, salinity) co-located with the oxygen sensor to be
analyzed will in most cases already be merged with the oxygen data stream by OOI since these
data are used in preparing Level 2 (L2) oxygen data. Unless issues are identified when
reviewing these ancillary CTD data (see Section 2.4.4), the OOI-provided L2 Oxygen product
should be used for further data treatment.

OOI turn-around cruises routinely conduct CTD casts near each deployed platform, where casts
include a SBE43 oxygen sensor on the CTD sensor package as well as discrete samples
collected from Niskin bottles where oxygen is measured via shipboard Winkler titration. We
recommend that end users assemble both the discrete bottle data and full depth-resolved CTD
cast data to include in their analysis.

2.5.2 Evaluation and cleaning & sensor-specific quality control
The initial step in recommended end user OOI oxygen sensor data processing is to prepare a
“cleaned” dataset, applying both automated and human-in-the-loop (HITL) QA/QC to evaluate
the data and identify points that may need to be filtered or removed. Section 1.5.2 summarizes
the recommended steps for OOI BGC sensor end user data evaluation and cleaning. Here we
provide additional context on the application of these steps specifically for OOI oxygen data:
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1. Evaluate and apply OOI-provided HITL Data Annotations. Annotations by the OOI data
team identify many platform-wide issues users may need to be aware of (power failure-caused
data gaps, etc.), as well as oxygen sensor-specific issues. Users of oxygen sensor data should
particularly check the Annotations for information about the implementation of UV lamps to
mitigate biofouling (see Section 2.4.3).

2 & 3. Apply QA/QC based on published QARTOD recommendations. As of April 2023,
automated data quality flags for oxygen are in development within OOI (see Section 1.3.2).
Users are encouraged to check for and apply OOI’s automated oxygen data quality flags once
they become available. End users are also encouraged to implement their own automated
quality control tests beyond those provided by OOI and/or to manually inspect data to identify
issues present in their dataset. The IOOS Manual for Real-Time Quality Control of Dissolved
Oxygen Observations provides recommendations for automated QC tests for oxygen sensor
data.

4. Manually inspect data to identify and address commonly-known issues. Oxygen data
users should check especially for evidence of biofouled and/or scratched sensors (see Section
2.4.3). While some examples of this issue will be flagged by OOI-provided Data Annotations,
users should carefully inspect all data in preparation for their own analysis. This issue often
develops part-way through a deployment (e.g., Figure 2.4), so data prior to fouling may be
salvageable for analysis even if later data are compromised.

2.5.3 Response time corrections
Oxygen data from moving platforms (gliders, profiler moorings, and AUVs) requires sensor
response time corrections prior to further analysis. The magnitude of the response time
correction and its influence on the final data will depend on the sensor type (Sea-Bird DOFST
vs. Aanderaa optode DOSTA - see Table 2.1), the deployment configuration and vertical
velocity, and strength of the oxygen concentration gradients through which the data are
collected (see section 2.4.2).

➔ If both upward-moving and downward-moving profiles are collected throughout the full
deployment (usually the case for Wire-Following Profilers and AUVs) we recommend
using data throughout the full deployment to calculate the sensor response time and
assessing whether there are any changes in response time during the deployment
period.

➔ If paired upward-moving and downward-moving profiles are only collected for a subset of
the deployment (for gliders and Coastal Surface Piercing Profilers), we recommend
using the period with paired profiles (usually at the beginning) to calculate the sensor
response time to apply throughout the deployment. The most accurate oxygen optode
response time corrections will be derived by calculating the temperature-independent
boundary layer thickness at the sensing foil, which can be used to calculate the
response time at the in situ temperature (Bittig et al. 2014, Bittig and Kortzinger, 2017).
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➔ For some deployments earlier in the OOI program history, initial paired upwards and
downwards data may not have been collected. In these cases, we recommend applying
a best-estimate lag correction based on information about the sensor type, vertical
velocity speed, and deployment configuration, drawing on other deployments on the
same OOI platform and/or other previously-published estimates on similar platforms
(e.g., Bittig and Kortzinger, 2017 for gliders) though this will lead to greater uncertainty in
the corrected data.

For an example of how to calculate optode sensor response time using paired upward-moving
and downward-moving profiles, along with accompanying MATLAB code that can be applied
across a range of moving platforms, see Gordon et al. 2020. For further information on the
range of community-endorsed best practices for oxygen sensor response time corrections on
gliders, see section 8.3 of the OceanGliders Oxygen SOP (López-García et al., 2022).

2.5.4 Correct based on Turn-Around Cruise Data
Due to the known tendency of oxygen sensors to drift from their factory calibrations over time,
oxygen data collected on turn-around cruises are critical for preparing final analysis-ready
oxygen data. Section 2.4.1 provides background on oxygen sensor drift, and Section 1.5.4
summarizes recommendations for using OOI turn-around cruise data to validate and correct
sensor data across all BGC sensors. Here we provide recommendations for how to use the data
collected by OOI to correct for both pre-deployment storage drift and in situ drift during oxygen
sensor deployments.

Quality control cruise data for comparison with sensor data
Before using OOI-provided oxygen data from turn-around cruises for sensor calibration, end
users should apply their own quality control to these datasets. Discrete sample measurements
from Winkler titrations can occasionally include anomalous data points, so we caution users to
avoid pinning an entire sensor drift correction on a single discrete data point. Evaluation of
discrete oxygen data in tandem with CTD cast SBE43 data from complete depth profiles will
provide more robust validation.

CTD cast SBE43 data provided from OOI turn-around cruises has not been calibrated using the
accompanying OOI-collected discrete samples. End users who wish to use the full depth profile
data from the CTD cast SBE43 sensor should use the discrete bottle sample data to calibrate
the CTD oxygen data prior to analysis (e.g, Uchida et al, 2010). We recommend this approach,
as it will enable the best possible alignment between calibration samples and the deployed
sensors.

Apply initial gain correction
To correct for storage drift between the time the sensor was factory- or lab-calibrated and the
time of deployment, oxygen measurements at the beginning of a deployment must be corrected
by comparison with concurrent reference data. The discrete bottle sample and CTD profile data
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collected on OOI turn-around cruises provide the reference data needed for this correction. End
users should align the turn-around cruise oxygen data from discrete samples and/or
discrete-sample-calibrated SBE43 data from CTD casts, which can be used to calculate an
initial gain correction factor. This gain correction should be applied to the sensor data
throughout the full deployment.

For fixed-depth oxygen sensors, there will usually only be a single calibration data point from a
nearby cast available to calculate the initial gain correction, whereas profiling assets will have
the benefit of comparison across a full profile. The Worked Example at the end of this chapter
(Section 2.6, Figure 2.6) provides an example of the gain correction for a sensor on a
fixed-depth mooring, and Figure 2.2 provides an example calculating the initial gain correction
for profiling data from a glider.

In applying initial gain corrections, end users should consider the potential impacts of spatial
and temporal variability that may affect the match-up between the calibration cast data and the
sensor to be calibrated. Directly comparing a discrete Winkler bottle sample with measurements
from the various OOI platforms (moorings, gliders, etc.) may be challenging for platforms at
depths/locations with strong vertical temperature/salinity gradients, since the Niskin bottle may
not have sampled the exact same water mass as the platform. In some cases, it may be
preferred to use the discrete sample oxygen data to calibrate the SBE43 oxygen sensor on the
turn-around cruise CTD sensor package and then find the CTD cast data from the cruise that
best align with the platform’s observations (in terms of time, location, depth, temperature, and
salinity properties). See the Nitrate Worked Example in Chapter 3 for an example of how to
identify turn-around cruise samples and deployed sensor calibration data match-ups based on
temperature rather than depth to facilitate water mass alignment.

Correct for sensor drift
In addition to applying the initial gain correction, oxygen sensor data also needs to be corrected
for drift over the course of the deployment. End users will need to assess their particular dataset
to determine which of the following correction mechanisms are applicable. If more than one of
these approaches are possible for a given dataset, use of multiple methods of assessing drift
and intercalibration among assets corrected with different methods will improve the robustness
of the final drift correction.

➔ In cases where an OOI-deployed oxygen sensor successfully collects data for the full
deployment period, it will still be collecting data at the time of the turn-around cruise
where it is recovered. Turn-around cruise CTD cast and discrete sample data collected
at the end of the deployment can be used to calculate a final gain correction following
the same approach as the initial gain correction described above. If no additional data
are available to assess drift over the course of the deployment, users should assume a
linear sensor drift between the initial and final gain correction2. The Worked Example at

2 Note that drift is not always linear, especially for optodes that have not had an extensive burn-in period
or been previously deployed. For instance, Wolf et al. (2018) find that an exponential drift correction best
fits their deep isotherm reference data.
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the end of this chapter (Section 2.6) provides an example of this drift correction for two
deployments of a fixed-depth moored oxygen optode.

➔ Measurements from optodes deployed on deep profiling platforms that sample water
masses that are assumed to have stable oxygen concentrations can also be used to
address deployment drift. In this approach, oxygen concentrations at deep reference
levels (a specific density or temperature value) are assumed to experience negligible
rates of microbial respiration, resulting in relatively stable oxygen concentration such that
trends in oxygen concentrations over the course of deployment are attributed to sensor
drift. This approach has been applied to both OOI data (Palevsky and Nicholson, 2018)
as well as BGC-Argo floats (Takeshita et al., 2013; Wolf et al., 2018). Figure 2.4 shows
an example of oxygen data on a deep isotherm measured by the Apex Profiler Mooring
at the OOI Irminger Sea Array. This observed drift can be corrected by assuming that the
oxygen concentration measured on the stable deep isotherm at the time of initial gain
corrections remains stable throughout each deployment. This deep isotherm reference
approach is only possible if the profiling platform measures a deep isopycnal or isotherm
with relatively stable oxygen concentrations, and requires the end user to assess the
validity of the assumption of oxygen stability to assess the uncertainty introduced by this
approach.

➔ Starting in 2018, OOI engineers began configuring OOI gliders at the Irminger Array to
enable oxygen air calibration measurements during deployments, supported by an
ancillary NSF award (Nicholson, WHOI and Palevsky, BC). The use of oxygen air
calibrations during surfacing intervals has been demonstrated to effectively correct for
both storage and in situ drift and become widely implemented for BGC-Argo floats (Bittig
and Kortzinger, 2015, Johnson et al. 2015, Bushinsky et al., 2016, Claustre et al. 2020),
and has also been demonstrated to also provide effective calibration for gliders
(Nicholson and Feen, 2017). Following the initial deployment of air-calibrating oxygen
measurements on Irminger Sea gliders in 2018, OOI approved an Engineering Change
Request in 2020 to apply this modified optode configuration across all gliders in the OOI
program. Gliders modified to enable oxygen air calibration have subsequently been
deployed regularly at the Irminger array and at the Pioneer array beginning in 2021, but
this change has not yet been fully implemented across all OOI gliders.

While the first drift correction method is applicable to all OOI oxygen sensors that successfully
complete their deployments, there are often cases where sensors and/or platforms do not last
through the full deployment period prior to recovery and neither the deep isotherm or glider air
calibration method are applicable, since these latter two only apply to a subset of profiling
assets. In these cases, or cases where discrete sample measurements are not available (e.g.,
due to COVID-19 restrictions in spring-summer 2020) oxygen sensor drift may be possible to
estimate by intercalibrating with another asset - for example, comparing data from a fixed-depth
moored sensor with aligned profiles from an air-calibrating glider. If no such intercomparison is
possible, the oxygen sensor data may not be correctable for drift, though can still be usable for
applications less sensitive to sensor stability.
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2.5.5 Comparisons among co-located data
Comparisons among co-located data provide valuable opportunities to improve constraints on
oxygen sensor calibration. Section 1.5.5 provides context on four types of recommended
intercomparisons, all of which are valuable for improving oxygen data calibration and validation:

➔ Comparison of simultaneously collected data from consecutively-deployed moorings at
the same location. This can be especially useful in calculating/validating oxygen sensor
gain and drift corrections.

➔ Comparison among multiple sensors measuring the oxygen at different locations within
the array (Table 1.1, Figures A.1-A.6). Oxygen sensors are deployed on nearly every
location on the OOI arrays that includes BGC sensors, and are on all profiling assets,
providing especially rich opportunities for intercomparison among multiple oxygen
sensors within the same array.

➔ Comparison of oxygen sensor data with co-located CTD temperature and salinity data,
deployed alongside every oxygen sensor within the OOI program, as well as other BGC
variables (see Figures A.1-A.6 for where oxygen sensors are deployed alongside other
BGC sensor types). See Chapters 3-5 for details on recommended end user data
processing for other BGC sensors needed to facilitate such intercomparison.

➔ Comparison with external-to-OOI datasets in the vicinity of the OOI arrays. Cruises in the
vicinity of OOI arrays during deployments have the potential to provide valuable
supplementary calibration information. This can be especially useful for constraining
oxygen sensor drift in cases where the sensor didn’t continue to collect data all the way
to the recovery turn-around cruise. Climatological datasets (e.g., the World Ocean Atlas)
have also previously been used to estimate drift on stable deep isotherms (Takeshita et
al. 2013) and could be used as a supplement to the turn-around cruise data in
constraining and validating deep isotherm drift corrections at OOI Global arrays.

2.6 Worked Example
We provide here an example of how to apply the end user processing workflow described in
Section 2.5 and summarized in the flowchart in Figure 2.5. This example prepares an oxygen
product for scientific use from Level 2 (L2) oxygen data (DOXYGEN-L2, processed by OOI as
shown in Figure 2.1a) from an Aanderaa optode on the near-surface instrument frame on the
Oregon Offshore Surface Mooring of the Coastal Endurance Array across two consecutive
deployments (Figure 2.6).
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Figure 2.6: Dissolved oxygen worked example from the Coastal Endurance Array. Top panel shows
dissolved oxygen data from two consecutive deployments (Deployment 8 in blue and Deployment 9 in
teal) for the Oregon Offshore Surface Mooring. Black circles indicate oxygen concentrations from Winkler
titrations made on discrete bottle samples taken near the near-surface instrument frame (7 m depth).
Dissolved oxygen concentrations, corrected for storage drift and deployment drift, are shown in red. The
middle and bottom panels reveal a closer look at the transition from Deployment 8 to Deployment 9 during
an October turn-around cruise. The zoomed in bottom panel shows the period of overlap between
Deployments 8 and 9 at the time of the turn-around cruise.
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This example illustrates the importance of using discrete, shipboard-titrated Winkler oxygen
measurements from turn-around cruises to correct for the storage (ex situ) drift and deployment
(in situ) drift to prepare accurate final oxygen data. Turn-around cruises provide discrete sample
oxygen measurements corresponding to the location of the oxygen sensor at both the beginning
and end of each deployment, enabling these corrections. Comparison between the Level 2
oxygen data (blue and teal lines for Deployments 8 and 9 in Figure 2.6) and the discrete
samples from the turn-around cruises shows storage drift between the time of the factory
calibration and beginning of each deployment as well as in situ drift over the course of the
deployment. The storage drift is especially pronounced for Deployment 9 and in situ drift
especially pronounced for Deployment 8, leading to coincidentally similar offsets from the
discrete sample value collected on the October 2019 turn-around cruise at the start of
Deployment 9.

Pseudo-Code
The pseudo-code provided below provides each step in the data processing pipeline for this
worked example preparing the analysis-ready corrected oxygen dataset shown in Figure 2.6,
with steps organized following the sequence given in Figure 2.5 and the text in Section 2.5. This
pseudo-code is intended to support end users in developing their own data processing
sequence following these recommended steps using any programming language or OOI data
access method of their choice. The MATLAB code used to implement this example, including
annotations to assist users in following the script, is provided as a supplementary resource, but
is intended solely as a reference and not as a template for end user data processing code.

Assemble data:
Review available oxygen data on Data Explorer;
Review OOI HITL annotations for oxygen and co-located CTD data;

Download oxygen and co-located CTD data of interest;

Download co-occurring turn-around cruise discrete sample oxygen data
from shipboard Winkler titrations;

Inspect and evaluate the oxygen sensor data:
Plot time series of Level 2 oxygen and CTD data;

Variables analyzed are user-ready output from Figure 2.1

Calculate median value of dissolved oxygen burst sampling from Level
2 oxygen data;

Plot time series of median oxygen data;
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Check for evidence of biofouled or scratched sensors;
OOI HITL Data Annotations report that UV light sensors were
installed prior to these deployments, mitigating biofouling

Quality control discrete sample data from turn-around cruises:
Review OOI HITL Annotations for discrete sample data;

Plot cruise discrete sample oxygen values (from shipboard Winkler
titrations) and SBE43 oxygen values from CTD casts;

Evaluate Winkler-titrated discrete sample oxygen values to look for
outliers by comparing with SBE43 oxygen profiles;

Look for mis-match between bottle temperature/salinity data from
shipboard CTD and temperature/salinity data from oxygen sensor
co-located CTD;

Calculate gain corrections from turn-around cruise discrete samples:
Calculate instantaneous gain correction at times when discrete oxygen
samples were collected on turn-around cruises:

Convert Winkler discrete sample oxygen values to μmol/kg:
Winkler (μmol/kg) = Winkler (ml/l)*44.661*1000/water density

T1 = time of turn-around cruise at beginning of sensor deployment
T2 = time of turn-around cruise from end of sensor deployment

GainT1 = Winkler value (μmol/kg) at T1 / Sensor value at T1
(μmol/kg)
GainT2 = Winkler value (μmol/kg) at T2 / Sensor value at T2
(μmol/kg)

Correct oxygen sensor data for gain and drift:
Calculate gain correction for each sensor data time point between T1
and T2 based on linear drift between GainT1 and GainT2:

Tn = time point between T1 and T2
SlopeT1/T2 = (GainT2 - GainT1) / (T2 - T1)

GainTn = GainT1 + SlopeT1/T2*Tn
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Apply corrections to Level 2 oxygen sensor data:
OxygenL2 = time series of uncorrected Level 2 oxygen data (μmol/kg)
OxygenCORR = corrected oxygen data (μmol/kg)

OxygenCORR = OxygenL2 * GainTn

Plot analysis-ready oxygen data
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Chapter 3: Nitrate

3.1 Introduction to OOI Nitrate Sensors
The OOI nitrate data is collected by the SUNA V2 and ISUS instruments. The ISUS and SUNA
V2 instruments are functionally the same sensor and the SUNA V2 has replaced the ISUS in
OOI, so for readability we will refer only to the SUNA V2 in this document. See Table 3.1 for
more specifics on deployment information. The SUNA V2 is a commercial instrument that uses
a 1 cm pathlength UV spectrometer with a deuterium lamp to collect spectral absorption data
which is then inverted to generate an in situ nitrate concentration. The technique is generally
most sensitive to interferences from bromine absorption which is a function of seawater
temperature and salinity, dissolved organic matter absorption and attenuation by particulates.

In order to be useful for scientific or management applications, nitrate data from extended
autonomous deployments should be carefully evaluated for accuracy, which may be impacted
by calibration issues, sensor drift, biofouling or chemical interference. With proper corrections
applied, the data can be high quality.

Descriptions of the instrument and the techniques are in the literature (Finch et al., 1998,
Johnson and Colletti, 2002, SUNA V2 users manual, 2018). ISUS sensors were used on most
fixed (moored) OOI platforms, until they started being phased out and replaced by the SUNA V2
in 2017. SUNAs were always used in profiling applications, and are also used on some mobile
platforms (gliders, AUVs). Table 3.1 outlines which sensor types are deployed at which OOI
locations.

Raw variables measured
The SUNA measures light absorption between 190 - 370 nm using a photodiode array. The
absorption spectra are a result of the presence of any chemical species in seawater that absorb
UV light including: bromide, nitrate, nitrite, dissolved organic matter, and hydrogen sulfide.
Johnson and Coletti (2002) described the spectral deconvolution method for calculating nitrate
concentration using known absorption coefficients for bromide and correcting each wavelength
for interference from dissolved organic matter (DOM) and particulates. Sakamoto et al. (2009)
refined the calibration procedure to account for the temperature dependence of bromide
absorption. Note that interference from nitrite or hydrogen sulfide is presumed small and
therefore not accounted for in the processing of the nitrate data by OOI.

Final calculated target product
Data sourced from the OOI data sets as nitrate concentration has been corrected by OOI using
the Temperature Compensated Salinity Subtracted (TCSS) algorithm from Sakamoto et al,
(2009), which uses data from the co-located CTD sensor. The raw spectral data necessary for
this correction are available on OOI’s raw data server. Future advancements or new
developments in the inversion technique may lead to re-calculation of the nitrate data from the
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spectral data collected by the SUNA, so OOI nitrate users are encouraged to review current
literature for best practices. In all events the user should record and report all post-processing
steps.

Table 3.1. OOI nitrate sensor array and platform deployment locations, and internal-to-OOI
instrument class-series. For the class-series, all nitrate sensors are designated NUTNR and are
Sea-Bird/Satlantic SUNA V2 and ISUS instruments. The last letter of the class-series is an internal
classification by OOI and represents the series (determined by specifications related to the sampling rate,
deployment duration, deployment depth, etc.). For a summary of where all BGC sensors are deployed
across the full OOI program, see Table 1.1. For deployment locations within each array, see Figures
A.1-A.6.

Array Platforms Sensors OOI
Class-Series

Global Argentine
Basin Array
(suspended 2018)

Global Profiling Glider SUNA (2016 - 2017) NUTNR-M

Near Surface Instrument
Frame (NSIF) &
Subsurface Buoy

ISUS (Mar 2015 - Jan 2018) NUTNR-B

Global Irminger Sea
Array

Global Profiling Glider SUNA (2014 - present) NUTNR-M

Near Surface Instrument
Frame (NSIF) &
Subsurface Buoy

ISUS (Sep 2014 - Jun 2018)
SUNA V2 (Jun 2018 - present) NUTNR-B

Global Southern
Ocean Array
(suspended 2020)

Global Profiling Glider SUNA (2015 - 2016) NUTNR-M

Near Surface Instrument
Frame (NSIF) &
Subsurface Buoy

ISUS (Feb 2015 - Dec 2018)
SUNA V2 (Dec 2018 - Jan 2020) NUTNR-B

Global Station Papa
Array Global Profiling Glider SUNA V2 (2013 - present) NUTNR-M

Regional Cabled
Array Shallow Profiler Mooring Deep SUNA (2014 - present) NUTNR-A

Coastal Endurance
Array

Surface Piercing Profiler SUNA V2 (2014 - present) NUTNR-J

Near Surface Instrument
Frame (NSIF)

ISUS (2014 - 2018)
SUNA V2 (2018 - present) NUTNR-B

Coastal Pioneer
Array

Coastal AUV SUNA (2015 - present) NUTNR-N

Surface Piercing Profiler
(suspended 2016) SUNA V2 (2014 - 2016) NUTNR-J

Coastal Profiling Glider SUNA (2015 - present) NUTNR-M

Near Surface Instrument
Frame (NSIF)

ISUS (2013 - Mar 2018)
SUNA V2 (Mar 2018 - present) NUTNR-B
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Expected accuracy and precision
Using the methodology described above, nitrate concentration can be determined with an
accuracy of < 2 µM and precision (and limit of detection) of 0.3 µM over the range of
concentrations typical for ocean ecosystems (0-50 µM). Offsets in SUNA data are common, so
accuracy of the data is often a function of the availability of in situ calibration data sets.

Sampling rate protocol
The SUNA can take a measurement every 1 second, and can be run in either continuous mode,
where measurements are made continuously, or in polled mode, where the sensor is running on
an intermittent schedule rather than continuously. SUNA measurements are split into either light
or dark measurements. Light values are measurements that are made with the lamp shutter
open, whereas dark values are measurements made with the lamp shutter closed. These dark
measurements are primarily used to space out the light measurements, prevent the lamp from
heating up too much, and monitor abrupt changes in the instrument. Dark measurements are
not regularly used in data post-processing, but are available in the recovered instrument data
stream on the OOI raw data server if desired by the user. The SUNA can be configured to
measure light and dark values on varying schedules. Table 3.2 provides details on the SUNA
sampling protocols for different OOI platforms and arrays.

Table 3.2. SUNA configuration and sampling setup

Configuration Surface
mooring
SUNA

Coastal glider
SUNA

Global glider
SUNA

AUV SUNA Cabled
Array
Shallow
Profiler

Sampling mode Continuous Polled Polled Polled Polled

Power/sampling
frequency

On for 3 min,
every 15 min

On every
surface dive &

7th dive of
segment down

to 200m or
bottom of dive

On every surface
dive down to

200m or bottom
of dive

On for
duration of

mission

On twice per
day (local

noon, local
midnight) for
the profiler

upcast

Light averages 3 1 1 1 1

Dark averages 100 1 1 1 1

Light samples 1 4 4 1 1

Dark samples 1 1 1 11 36

Output type Full ascii
(output and

log)

Reduced binary
(output)

Full binary
(log)*

Reduced binary
(output)

Full binary (log)*

Full binary
(output)
Full ascii

(log)

Full ascii
(output and

log)

*Glider SUNAs were configured to log data in reduced binary prior to 2021
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For most OOI surface moorings the SUNA is powered up every 15 minutes, runs continuously
for 3 minutes and reports approximately 4 to 6 sets of average values during that time interval.
One light average is reported for every dark average reported, with each light average made up
of 3 measurements with the lamp shutter open, and each dark average made up of 100
measurements with the lamp shutter closed. On the OOI Cabled Array, the SUNAs on the
Shallow Profiler Moorings are configured somewhat differently, with sampling done twice per
day (local noon, local midnight) and only on the upcast, comprising 36 s of dark measurements
and 1 s of light measurements. This results in 1-3 measurements of nitrate, depending on the
spectrometer and electronic characteristics, as well as the actual concentrations and
background signals every 40s (due to the added processing time), which results in a profiling
resolution of 2 m at a profiling rate of 5 cm/sec.

SUNAs mounted on gliders and AUVs operated by OOI are operated in polled mode (i.e., the
sensor is not running continuously), meaning that the vehicles determine when the sensors are
turned on and sampling. For global profiling gliders, the gliders turn the SUNAs on for the first
dive of each segment on the descent to 200 m. Each global glider segment (interval between
surfacings) consists of two yos, where a yo includes both a down and up profile (but not
necessarily all the way up to the surface, which would be the end of a segment). Coastal gliders
operate similarly, but due to the much shallower water depth and resulting dive pattern, the
SUNA is configured to sample for the first dive of the first yo per segment (to dive depth or to
200m, whichever comes first). In addition, it samples every seventh yo until that segment ends,
at which point the cycle restarts with the first dive of the first yo. Glider SUNAs are configured to
output 4 light measurements for every dark measurement and no averaging is applied. AUV
SUNAs are also set to polled mode, but are turned on for the duration of the vehicle mission.
They output 1 light measurement for every 11 dark measurements and no averaging is applied.

3.2 OOI standard practices for SUNA deployment and calibration

3.2.1 Preparation for deployment
In practice, OOI deploys calibrated instruments from the manufacturer with minimal
modifications. Vendor calibrations are performed before every cruise for moored instruments
and on a less frequent “as-needed” schedule for instruments on gliders and AUVs. Instrument
factory calibration information is available on the Alfresco server and calibration files are posted
on receipt of instruments returning from vendor servicing. The path to find factory calibration
information for sensors deployed at one of the coastal or global arrays, for example is:

OOI > Instrument & Platform Documents > Calibration and Repair
> Coastal-Global Arrays > NUTNR

All nitrate sensor vendor calibrations are stored in that same folder structure (for both ISUS and
SUNA V2 sensors) and specific calibrations can be found by searching for a specific sensor
serial number and date. All instruments deployed to the field should have their most recent

53

https://alfresco.oceanobservatories.org/alfresco/
https://alfresco.oceanobservatories.org/alfresco/faces/jsp/browse/browse.jsp#
https://alfresco.oceanobservatories.org/alfresco/faces/jsp/browse/browse.jsp#
https://alfresco.oceanobservatories.org/alfresco/faces/jsp/browse/browse.jsp#
https://alfresco.oceanobservatories.org/alfresco/faces/jsp/browse/browse.jsp#
https://alfresco.oceanobservatories.org/alfresco/faces/jsp/browse/browse.jsp#


factory calibrations available on Alfresco (see Table 3.3 below for numbering scheme for all test
documents).

In addition, a reference update to the vendor calibration is performed by OOI prior to each
deployment (generally in the week leading up to deployment) and uses deionized water (DI) as
the nitrate free endmember (SUNA V2 users manual, 2018). This reference update procedure
provides an offset to the vendor calibration and helps ensure that the instrument reads 0 ± 2 µM
in DI water.

To perform this, the instrument sample area is thoroughly cleaned before being enclosed with
parafilm and filled with DI water. The instrument is connected to a computer using Sea-Bird’s
UCI program and nitrate values are recorded. Regardless of the magnitude of nitrate readings,
a reference update is performed. This step creates a new calibration file that applies an offset to
the factory calibration in order to bring the nitrate readings within 0 ± 2 µM. A reference check is
performed a second time with the updated reference values to check for short term stability, i.e.,
that the updated reference file produces a nitrate reading within 0 ± 2 µM using the same target
water. A second reference check is performed after drying, recleaning, and re-inclosing the
sample area with new parafilm and DI water. This additional step helps ensure that the
reference update was not adversely affected by the presence of any debris or bubbles in the
sample area. During the procedure, the lamp output is checked by evaluation of the maximum
light counts recorded. This step is used to evaluate that the light output is sufficient to produce
data over the expected duration of the deployment. These procedures are performed in a cold
room (4-10°C for WHOI and OSU sensors, 12°C for Cabled Array sensors) in order to mimic
deployment temperatures, whereas vendor calibrations are done at room temperature. The
calibration temperature is captured in the results sheet for that reference update (the
3305-00327-xxxxx or 3305-00527-xxxxx document; see Table 3.3).

3.2.2 Information collected upon recovery
After recovery of the platform, data are downloaded directly from each instrument. Notes are
made about any significant biofouling or physical observations (corroded pins, worn cables,
etc.). Any clock offset is also noted, as compared against a computer synced to the shipboard
timeserver. These recovered status notes and observations are recorded in the data download
checklists found on the raw data server under each mooring site and recovery folder. For
example, the data recovery checklist for the Pioneer Central Surface mooring recovered in
spring 2021 can be found from the main file tree structure by navigating to:

CP01CNSM > R00013 > Data_Recovery_Checklist_CP01CNSM-00013.xlsx
(https://rawdata.oceanobservatories.org/files/CP01CNSM/R00013/)

A post-deployment reference update is also performed utilizing the same procedure as done
pre-deployment. This creates a new calibration file after applying an offset to bring the
instrument to read 0 ± 2 µM in DI water. This helps to determine drift associated with changes in
the output of the deuterium lamp over the course of the deployment.
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Table 3.3. OOI Test Documentation Numbering Scheme for nitrate sensors on the Coastal and
Global Arrays. The first 9 numbers are a fixed indication of the test and sensor type, and xxxxx refers to
the sequential document number for a specific test record. These documents can all be accessed on
OOI’s Alfresco server using the path: OOI > Instrument & Platform Documents > Test
Documents > Instruments > Coastal-Global Arrays > NUTNR

Document Number Description

3305-00100-xxxxx Instrument incoming inspection. Brief record of instrument condition and
associated calibration files after receipt from vendor

3305-00108-xxxxx ISUS quality conformance test (QCT) record. Basic functionality check
performed after receipt from vendor

3305-00127-xxxxx SUNA quality conformance test (QCT) record. Basic functionality check
performed after receipt from vendor

3305-00308-xxxxx ISUS pre-deployment reference update. Reference update to vendor
calibration performed in the week or so leading up to a deployment

3305-00327-xxxxx SUNA pre-deployment reference update. Reference update to vendor
calibration performed in the week or so leading up to a deployment

3305-00508-xxxxx ISUS post-deployment reference update. Reference update to vendor
calibration performed in the week or so after recovery

3305-00527-xxxxx SUNA post-deployment reference update. Reference update to vendor
calibration performed in the week or so after recovery

Table 3.3 summarizes the numbering scheme for pre- and post-deployment for nitrate sensors
on the Coastal and Global Arrays, all of which are publicly available on the Alfresco server. The
same documents are also available for sensors deployed on the Cabled Array, but as of writing,
are not all available on the Alfresco server yet, and do not follow the same numbering scheme.
Users of Cabled Array nitrate data are recommended to check the equivalent repository on
Alfresco for Cabled Array documents:

OOI > Instrument & Platform Documents > Test Documents >
Instruments > Cabled Array

If users are unable to find the relevant documents, they should submit a request on the OOI
Discourse Forum specifying the instrument and type of document they're looking for.
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Figure 3.1: Summary of the internal-to-OOI processing workflow for nitrate data. The user-ready
data products provided by OOI are not yet analysis-ready nitrate data and require further processing by
the end user to evaluate, clean, and apply corrections to the data. The user-ready output from OOI’s
internal data processing in this figure is the starting point sensor data for the recommended end user data
processing outlined in Section 3.5 and summarized in the flowchart in Figure 3.2
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3.3 Internal to OOI Data Processing Workflow

Figure 3.1 summarizes OOI’s internal processing workflow for data from both ISUS and SUNA
nitrate sensors, with data from both sensors processed in the same way. Nitrate data are
transformed from an unprocessed, Level 0 (L0) raw UV absorbance data product to a
OOI-provided Level 2 (L2) data product in μM that has been temperature and salinity corrected.
The OOI data processing workflow to transform raw nitrate sensor data to the L2 nitrate data
product uses the Temperature Compensated Salinity Subtracted (TCSS) algorithm from
Sakomoto et al., 2009. Briefly, the Sakamoto et al. (2009) algorithm uses L1 and L2 data
products from the co-located CTD instruments to subtract the bromide component of the overall
seawater UV absorption spectrum before solving for the nitrate concentration. The Python script
used to process nitrate data by OOI is available on GitHub here.

3.4 Common Data Quality Issues
Nitrate sensors deployed by OOI are subject to drift from factory-calibrated values, as well as
interference from other dissolved compounds (e.g., CDOM). Both of these can result in a
decrease in the photon flux at the sensor’s detector which does not stem from an increase in
nitrate concentration in the target water relative to the calibration blank. It is therefore critical
to check and correct for sensor drift and/or interference prior to any quantitative
interpretation of nitrate data.

For moored instruments it is common to see an increase in nitrate concentration over time while
other water mass characteristics, e.g., temperature and salinity, are relatively invariant. The pre-
and post- deployment discrete sample nitrate concentrations are used to characterize this
change over time. For example, the initial in situ instrument concentration should be within ± 2
µM of the pre-deployment discrete sample concentration, whereas the post-deployment discrete
sample concentration may be much lower than the instrument recorded concentration. This is
generally most apparent in near-surface data where nitrate concentrations are near zero and at
depth where temporal, spatial and vertical gradients are small. Intermediate depth comparisons
and variability over time may be more difficult to interpret due to the additional variability
introduced by internal waves, changes in mixed layer depth, biological uptake, and
regeneration.

Best practices for correcting in situ nitrate sensor data sets from moorings and autonomous
platforms evolve over time, so we encourage OOI nitrate data users to check with subject matter
experts and recent literature sources. Our intent here is to present a non-exhaustive framework
for understanding common data anomalies and corrections that can be applied when using the
OOI data sets.

3.4.1 Biofouling
Biofouling due to biofilm development and/or soft or hard fouling will decrease light output from
the lamp side, and light collection on the detector side, resulting in a decrease in UV photon flux
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relative to the calibration values. Biofilms are almost always present at some time past
deployment. For biofouling, it is reasonable to presume that biofouling increases with time and
that the rate of increase is relatively smooth, however the effect on the signal is not necessarily
linear. For optical sensors, the biofouling effect may increase asymptotically as a biofilm
thickens over the sensor and dampens the incoming photon flux, whereas for backscatter
sensors, the signal can increase exponentially to saturation of the biofouling film is reflective. In
contrast, interferences from DOM and particulate attenuation are generally associated with
changes in water mass, water column biological activity, advection and turbulent energy and are
more episodic within a given time series. The exception from relatively smooth and continuous
biofouling impact on the data is when stringers and fronds attached to the mooring or instrument
enter the sensing volume of the instrument. This is less common for the nitrate sensors than
open faced optical instruments due to the short pathlength of the nitrate sensors. Note that the
ISUS instruments that were deployed with a copper guard prevented this, but OOI engineers
found that design also tended to collect sediment at certain locations due to restricted flow.

3.4.2 Drift Due to Lamp Output
The data produced by the SUNA nitrate sensors are subject to uncertainty due to decay in the
lamp output over time. Stability of the lamp is an issue during deployment and transportation.
Calibration of the instrument with nitrate free water effectively compensates for output changes
since the last calibration, but in situ data should be evaluated relative to the time since the last
calibration and the duty cycle of the instrument. Because the decrease in light intensity of the
lamp is also a relatively continuous function with time, using the pre- and post-deployment bottle
samples to adjust for changes over time effectively accounts for both biofouling and lamp
degradation, as described above in Section 3.4.1.

3.4.3 Dissolved Organic Matter and Other Interferences
DOM absorbs UV light and the absorption coefficient is inversely related to the wavelength of
the light. The SUNA internally compensates for this effect by using the absorbance at
wavelengths greater than the wavelengths used in the NO3

- determination to subtract a baseline
absorbance due to DOM. However, because the shape of the absorbance due to DOM is
variable in the wavelength range used to determine the nitrate concentration, interference from
DOM is often underestimated. Further complicating the measurement is that changes in the
DOM pool are usually associated with changes in water mass characteristics, such that changes
in DOM are associated with a change in temperature as well as a potential change in the nitrate
concentration itself. This is particularly a problem in areas of riverine influence as higher DOM
concentrations may be associated with higher nitrate concentrations.

Other than DOM, bromide, hydrogen sulfide (H2S) and nitrite (NO2
-) are other known sources of

interference in the SUNA data. H2S and NO2
- concentrations are generally negligible in most of

the ocean but are particularly high in low-oxygen environments. The spectral attenuation
characteristics for these chemical species can be derived in the laboratory and used to correct
the observed spectra, as for bromide. Nitrate concentrations can then be estimated after
correcting the observed spectra for interfering chemical species (e.g., Meyer et al., 2018).
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3.4.4 Variable Interferences
The UV absorption methodology for measuring nitrate in the ocean works best when the range
of variance associated with the absorption of other substances can be reliably constrained as
small relative to the nitrate variance in time and space (Johnson et al., 2013). Correcting the
data stream for linear offsets is practical because nitrate concentrations in the surface ocean
often approach a near zero minimum within a profile, and the time variability of nitrate
concentration with depth can be assumed to be near zero (Johnson et al., 2013). This allows a
linear adjustment to the dataset by correcting the near-surface mixed layer data to a presumed
minimum concentration. Time and space variance can then be estimated from data at depth and
as a check of the assumption of the surface concentration. This type of baseline adjustment can
also be a first order methodology to adjust for the use of different instruments over time.

Where the nitrate concentration and/or other absorbing components have high variability then it
helps to scale the potential impact on the SUNA-derived nitrate data from known sources of
variability. The OOI data set includes data that can be used to constrain anomalous data. We
can functionally constrain NO3

- variability between the actual in situ NO3
- concentration and

other factors by using co-located UV fluorometer and backscatter sensors (see Chapter 5 for
further information on the OOI bio-optical sensors) as well as spectral data from the SUNA that
are not used in the calculation of NO3

-. To correct for variable interference from DOM and/or
particulate matter, the absorbance spectra can be characterized at the deployment site, then
subtracted from the measured absorbance spectra in post-processing as described in Johnson
and Colletti (2002). Generally, this correction only needs to be applied in regions with high
productivity or sediment loads and so will be most relevant for some of the SUNAs deployed on
moorings and gliders at the Coastal Arrays.

3.5 Recommendations for end user Data Processing
The end user nitrate data processing flowchart (Figure 3.2) summarizes additional data
processing that must be performed by the end user to evaluate, clean, and apply corrections to
the OOI-provided nitrate data. These steps are essential to prepare the OOI-provided nitrate
data for scientific applications and analyses, especially involving quantitative interpretation.

Chapter 1 of this document provides an overview of QA/QC procedures recommended for all
OOI BGC sensors (Section 1.5), and provides a high-level walk-through and context for each
step in the recommended end user nitrate data processing summarized in Figure 3.2. We
recommend that users intending to work with OOI nitrate data use the flowchart in Figure 3.2
and instructions in Section 1.5 as a starting point and reference for each data processing step.
Here, we walk through each of the steps outlined in Figure 3.2, which synthesize the
approaches end users can take to correct OOI data products for the most common nitrate
sensor-specific behaviors and data quality issues described in Section 3.4.
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Figure 3.2. Summary of recommended end user quality control and data processing steps for OOI
nitrate sensor data. These steps will allow the user to evaluate, clean, and apply corrections to the
sensor data provided by OOI (see Figure 3.1) to prepare analysis-ready nitrate data products.
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3.5.1 Assemble Data
Users will need to assemble nitrate sensor data, accompanying OOI HITL annotations, and
corresponding turn-around cruise data to use in preparing their final analysis-ready nitrate data.
See Section 1.5.1 for details of each of these components.

Ancillary CTD data (pressure, temperature, salinity) co-located with the nitrate sensor to be
analyzed will in most cases already be merged with the nitrate data stream by OOI since these
data are used in preparing Level 2 (L2) nitrate data. Unless issues are identified when reviewing
these ancillary CTD data, the OOI-provided L2 Nitrate product should be used for further data
treatment.

Nitrate sensor data are validated using data from water samples collected from Niskin bottles on
CTD casts during OOI turn-around cruises. Discrete samples for sensor data validation should
be collected during CTD casts just before sensor deployment and immediately after recovery, to
account for possible offset and drift effects described above. Discrete water samples are
analyzed for nitrate either onboard or at offshore laboratories using GO-SHIP protocols (Becker
et al., 2020). It is necessary for end users to assemble the discrete bottle data to include in their
analysis.

3.5.2 Evaluation and cleaning & sensor-specific quality control
The initial step in recommended end user OOI nitrate sensor data processing is to prepare a
“cleaned” dataset, applying both automated and human-in-the-loop (HITL) QA/QC to evaluate
the data and identify points that may need to be filtered or removed. Section 1.5.2 summarizes
the recommended steps for OOI BGC sensor end user data evaluation and cleaning. Here we
provide additional context on the application of these steps specifically for OOI nitrate data:

1. Evaluate and apply OOI-provided HITL Data Annotations. Annotations by the OOI data
team identify many platform-wide issues users may need to be aware of (e.g., power
failure-caused data gaps, etc.), as well as nitrate sensor-specific issues.

2 & 3. Apply QA/QC based on published QARTOD recommendations. As of April 2023,
automated data quality flags for nitrate are planned but not yet in development within OOI (see
Section 1.3.2). Users are encouraged to check for and apply OOI’s automated nitrate data
quality flags once they become available.End users are strongly encouraged to implement their
own automated quality control tests beyond those provided by OOI and/or to manually inspect
data to identify issues present in their dataset. The IOOS Manual for Real-Time Quality Control
of Dissolved Nutrients Observations provides recommendations for automated QC tests for
nitrate sensor data.

Nitrate data end users are particularly recommended to implement a spike test (listed as
“strongly recommended” in the IOOS QARTOD manual), as there should not be any spikes in
observed NO3

- concentrations. Spikes in the data may be caused by abrupt water mass
changes, evident in temperature, salinity and density, as well as particulates which can be
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inferred from bio-optical backscatter data (discussed in Chapter 5). For coastal data sets, frontal
dynamics with resuspension of bottom sediments can result in suspect data that may or may not
be correctable, but should be largely diagnosable by looking at other data as described above.

4. Manually inspect data to identify and address commonly-known issues. Nitrate data
users should check especially for evidence of biofouled sensors (see Section 3.4.1) or lamp
output drift (see Section 3.4.2). While some examples of this issue will be flagged by
OOI-provided Data Annotations, users should carefully inspect all data in preparation for their
own analysis. Lamp drift and biofouling both tend to result in a reduction in lamp output over
time. OOI L2 nitrate concentration data sets may also contain negative concentrations and/or
other unlikely values and should be evaluated by the user for suitability. In many cases, these
issues can be corrected using time varying and constant offsets based on discrete sample data,
described in more detail in Section 3.5.3, below.

3.5.3 Correct based on Turn-Around Cruise Data
Data from pre- and post-deployment bottle samples can be used to correct for sensor drift
issues caused by biofouling and changes in lamp output over time, as well as offsets due to
interferences. Section 3.4 provides background on common SUNA data quality issues, and
Section 1.5.4 summarizes recommendations for using OOI turn-around cruise data to validate
and correct sensor data across all BGC sensors. Here we provide recommendations for how to
use the data collected by OOI to correct for both sensor drift and offsets observed during nitrate
deployments.

Quality control cruise data for comparison with sensor data
Before using OOI-provided nitrate data from turn-around cruises for sensor calibration, end
users should apply their own quality control to these datasets. Discrete sample measurements
can occasionally include anomalous data points, so users should evaluate the discrete nitrate
sample data prior to using it for sensor data calibration and correction.

Biofouling and Lamp Drift Correction
A single drift correction that will effectively account for both lamp drift and some degree of
biofouling can be applied to nitrate sensor data. Initially, biofouling will result in a gradual
decrease over time of the light that the sensor can detect. Lamp drift will also result in a
decrease in the light intensity of the lamp that is a relatively continuous function with time, so
using the pre- and post-deployment bottle samples to adjust for changes over time effectively
accounts for both biofouling and lamp degradation. The simplest method of correction for
biofouling and/or lamp drift is to apply a linear correction with respect to time from the start of
the mooring deployment to the end:

∆ NO3/day = ((NO3,bottle - NO3,Suna)deployment - (NO3,bottle - NO3,Suna)recovery)/(Recovery date -
Deployment date)

and:
NO3,adj(t) = NO3,recorded(t) - ∆ NO3/day * t
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where deployment and recovery represent the paired bottle and instrument data from the
pre-deployment and post-recovery profiles, and the mooring start and end samples respectively,
NO3,adj(t) is the adjusted data at a given time (t) and NO3,recorded(t) is the in situ sensor data
recorded at time (t).

For instruments for which pre- and post-deployment bottle data are not available, the pre- and
post-deployment calibrations can be used to derive the time rate of change in nitrate
concentration due to lamp degradation using the same relationship.

∆ NO3/day = (NO3,DI deployment - NO3,DI recovery)/(Pre-deployment calibration check date -
Post-deployment calibration check date)

and:
NO3,adj(t) = NO3,recorded(t) - ∆ NO3/day * t

Note that neither of these methods will necessarily correct a heavily biofouled instrument if the
biofouling growth rate is exponential, which may occur towards the end of a deployment. If
biofouling is heavy, the lamp fails or other sources of interference cause the detected light to fall
below a threshold value, and the instrument will return a nitrate value of 0.

Offset corrections
Although using the drift calibration methods outlined above should also correct for any offsets
between observed nitrate sensor values and nitrate for discrete samples, it is also helpful to
assess the magnitude of offsets between the sensor and discrete sample data. Offsets can be
most easily assessed in near-surface data where nitrate values are frequently undetectable (i.e.,
below the detection limit of the sensor), and in deep water data where water mass variability
and biological influences are minimal and nitrate concentrations can be presumed constant
along density surfaces with time (see Figure 2.3 for an example of how deep water data can be
used to identify sensor offset and drift, using deep oxygen data). Offsets can be assessed by
examining various combinations of data types, but are most robust when comparing the nitrate
sensor data relative to discrete water samples. Users may also assess offset by comparing the
nitrate sensor data to data from overlapping instruments (e.g., from a mooring turn-around) and
nearest neighbor instruments (e.g., from overlapping glider missions and/or nearby moorings).
Offset adjustments are generally applied as step functions between data sets.

Secondary corrections
While the above drift and offset corrections are likely to account for most sources of error in the
nitrate sensor data, there may still be information in the data, post-correction, that does not
match with expected values or variances. This could be specific to a particular instrument, or a
particular section of a time series, and in that case one might simply ignore the data and move
on with the rest of the large data set. However, as outlined in Sections 3.4.3 and 3.4.4 above,
certain compounds may be present that interfere with the sensor’s method of nitrate estimation.
Although we do not provide a specific method for dealing with such interferences here, end
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users should investigate the data further to understand more about the instrument, the
methodology and the ocean conditions within which the sensor is deployed.

3.5.4 Comparisons among co-located data
Comparisons among co-located data provide valuable opportunities to improve constraints on
nitrogen sensor calibration. Section 1.5.5 provides context on four types of recommended
intercomparisons, all of which are valuable for improving nitrate data calibration and validation:

➔ Comparison of simultaneously collected data from consecutively-deployed moorings at
the same location. This can be especially useful in calculating/validating nitrate sensor
drift and offset corrections.

➔ Comparison among multiple sensors measuring nitrate at different locations within the
array (Table 1.1, Figures A.1-A.6). Nitrate sensors are deployed widely on the OOI
arrays including on profiling assets and gliders, allowing for intercomparison between
multiple nitrate sensors within the same array.

➔ Comparison of nitrate sensor data with temperature and density from co-located CTD
data, as well as other BGC variables (see Figures A.1-A.6 for where nitrate sensors are
deployed alongside other BGC sensor types). See chapters 3-5 for details on
recommended end user data processing for other BGC sensors needed to facilitate such
intercomparison.

➔ Comparison with external-to-OOI datasets in the vicinity of the OOI arrays, such as the
World Ocean Atlas or GO-SHIP repeat hydrography cruises.

3.6 Worked Example
We provide here an example of how to apply the end user processing workflow described in
Section 3.5 and summarized in the flowchart in Figure 3.2. This example validates for scientific
use Level 2 (L2) nitrate data (NITRTSC-L2, processed by OOI as shown in Figure 3.1) from the
Deep SUNA on the Coastal Endurance Oregon Offshore Cabled Shallow Profiler Mooring, from
a deployment that collected data during July and August of 2020 (see Figure A.4 for Endurance
Array map schematic).

The example illustrates a comparison of the OOI-provided Level 2 in situ nitrate data from the
profiler mooring with discrete bottle samples collected during the deployment period. The
discrete sample data selected for comparison are from the turn-around cruise cast most closely
co-located with the profiler mooring subsequent to its deployment (500 m away), which are
compared to the profiler data collected closest in time to the cast where discrete samples were
collected (2 hours difference). The data comparison between the profiler SUNA L2 data and the
discrete samples suggests that the goodness of fit is very reasonable (Figure 3.3). The deepest
profiler values from the SUNA are slightly low relative to the bottle samples but well within the
accuracy specification for the nitrate sensor (± 2 µM). The agreement with near surface values
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(at 10 m and 20 m) is not as good, with a difference of about 3 µM at 20 m and almost 8 µM at
10 m. To address possible mis-matches due to spatial and temporal variability between the
profiler and cast where discrete samples were collected, particularly the surface, the data are
also compared with respect to temperature rather than depth (Figure 3.3, right hand panel).
Temperature serves as a proxy for density, as temperature usually decreases relatively
monotonically with depth, and has the benefit of being provided alongside the data download for
the profiler, and does not require end user validation/calibration prior to use (which is needed for
salinity). Plotting nitrate against temperature rather than depth is therefore recommended for
identifying match-ups between discrete samples and sensor data from profiling assets, which is
especially true in areas with steep gradients in nitrate (and/or other variables), where internal
waves are frequent, and where water masses are highly variable.

Figure 3.3. Comparison between discrete sample bottle data (black circles) and Level 2 (L2) nitrate
data (blue line) collected by the Deep SUNA on the Coastal Endurance Oregon Offshore Cabled
Shallow Profiler Mooring on August 11, 2020. The left-hand panel is plotted as nitrate concentration
with depth, and the right-hand panel is plotted as nitrate concentration against temperature. The discrete
sample data are Niskin bottles sampled from the CTD cast taken on August 11, 2020 at 23:39 (UTC), and
the profiler data are taken from the mooring profile completed on August 11, 2020 at 21:51 (UTC). Note
that the right-hand panel excludes the surface-most discrete sample, which at >13°C is far above the
maximum temperature sampled by the profiler.

The goodness of fit between SUNA derived nitrate concentrations and bottle samples is
assessed using matchups based on both temperature and depth (Figure 3.4). In this example,
the goodness of fit is reasonable for both regressions as reflected in the similarity of the
regressions R2 values (0.982 and 0.986, respectively). However, excluding the nominal 10 m
sample from the temperature regression data set results in a slope remarkably close to 1, and
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an offset (0.3 µM) that is well within the accuracy of the nitrate sensor (± 2 µM). Hence we
conclude that the in situ nitrate data (the OOI-provided L2 data) are suitable for further analysis
without additional correction. For this case, since the profiler mooring only successfully collected
nitrate data for a few weeks, there is only a single turn-around cruise matchup with discrete
samples and it is therefore not possible to adjust for drift over time. For a short deployment and
well-aligned discrete sample match > 1 week after deployment, drift is likely insignificant, though
users analyzing data from longer deployments should take care to assess and correct for drift.

Figure 3.4. Linear regressions of the
bottle nitrate and profiler nitrate (SUNA)
using matchups based on depth
(squares) and temperature (circles). Note
that the temperature regression does not
include the near surface low nitrate value
from outside the depth range sampled by
the profiler.

Following from the discrete sample validation, L2 nitrate data from all profiles collected during
the August 2020 deployment are plotted in Figure 3.5. We note that near-surface values for
nitrate are sometimes negative, though generally within the instrument accuracy specification
around zero (± 2 uM). While negative values are impossible as actual nitrate concentrations, this
is a legitimate result of the nitrate sensing instrument and technique of the SUNA, which has
been widely observed (e.g., Johnson et al., 2017). For further analysis, (e.g., estimates of
vertically integrated loads, uptake rates, etc.) the user should consider how to handle these data
points uniformly within the analysis and explicitly state the chosen method.

Figure 3.5. All Level 2 (L2) nitrate
data collected by the Deep SUNA
on the Coastal Endurance Oregon
Offshore Cabled Shallow Profiler
Mooring during the August 2020
deployment, plotted against
temperature. The shaded area is
the nitrate concentration accuracy
specification (± 2 uM) around zero.
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Pseudo-Code
The pseudo-code provided below provides each step in the data processing pipeline for this
worked example, with steps organized following the sequence given in Figure 3.2 and the text in
Section 3.5. This pseudo-code is intended to support end users in developing their own data
processing sequence following these recommended steps using any programming language or
OOI data access method of their choice. This example was implemented in Microsoft Excel, and
the workbooks used in the data processing are provided as a supplementary resource.

The initial “Assemble data” step of the pseudo-code follows the process for downloading data
from OOI’s Data Explorer, with further step-by-step details for how to download these nitrate
data provided as a supplementary resource. There are multiple ways to find and download data
from the OOI servers, described in more detail in the Data Access section of Chapter 1.

Assemble data:
Review available nitrate data on Data Explorer;
Review OOI HITL annotations for nitrate and associated CTD data;

Download data of interest including time, depth, salinity, seawater
temperature, nitrate concentration;

Download co-occurring discrete sample nitrate data using the ‘find
nearby sample and glider profiles tool’ in Data Explorer.

Inspect and evaluate the nitrate sensor data:
Plot time series of Level 2 nitrate and CTD data;

Variables analyzed are user-ready output from Figure 3.1

Plot time series of nitrate data from near-surface and/or depth;

Check for evidence of biofouling or lamp drift;

Inspect and evaluate the discrete nitrate data:
Sort downloaded discrete nitrate date file by time, depth and nitrate
value;

Create a reduced table including at a minimum the CTD depth, CTD
temperature and discrete nitrate data;

Sort reduced table by depth;
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Plot the discrete nitrate data against CTD depth and evaluate for
suspect data points.

Compare nitrate sensor and cruise discrete nitrate data:
Match bottle data with profiler data using both depth, temperature
and/or density;

Plot sensor nitrate and bottle discrete nitrate against depth(Figure
3.3) and against temperature (Figure 3.4);

Evaluate for outliers and mis-matched data points;

Look for offsets, particularly at depth;

Look for progressive changes with time;

Plot sensor nitrate against bottle discrete nitrate pairs based on
depth and temperature in a property/property plot and apply linear
regressions (Figure 3.5);

Evaluate the goodness of fit based on slope, intercept and R2 value
intrinsically and between the depth and temperature pairs;

Exclude suspect data points if any and plot the reduced data set and
apply a linear regression;

Evaluate the goodness of fit of the reduced data set compared to the
full data set based on slope, intercept and R2 value.

Apply offset and drift corrections*:
Assess offset and drift (if discrete bottle data available):

Using either a depth matched or density matched data set:
Calculate the offset (intercept, Int) per unit time:

dInt/dt = (Intstart – Intend)/(Timestart – Timeend)

Apply offset and drift correction to nitrate sensor data:
For a given sensor nitrate value at depth, z, and time, n:

NO3(tn,z) where tstart < tn < tend:
NO3ADJ(tn,z) = dInt/dt * (tn – t0) + NO3(tn,z)
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*Not implemented in worked example here since corrections were not
warranted based on comparison between nitrate sensor and cruise
discrete nitrate data, but provided for user reference

Plot analysis-ready nitrate data
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Chapter 4: Carbonate system chemistry

4.1 Introduction to the OOI carbonate system chemistry sensors
There are four commonly-measured variables of the carbonate system: total Dissolved
Inorganic Carbon (DIC), Total Alkalinity (TA), partial pressure of CO2 (pCO2), and the
concentration/activity of hydrogen ions (pH). The carbonate system has two degrees of
freedom, so given any two variables, the other two can be estimated with relative accuracy. For
remotely operated platforms such as moorings and AUVs, where automatic measurement
systems are necessary, the two most common variables measured are pCO2 and pH. As the
interactions between the different carbonate system variables are relatively complicated,
thorough quality assurance/quality control (QA/QC) of carbonate data requires a fair bit of
carbonate system chemistry knowledge. For a more detailed background, consult Zeebe and
Wolf-Gladrow (2001) or Dickson et al. (2007). Of the carbonate system variables, OOI
platforms include sensors for measuring seawater pH and pCO2. Details of those measurement
systems, including theory of operation, are provided in the sensor section below.

Table 4.1: Manufacturer, model and internal-to-OOI instrument class-series (six letter reference
indicator) for the carbonate system chemistry sensors operated by OOI, and the platforms on
which they are deployed. For the class-series, the class PCO2A represents “pCO2 Air-Sea”, PCO2W
represents “pCO2 Water” and PHSEN represents “seawater pH.” The last letter of the class-series is an
internal classification by OOI and represents the series (determined by specifications related to the
sampling rate, deployment duration, deployment depth, etc.). For a summary of pCO2 and pH sensors
deployed across each of the OOI arrays, see Table 1.1. For deployment locations within each array, see
Figures A.1-A.6.

Manufacturer Model OOI Class-Series Platforms

Pro-Oceanus CO2 Pro-Atmosphere PCO2AA Buoy on all surface moorings

Sunburst Sensors,
LLC.

SAMI-CO2

PCO2WA Endurance & Cabled shallow
Profiler moorings

PCO2WB Coastal and Global moorings at
fixed depths

PCO2WC Global Apex moorings at fixed
depths (inductive)

SAMI-pH

PHSENA Endurance & Cabled shallow
Profiler moorings

PHSEND Endurance & Pioneer moorings
at fixed depths

PHSENE Global Apex surface moorings

PHSENF Global subsurface flanking
moorings
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Sensor types
There are three primary sensor types gathering carbonate system data at OOI arrays:
Pro-Oceanus CO2-Pro Atmosphere, Sunburst SAMI-pH, and Sunburst SAMI-CO2. The
Sunburst SAMI-pH provides all pH sensor data collected on the OOI arrays. Both the Sunburst
SAMI-CO2 and Pro-Oceanus pCO2 sensors provide seawater pCO2 measurements, with the
Pro-Oceanus also providing atmospheric pCO2 measurements and therefore being used on
surface buoys, while the SAMI-CO2 sensor is used by OOI for seawater pCO2 measurements at
depth. The manufacturer and model of carbonate system chemistry sensors on each type of
OOI platform is summarized in Table 4.1, and details of each sensor are described below.

Pro-Oceanus CO2-Pro Atmosphere
The CO2-Pro™ Atmosphere instrument measures the partial pressure of CO2 gas in both
surface seawater and air, and is therefore deployed on the OOI moorings/buoys that have a
surface expression (Table 4.1, Figures A.1-A.6). The CO2-Pro™ Atmosphere mounts under the
buoy, with seawater drawn in for measurement from the instrument location and air from above
the buoy drawn in for measurement through a NEMA box. The instrument uses non-dispersive
infrared spectroscopy to measure CO2 in both air and seawater samples. Alternating
measurements of pCO2 in air and water made with the same detector ensure a high level of
accuracy for analyses comparing air and seawater pCO2, such as calculations of air-sea CO2

flux. In-water measurements of CO2 are performed in the headspace equilibrated with seawater
across the gas-permeable membrane. A water pump is routinely attached to the flow-through
head of the membrane equilibrator for faster equilibration with surrounding water. The
manufacturer-reported equilibration time (to 63%) is 2.5 minutes for water and 5 seconds for air.
The instrument performs internal calibration checks to correct for sensor drift by reading zero “0”
CO2 values in the CO2-scrubbed gas mixture. Manufacturer-reported accuracy is ±0.5%, with
resolution of 0.01 ppm. Various anti-fouling measures, such as a mesh-filter or a copper guard
on the sensor water inlet, are sometimes employed to prolong instrument life-time in the field.
For further details on the operating principles of this sensor and experimental assessment
results, see Jiang et al. 2014.

Sunburst SAMI-pH
The SAMI-pH is a spectrophotometric pH sensor, which uses an indicator dye to detect pH (total
hydrogen scale) of seawater. The seawater sample stream is pumped through the instrument
and injected with a pulse of indicator dye solution (provided by Sunburst Sensors), containing
the pH-sensitive dye meta-cresol purple (mCP). The indicator dye is introduced using a 50 μL
solenoid pump that enables the same amount of indicator dye to be added for each sample pH
measurement. The mCP-sample mixture is then pumped through a flow cell, where two LEDs
send alternating pulses of light with wavelengths matching peak optical absorbances of the
protonated (HI-, measured at 434 nm) and unprotonated (I2-, measured at 578 nm) forms of the
indicator. A reference photodiode tracks any changes in the LED light sources over time. The
sample pH can be calculated based on the ratio of absorbance at the two wavelengths,
measured both with the added indicator dye (sample) and without added indicator dye (blank),
the known indicator dye batch-specific molar absorptivities, and temperature measurements

71

https://pro-oceanus.com/products/pro-series/co2-pro-atm
https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lom.2014.12.264
http://www.sunburstsensors.com/products/oceanographic-ph-sensor.html


from an onboard thermistor (see Section 4.3 and Figure 4.1 for OOI’s internal data processing
procedure). The manufacturer-reported accuracy of the pH measurement is ±0.003 pH units,
with resolution of <0.001 pH units, long term drift of <0.001 pH units per six months, and a
response time of 3 minutes. This stated accuracy may be improved upon by measuring salinity,
since the equilibrium constant for mCP has a salinity dependence. All OOI SAMI-pH sensors are
co-located with a CTD, providing salinity data to account for this (see Figure 4.1 and Section
4.3). For further information on the operating principles and experimental validation of the
SAMI-pH sensor, see Martz et al. (2003), Seidel et al. (2008), Lai et al. 2018, and the Sunburst
SAMI-pH user manual.

Sunburst SAMI-CO2

The SAMI-CO2 measures the partial pressure of carbon dioxide (pCO2) in seawater by
equilibrating a pH sensitive indicator solution (Bromothymol Blue) to the sampled seawater.
Unlike the SAMI-pH, in the SAMI-CO2, the sample does not mix directly with the indicator, but
instead aqueous carbon dioxide in the seawater sample diffuses across a permeable silicon
membrane equilibrator, producing a color change in the indicator solution. Similar to the
SAMI-pH, the equilibrated indicator solution is then pumped through an optical cell where two
LEDs send alternating pulses of light with wavelengths matching the peak optical absorbances
for the protonated (HI-, measured at 434 nm) and unprotonated (I2-, measured at 620 nm) forms
of the indicator. As for the SAMI-pH, a reference photodiode tracks any changes in the LED light
sources over time. Unlike for the SAMI-pH, where seawater blanks are run along with each
sample measurement, for the SAMI-CO2, blanks are determined by measuring deionized water
in the same manner as seawater samples. On OOI SAMI-CO2 instruments, these blanks are run
every 3.5 days (an empirically derived interval). The sample pCO2 can be calculated based on
the absorbance measurements at both wavelengths, normalized to the blank measurements,
temperature measurements from an onboard thermistor, and an instrument-specific calibration
curve (see Section 4.3 and Figure 4.1a-c for OOI’s internal data processing procedure). The
manufacturer-reported accuracy of the pCO2 measurement is ±3 μatm, with precision of <1
μatm, long-term drift of <1 μatm over six months, and a response time of ~5 minutes. For further
information on the operating principles and experimental validation of the SAMI-CO2 sensor, see
DeGrandpre et al. (1995), Schar et al. (2009), and Lai et al. 2018.

4.2 OOI standard practices for deployment and calibration

4.2.1 Calibration information
All carbonate system sensors are returned to the manufacturer for calibration, maintenance, and
replacement of the reagent (for Sunburst sensors) after each deployment, prior to being
redeployed. The original calibration sheets are provided by the manufacturer and are accessible
on OOI’s Alfresco server:
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OOI > Instrument & Platform Documents > Calibration and Repair >
Coastal-Global Arrays >{Instrument ID}

In particular, the calibrated ranges of the SAMI-CO2 sensors vary between locations and have
changed over time as the dynamics of each site have been more fully characterized.

Each sensor is inspected and a Quality Conformance Test (QCT) is performed by the OOI team
following receipt after factory calibration/maintenance. The QCT procedures for all sensors
involve both visual inspection of the sensor components and housing for defects and issues
such as corrosion. The QCT for the Sunburst SAMI pH and pCO2 sensors involves connecting
to the instruments via the client software, and performing checks on the instrument
communications, firmware, memory, internal thermistor, pumps, internal clock, and battery
voltage. For the Pro-Oceanus pCO2 instrument, the QCT checks that sensor communications
function and the air and water pumps are operational, and that the sensor will sample at the
specified sampling frequency. The results of the QCTs are also OOI’s Alfresco server:

OOI > Instrument & Platform Documents > Test Documents >
Instruments > Coastal-Global Arrays > {Instrument ID}

Additional pre-and-post deployment calibration validations have been recently implemented for
the SAMI pCO2 and pH sensors deployed on the Pioneer and Global Arrays. This additional
validation test is performed in a seawater test tank at the AVAST facility at WHOI, which
maintains a constant temperature and salinity. The instruments sample once every 15 minutes
for a total duration of three hours. A Sea-Bird SBE37 CTD collects temperature and salinity data
alongside the SAMI. Water samples are drawn every 15 minutes from a sampling tube in the
same vicinity as the instrument intake. The water samples are collected and preserved
according to standard protocols for lab analysis. Once processed, the bottle data are compared
against the instrument data.

4.2.2 Deployment and recovery of the instruments
The SAMI-pH and SAMI-CO2 sensors (PHSEN and PCO2W) share a similar pre-deployment
procedure. Using the supplied SAMI client software, the instrument configurations and sampling
interval are checked against the deployment configuration, the instruments purged with DI water
to eliminate air-bubbles, and the sensors launched. On the SAMI-pH, a bag of DI water is kept
attached to the inlet nozzle until just before the instrument is deployed to avoid any bubbles
getting into the sampling tubing used by the sensor and causing it to air-lock. Deployment of
the Pro-Oceanus pCO2 sensor (PCO2A) occurs when the surface mooring is deployed and the
mooring computer launched. Deployment configuration, deployment, and recovery checklists
can be found on OOI’s Alfresco server:

OOI > {Array ID} > Asset Information > {Mooring ID} >
{Deployment/Recovery Cruise ID}
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During recovery, when the SAMI-pH or SAMI-CO2 instruments hit the deck, any built-up
pressure is released from the sensor housings. Once recovery of the full mooring is complete,
the instruments are given a thorough visual inspection with photo documentation, identifying any
issues such as corrosion or biofouling. A laptop is used to connect to the instrument using the
client software to stop sampling. Internally-recorded data are recovered by downloading from
the sensor’s internal memory using the supplied client software.

The Pro-Oceanus CO2-Pro Atmosphere instrument does not self-record. Its data are stored on
the mooring Data Concentration Logger (DCL) on board the mooring. No data download or
special procedures are done on the instrument itself. A visual inspection with photo
documentation is performed of the instrument, making note of any instrument damage,
corrosion, or biofouling. Data recovery is not performed until the mooring is back at the OOI
facility and the mooring well and computer may be accessed.

Table 4.2 OOI Test Documentation Numbering Scheme for carbonate system chemistry sensors:
the Pro-Oceanus CO2-Pro Atmosphere (PCO2A), Sunburst SAMI-CO2 (PCO2W), and Sunburst SAMI-pH
(PHSEN).

Document Number Description

3305-00100-xxxxx Instrument incoming inspection. Brief record of instrument condition and
associated calibration files after receipt from vendor

3305-00103-xxxxx PCO2A quality conformance test (QCT) record. Basic functionality check
performed after receipt from vendor

3305-00109-xxxxx PHSEN quality conformance test (QCT) record. Basic functionality check
performed after receipt from vendor

3305-00110-xxxxx PCO2W quality conformance test (QCT) record. Basic functionality check
performed after receipt from vendor

3305-00400-xxxxx Instrument deployment procedure. Final check of instrument settings and
launching the instrument.

3305-00409-xxxxx PHSEN deployment procedure. Configuration/settings check, purge,
instrument launch

3305-00410-xxxxx PCO2W deployment procedure. Configuration/settings check, purge,
instrument launch

3305-00600-xxxxx Instrument data recovery procedure. Shut-down procedures and retrieving
data stored on internal memory.

3305-00609-xxxxx PHSEN data recovery procedure. Shut-down of the instrument and
downloading internally-recorded data.

3305-00610-xxxxx PCO2W data recovery procedure. Shut-down of the instrument and
downloading internally-recorded data.

74



75



76



Figure 4.1a-c: Summary of the internal-to-OOI processing workflow for a) the Pro-Oceanus
CO2-Pro Atmosphere, b) the Sunburst SAMI-CO2, and c) the Sunburst SAMI-pH carbonate system
chemistry sensors. The user-ready data products provided by OOI are not yet analysis-ready data and
require further processing by the end user to evaluate, clean, and apply corrections to the data. The
user-ready output from OOI’s internal data processing in these figures is the starting point sensor data for
the recommended end user data processing outlined in Section 4.5 and summarized in the flowchart in
Figure 4.4.
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4.3 Internal to OOI Data Processing Workflow
Figures 4.1a-c summarize OOI’s internal processing workflow for carbon system sensor data
from the Pro-Oceanus CO2-Pro Atmosphere, Sunburst SAMI-CO2, and Sunburst SAMI-pH
instruments. For all instruments, data are transformed from unprocessed, Level 0 (L0) data
products produced by the instrument to user-ready Level 1 (L1) data using OOI open source
processing code (Ocean Observatories ion-functions).

For the Sunburst SAMI-pH and SAMI-CO2 sensors, L0 data report optical absorbance
intensities collected by the instrument at two instrument-specific target wavelengths, as well as
the internal thermistor temperature (see Section 4.1 for summaries of the instrument operating
principles). Level 1 data for both seawater pH and pCO2 from the SAMI instruments are the final
user-ready output (PHWATER3, seawater pH on the total hydrogen ion scale, at in situ
conditions, from the SAMI-pH, and PCO2WAT - partial pressure of CO2 in seawater from the
SAMI-CO2). These L1 data incorporate corrections to normalize seawater sample
measurements for blanks and temperature- and salinity-dependent corrections using the SAMI
thermistor temperature and salinity from a co-located CTD. For further detailed information, see
the OOI documentation describing the computations used to calculate the L1 product for the
SAMI-pH (sensor code = PHSEN; OOI Document Control Number 1341-00510) and SAMI-CO2
(sensor code = PCO2W; OOI Document Control Number 1341-00490).

For the Pro-Oceanus CO2 Pro Atmosphere, L0 output includes the wet mole fractions of CO2

measured in both the atmosphere and surface seawater, as well as the gas stream pressure.
These data are used to calculate the user-ready L1 output, which are the partial pressures of
CO2 in the atmosphere (PCO2ATM) and in the surface seawater (PCO2SSW, which is directly
comparable to PCO2WAT from the SAMI-CO2). For further detailed information, see the OOI
documentation describing the computations used to calculate the L1 data products for the
Pro-Oceanus CO2 Pro Atmosphere (sensor code = PCO2A, OOI Document Control Number
1341-00260).

OOI also calculates and provides to end users a Level 2 (L2) product, air-sea CO2 flux,
calculated from the Pro-Oceanus L1 data products for surface seawater and atmospheric partial
pressures of CO2 in combination with data from the co-located meteorological package. Full
details of this Level 2 CO2FLUX product calculation are provided in OOI documentation (OOI
Document Control Number 1341-00270). Since there is no community consensus on the choice
of air-sea gas exchange parameterization based on wind speed, and data are not validated or
corrected using discrete or external datasets prior to implementing this calculation, this product
is not recommended beyond exploratory use. We recommend that end users interested in
air-sea CO2 flux calculate this rate themselves after completing the end user data processing
described in Section 4.5.

3 Current OOI algorithms for SAMI-CO2 pH corrections use the equations of Clayton and Byrne (1993), as
shown in Figure 4.1c; however this approach can generate biases when applied to measurements using
purified mCP (DeGrandpre et al. 2014). OOI is currently developing an update to its internal data
processing algorithms to address this issue.
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4.4 Common Data Quality Issues

4.4.1 Issues common across carbonate system chemistry sensors

Biofouling & clogging
Biofouling and clogging may look like sensor drift but are essentially impossible to correct for.
Biofouling can occur when organisms colonize the interface of the instrument with the
seawater/air or begin to grow in the tubing connecting the instrument to the seawater/air and
clog or reduce flow. For autotrophic biofouling, we might see consistently low seawater pCO2

values due to photosynthetic activity of autotrophs. For heterotrophic biofouling, we might see
consistently high seawater pCO2 values due to respiratory activity of heterotrophs. For any type
of biofouling, we may see higher variance in the measurements, for example very high diel
oscillations (up to 300-500%). The degree of biofouling may be noted in the OOI HITL
Annotations (see Section 1.3.3), but not all such instances will be noted and end users will need
to perform their own data evaluation to check for biofouling. One approach to identifying
biofouling is to compare data with previous years. If variance is much higher than that expected
naturally in the historical record, biofouling may be to blame. Biofouling is much more likely to
be an issue one or two months into the deployment than when the sensor is just deployed.
Additionally, biofouling is a more serious issue at the Pioneer Array and Endurance Array due to
high surface ocean productivity at coastal ocean locations. OOI experience using copper guards
has not shown the guards to meaningfully reduce biofouling.

Sensor drift
Drift is expected for any sensor, and the SAMI and Pro-Oceanus carbonate system chemistry
sensors deployed by OOI can drift over the course of deployment. For recommendations for end
users on how to identify and correct for sensor drift using turn-around cruise discrete sample
data, see Section 4.5.3.

4.4.2 Pro-Oceanus CO2 Pro Atmosphere Sensor-Specific Issues
➔ Failure of the solenoid valve can cause air or dissolved gas contamination. This issue

can be identified based on the relationship between air and seawater pCO2 on a per
deployment basis. The solenoid valve failure is apparent if air data starts to follow water
values (example shown in Figure 4.2). These data should be removed.
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Figure 4.2. Example of solenoid valve failure. Partial pressure of CO2 in the surface seawater (blue)
and atmosphere (red) from the Pro-Oceanus CO2-Pro Atmosphere at the Coastal Endurance Washington
Shelf Surface Mooring Surface Buoy for deployments 2, 3, and 4 (black lines). Air pCO2 values start to
track seawater values at the start of deployment 3, indicating contamination of the atmospheric
measurement due to the failure/malfunction of the solenoid valve. These air values are bad and should
not be used. A user may choose to use a climatology value instead.

➔ Due to a firmware issue, contaminated observations may occur following auto-zeroing.
Auto-zero frequency is variable across arrays and deployments, but typically occurs at 6
or 12 hour intervals. This issue can be recognized as low values at regular intervals in
some deployments (see Figure 4.3 for example). Contaminated sample points should be
removed. These outliers may be reliably detected by calculating the median-absolute
deviation for a 24-hour window and identifying any points that fall below the median -
3*median_absolute_deviation.

➔ Internal tubing kinking can lead to bad air measurements. This is sometimes caught in
the OOI HITL Data Annotations, but may have been missed. Air pCO2 is expected to be
relatively stable, although coastal arrays may have higher variability due to proximity to
land. Abrupt changes or shifts to periods of high variability may be due to internal
kinking. Depending on the duration of the issue, the user could choose to use an
atmospheric average during this time based on climatology, or treat this as a data gap.

➔ Software/firmware issues can cause failure of the instrument to follow sampling schedule
or to reset its settings to a default value (including clock, sampling interval, zeroing
interval). Some firmware issues may be resolved by re-supplying power to the
instrument. These issues are often addressed or annotated before the data are released
by OOI.
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Figure 4.3. Example of auto-zeroing issue. Partial pressure of CO2 in the surface seawater from
December 11 to December 30, 2015, collected by the Pro-Oceanus CO2-Pro Atmosphere at the Coastal
Endurance Oregon Shelf Surface Mooring Surface Buoy. Low values, highlighted in red, were flagged
using an algorithm that calculates the median and median absolute difference on a 24-hour rolling
window, then flags points that are less than median - 3*median absolute difference. Low values occur
approximately every 12 hours due to an auto zeroing issue with the firmware. The filtering algorithm
correctly identifies >90% of the expected auto-zeroing error points, with over/under identification during
periods of rapid changes

4.4.3 SAMI-CO2 and pH Sensor-Specific Issues
As the SAMI CO2 and pH systems use similar approaches, many common issues overlap.

➔ The most common problem OOI has had with the SAMI pH sensors is they get airlocked
on deployment. Air locking occurs if air gets pumped into the instrument, which can
happen if it is out of the water during sampling. Upon discovering that a SAMI has
airlocked, OOI turns it off for the rest of the deployment, producing a short but unusable
dataset and then no available data for the rest of the deployment. Most deployment-long
data gaps are due to this problem. End users should check for OOI-provided annotations
of this issue, and carefully check data collected immediately before big gaps.

➔ Commonly used indicator dyes are meta-Cresol Purple (mCP) and thymol blue (TB).
mCP has an optimal range of 7.1-8.1 and TB has an optimal range of 7.6-8.6. The user
should be aware that measurements in the extremes of this range are less precise. In
surface waters, pH is more likely to be near the high end of this range than the low end.

➔ SAMI pH instrument and indicator dye testing has been primarily completed for salinity
values > 20 PSU. Measurements with co-located salinity values ≤ 20 PSU should be
flagged, as uncertainties in this range will be higher.
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➔ The sensor indicator dye can expire or contain impurities. Per Sunburst Sensors,
indicator dye shelf life is expected to be at least 1 year, which spans the majority of OOI
sensor deployments. However, prior to 2020, sensors deployed at all arrays except
Endurance and the Cabled Array used indicator dyes containing ethylene glycol as an
antifreeze which may reduce the shelf life of the indicator dye over the course of a
deployment. Ethylene glycol usage was discontinued after 2019. Impurities in indicator
dyes happen more often with the pH sensor than the pCO2, but the new pH v2 sensors
use purified mCP which should reduce the problem. This will likely be identified in the pH
comparison to pCO2 (see Section 4.5.4 below), but is otherwise difficult to determine.

➔ Occasionally the internal temperature sensor does not measure correctly and may affect
internal calculations of pH. The corrected seawater pH (PHWATER-L1) data product
pulls salinity and temperature from the closest CTD. A user can determine what salinity
and temperature data product was used in the pH calculations by downloading the pH
data product from OOINet, which will contain integrated temperature and salinity data as
well as the source of those data used in the pH calculations.

➔ DI water blanks occur every 3.5 days to monitor and correct for LED drift. If the DI water
is inadequately flushed, this can lead to regular pCO2 spikes immediately following the
blanks.

➔ Particulates or CDOM can influence the signal and should especially be watched for in
coastal or highly productive areas. This could lead to both increased variability in the
sensor signal and overall offsets between the measured and true pH values.

4.5 Recommendations for end user Data Processing
The end user carbonate system chemistry data processing flowchart (Figure 4.4) summarizes
additional data processing that must be performed by the end user to evaluate, clean, and apply
corrections to the OOI-provided carbonate system chemistry data. These steps are essential to
prepare the OOI-provided pH and pCO2 data for scientific applications and analyses, especially
those involving quantitative interpretation.

Chapter 1 of this document provides an overview of QA/QC procedures recommended for all
OOI BGC sensors (Section 1.5), and provides a high-level walk-through and context for each
step in the recommended end user carbonate system chemistry data processing summarized in
Figure 4.4. We recommend that users intending to work with OOI carbonate system chemistry
data use the flowchart in Figure 4.4 and instructions in Section 1.5 as a starting point and
reference for each data processing step. Here, we walk through each of the steps outlined in
Figure 4.4, which synthesize the approaches end users can take to correct OOI data products
for sensor-specific behaviors and data quality issues described in Section 4.4.
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Figure 4.4. Summary of recommended end user quality control and data processing steps for OOI
carbonate system chemistry sensor data. These steps will allow the user to evaluate, clean, and apply
corrections to the sensor data provided by OOI (see Figure 4.1a-c) to prepare analysis-ready carbonate
system chemistry data products.
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4.5.1 Assemble data
Users will need to assemble pH and/or pCO2 sensor data, accompanying OOI HITL
annotations, and corresponding turn-around cruise data to use in preparing their final
analysis-ready pH and/or pCO2 data. See Section 1.5.1 for details of each of these components.

If not already merged with the carbonate system chemistry sensor data, end users should be
sure to download pressure, temperature, salinity data, provided by CTDs co-located with all
carbonate system chemistry sensors in the OOI program. These data will be critical for
carbonate system chemistry system calculations needed to validate and correct pH and pCO2

data.

At least two carbonate variables are measured on discrete samples collected during the
turn-around cruises at each array. Table 4.3 indicates what combination of DIC, TA, pH and
pCO2 measurements are made at each array and the shore-based laboratory that completes
these discrete sample analyses.

Table 4.3. Discrete carbonate system chemistry water samples taken at each OOI array.

Array Total Alkalinity DIC pH pCO2

Cabled ArrayC – X – X

Coastal EnduranceC – X – X

Coastal PioneerA X X X –

Global IrmingerA X X X –

Global Papa* (1, 2, 3, 6, 7, 8)A,B XA,B,C (6, 7, 8)A (4, 5)C

Global Argentine
BasinA

X X X –

Global Southern
OceanA

X X X –

A) Samples processed by Wang CO2 Lab, Woods Hole Oceanographic Institution
B) Samples processed by Dickson Lab, Scripps Institute of Oceanography
C) Samples processed by Hales Carbon System lab, Oregon State University
*) Discrete carbonate system chemistry variables measured and labs processing samples have

varied over time. Numbers in parentheses indicate turn-around cruise year.

4.5.2 Evaluation and cleaning & sensor-specific quality control
The initial step in recommended end user OOI pH and pCO2 sensor data processing is to
prepare a “cleaned” dataset, applying both automated and human-in-the-loop (HITL) QA/QC to
evaluate the data and identify points that may need to be filtered or removed. Section 1.5.2
summarizes the recommended steps for OOI BGC sensor end user data evaluation and
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cleaning. Here we provide additional context on the application of these steps specifically for
OOI carbonate system chemistry data:

1. Evaluate and apply OOI-provided HITL Data Annotations. Annotations by the OOI data
team identify many platform-wide issues users may need to be aware of (power failure-caused
data gaps, etc.), as well as sensor-specific issues. Users of carbonate system chemistry sensor
data should particularly check the Annotations for the common data quality issues described in
Section 4.4. Figure 4.5 shows an example application of Data Annotations to filter and quality
control a SAMI seawater pCO2 dataset.

Figure 4.5. Example application of OOI-provided HITL Data Annotations. Partial pressure of CO2 in
the seawater from the Coastal Pioneer Central Surface Mooring Multi-Function-Node Sunburst
SAMI-CO2 near the bottom. Red points indicated data that have been flagged in annotations as bad or
questionable. The annotation log will contain further information on the issue.

2 & 3. Apply QA/QC based on published QARTOD recommendations. As of April 2023, OOI
has implemented automated data quality flags based on Global and Local Range tests for pH
and pCO2 data (see Section 1.3.2 for further detail on the OOI QC procedures). End users
should use the OOI-provided quality flags to identify data that warrant closer evaluation in
producing a cleaned and analysis-ready dataset. End users are also encouraged to implement
their own automated quality control tests beyond those provided by OOI and/or to manually
inspect data to identify issues present in their dataset. The IOOS Manual for Real-Time Quality
Control of pH Data Observations provides recommendations for automated QC tests for pH
sensor data.

In cases where simultaneously-deployed pH and pCO2 sensors are either co-located or
measuring the same water mass, comparison between these two variables provides an
additional opportunity to identify outliers by assessing consistency within the carbonate system
chemistry system. See Section 4.5.4 below for further details.
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Sunburst sensors has publicly available data processing and QC software for the SAMI-pH (see
SAMI-pH manual for details). This software examines the raw signal intensity data and flags
values where light saturation or higher noise in absorbance interfere with pH measurement (see
manual for details). The software will also provide the option to convert the pH data with the in
situ or constant salinity values. SAMI QC software flagged values may yield unreliable pH data.
OOI has created data processing code in Python to implement the QC procedures on a NetCDF
output file from the OOI Data Portal/M2M (API)/THREDDs, but this data processing step is not
currently applied to the SAMI-pH data. The raw absorbance data (L0) must be downloaded if a
user would like to implement this step by using the Sunburst QC software or the Python code
provided by OOI on the ooi-data explorations GitHub repository (see example applying these
QC steps in Figure 4.6).

Figure 4.6. Example of SAMI-pH instrument specific Quality Control. Seawater pH measurements
(blue; total hydrogen ion scale) from the Global Irminger Sea Flanking Subsurface Mooring A SAMI-pH.
Suspect (yellow) and bad (red) measurements are identified using Sunburst-supplied quality-control
algorithms.

4. Manually inspect data to identify and address commonly-known issues. While some
examples of the common data quality issues identified in Section 4.4 will be flagged by
OOI-provided Data Annotations, users should carefully inspect all data in preparation for their
own analysis. Users should be sure to provide their own manual data quality assessments for
each of the sensor-specific sets of issues summarized in the flowchart in Figure 4.4.

4.5.3 Validate and correct based on cruise data
Carbonate system chemistry discrete sample data collected on turn-around cruises are critical
for preparing final analysis-ready data from OOI pH and pCO2 sensors. Section 1.5.4
summarizes recommendations for using OOI turn-around cruise data to validate and correct
sensor data across all BGC sensors. Here we provide recommendations specific to the
application of turn-around cruise discrete samples for correction carbonate system chemistry
data. Discrete samples collected on turn-around cruises include either two or three of the four
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carbonate system chemistry variables (Table 4.3), enabling calculation of the full carbonate
system chemistry system to provide pH and pCO2 data that can be used to validate/calibrate
measurements from the deployed sensors.

Quality control cruise discrete sample data
QC flags for all carbonate system chemistry samples can be found in the summary
spreadsheets on the Alfresco server4. A description of the QC flag definitions, laboratory
methodology, and uncertainty (if provided) can be found in the “readme” files associated with
each discrete summary file. When comparing bottle data, a user should filter out any bottle
samples that may be flagged as bad, and may want to filter bottle samples flagged as
questionable. At minimum, a user should carefully inspect the data from bottle samples flagged
as questionable and any metadata notes available to determine if those data should be
included. Further QC of the bottle data may be necessary, and we recommend following the
data QC procedures outlined in Jiang et al. (2021) for all the bottle data. Some strategies for
discrete sample QC could be to evaluate property-property relationships between carbonate
data and other ancillary data. For example, salinity and total alkalinity often have a strong linear
relationship driven by mixing between water masses and outliers may want to be investigated
further. See Section 4.5.4 for additional information on incorporating co-located datasets.

Perform carbonate system chemistry system calculations
In order to directly compare bottle data to sensor data users will need to first calculate the full
carbonate system to obtain either in situ pH or in situ pCO2. Software packages are available in
a number of different programming languages (see Orr et al. 2015, Table 1) to perform
carbonate system calculations. For carbonate system calculations, we recommend using
carbonic acid dissociation coefficients K1 and K2 as calculated from Lueker et al. 2000, the
HSO4 dissociation coefficient from Dickson, 1990, HF dissociation coefficient from Perez and
Fraga 1987, total borate concentration as estimated from Lee et al. 2010, and using the total pH
scale for direct comparisons with the SAMI-pH sensor.

When directly measured, bottle sample pH is measured and reported at 25 degrees celsius and
1 atm of atmospheric pressure, and on the total pH scale, while sensor pH is measured and
reported at in situ temperature and pressure, and on the total scale. In order to compare pH
sensor data to measured pH data from bottle data, users will need to recalculate the bottle data
to in situ temperature and pressure using a carbonate system software package (e.g., CO2SYS,
seacarb, etc.) and bottle pH and either DIC or TA. If nutrient measurements are available, a user
can include those as input variables for the carbonate system calculations, otherwise the
software packages will assume nutrients are negligible.

When bottle pCO2 is directly measured, it is measured at one atm of atmospheric pressure and
at ambient lab temperature, but the lab also reports values after recalculation using in situ

4 Summary sheets for turn-around cruise discrete water samples can be found on the Alfresco
Server using the following path: OOI > {Array ID} > Cruise Data > {Cruise ID} >
Ship Data > Water Sampling
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temperature and pressure and thus can be directly compared to sensor pCO2. If it is not directly
measured, pH and/or pCO2 will need to be derived using measurements of two other carbonate
system variables (e.g., DIC/TA, DIC/pH, TA/pH, or DIC/pCO2). If a choice of sample pairs is
available to use to quantify the carbonate system (e.g., a subset of the samples processed at
WHOI) we recommend using either the DIC/pH or the TA/pH pair to quantify pCO2 as this pair
has been shown to have the lowest calculation uncertainty for pCO2 (see Orr et al. 2018 for
more details). Add-ons to commonly used carbonate system packages to propagate uncertainty
in carbonate system packages are available in Orr et al. 2018 and we recommend users
evaluate the error in calculated variables prior to comparison with in situ sensor data. We also
recommend that end users investigate all sample pair combinations for a robust estimation of
the uncertainty in pCO2 and/or pH calculations.

Apply corrections to sensor data
Once discrete samples have been quality controlled and used to calculate in situ pH or pCO2,
they can be directly compared to the sensor data to assess if sensor corrections are needed
(see Worked Example and Figure 4.8). If there is an offset, sensor data can be corrected by
quantifying the offset between the discrete sample data and the sensor data, and correcting the
sensor data by this offset. In cases where an OOI-deployed pH or pCO2 sensor successfully
collects data for the full deployment period, it will still be collecting data at the time of the
turn-around cruise where it is recovered, providing discrete sample data for calibration/validation
at the end as well as at the beginning of the deployment. If the offset between the discrete
samples and sensor data changes from the beginning and end of the deployment, this sensor
drift can be corrected by assuming that the offset varies linearly over the length of the
deployment. If multiple instances of bottle samples exist (at multiple different time points) a
linear regression correction can be applied instead of a linear interpolation.

In applying these corrections, end users should consider the potential impacts of spatial and
temporal variability that may affect the match-up between the turn-around cruise discrete
sample data and the sensor to be calibrated. Carbonate system chemistry sensors are primarily
deployed on fixed depth platforms within OOI, which will generally only provide 1-2 discrete
location- and depth-aligned samples for calibration on each turn-around cruise. Caution should
be exercised to assess whether a correction is warranted to improve accuracy. In some cases,
offsets between discrete samples and sensor data may best be explained by spatial variability in
the system causing the bottle data to not be entirely representative of the water measured by
the instrument. For coastal sites, especially for surface measurements, water can be very
heterogeneous over small spatial scales. Offset corrections may not be warranted in cases
where the discrete sample measurements (including their calculated uncertainty envelope
propagated in CO2SYS calculations) overlaps with the envelope of variability measured by the
sensor.

88

https://doi.org/10.1016/j.marchem.2018.10.006
https://doi.org/10.1016/j.marchem.2018.10.006


4.5.4 Comparisons among co-located data
Comparisons among co-located data provide valuable opportunities to improve constraints on
carbonate system chemistry sensor calibration and identification of anomalous data. Section
1.5.5 provides context on recommended intercomparisons valuable across all BGC sensor
types. Here we provide additional context specific to working with carbonate system chemistry
data.

Data comparison across pH and pCO2 sensors
In cases where simultaneously-deployed pH and pCO2 sensors are either co-located or
measuring the same water mass, we recommend that end users complete a combined
assessment of these two variables. The Coastal Pioneer, Coastal Endurance, and Regional
Cabled Arrays all include directly co-located pH and pCO2 sensors, and all arrays include both
pH and pCO2 sensors in near-surface waters that may in some cases provide comparable
measurements across different depths during periods with deeper mixed layers (see schematic
drawings of the OOI arrays, Figures A.1-A.6). A high degree of anti-correlation is often observed
for seawater pCO2 and pH due to the influence of primary production and respiration in the
absence of strong abiotic processes and events that alter equilibrium of the carbonate system of
seawater, e.g., air-sea exchange during storms. This relationship can be used as a tool for data
QC, although this approach requires the user to consider the influences of these processes in
the observed relationships and observed deviations.

For each of the comparison tests below, we recommend that end users flag outliers as varying
more than three standard deviations away from the mean residual value, consistent with
QARTOD standards:

Outlier = [residuals < mean(residuals) - 3 * std(residuals)] |
[residuals > mean(residuals) + 3 * std(residuals)]

These tests will detect cases where either the pCO2 or pH data is an outlier. For any data point
where the relationship flags an outlier, additional context and user analysis will be needed to
identify which of the sensors to flag as the source of the potentially erroneous data.

1) pH and pCO2 relationship:
➔ Perform a linear regression between the natural log of seawater pCO2 (as the

independent variable) and seawater pH (as the dependent variable) (modification
of the procedures in Fassbender et al. 2017) for co-located measurements (or
measurements from the same water mass as identified in T-S space), and use
this relationship to identify outliers.

➔ Use the linear regression to predict pH from observed pCO2 values and compute
the residuals (differences) between original pH and predicted pH for each
co-located (in time and space) pCO2 sw and pH measurement.

89

http://dx.doi.org/10.1007/s12237-016-0168-z


2) H+ and pCO2 relationship: use linear regression to predict H+ from pCO2 and H+ in
nmol/kg

➔ Perform a linear regression between the seawater pCO2 (as the independent
variable) and seawater H+ concentration (as the dependent variable). H+

concentration (in nmol/kg) is calculated as H+ = 10-pH * 109

➔ Use the linear regression to predict H+ from observed pCO2 values and compute
the residuals (differences) between original pH and predicted pH for each
co-located (in time and space) pCO2,sw and H+ measurement.

3) pH and xCO2 relationship. xCO2 is directly measured by the Pro-Oceanus sensor and
can either be downloaded directly or computed from pCO2 and total gas stream
pressure.

➔ Perform a linear regression between the natural log of seawater xCO2 (as the
independent variable) and seawater pH (as the dependent variable) (modification
of the procedures in Fassbender et al. 2017), and use this relationship to identify
outliers.

➔ Use the linear regression to predict pH from observed xCO2 values and compute
the residuals (differences) between original pH and predicted pH for each
co-located (in time and space) seawater pCO2 and pH measurement

4) Identify outliers by comparing calculated pH from estimated Total Alkalinity and
measured pCO2

➔ Calculate pH from sample pairs including TA or DIC and observed pCO2 (see
section 4.5.3 above). High resolution TA or DIC is not available at the OOI arrays,
but published relationships exist to estimate TA from salinity and temperature. A
data user can estimate TA from the methods in Carter et al. (2018), Broullón et
al. 2019, or generate their own relationships using observed discrete samples.

➔ Compute the difference between original and calculated pH based on estimated
TA and observed pCO2 and assign outliers as above

Comparison with other co-located measured parameters
pH and pCO2 sensor data can be compared with co-located CTD temperature and salinity data,
deployed alongside every BGC sensor within the OOI program, as well as other BGC variables
(see Figures A.1-A.6 for where carbonate system chemistry sensors are deployed alongside
other BGC sensor types). See chapters 2, 3, and 5 for details on recommended end user data
processing for other BGC sensors needed to facilitate such intercomparison.

Seawater pCO2 and pH may be correlated with temperature, salinity, dissolved oxygen, and/or
chlorophyll. Temperature and salinity affect the solubility of CO2 in seawater whereas oxygen
and chlorophyll can indicate efficiency of air-sea gas exchange (oxygen) and biological activity
(oxygen and chlorophyll). These correlations (or anti-correlations) will vary by region, but for
stationary sites, enough data can exist to identify trends. We recommend the user compare the
full time series of seawater pCO2 and pH with co-located parameters to see whether such
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correlations exist. These comparisons are also useful in instances where discrete data is limited.
The correlations can also be used to evaluate periods of potential instrument issues. For
example, a large change in surface seawater pCO2 over a short period may indicate instrument
issues, however, if sea surface temperature also changes rapidly, following the correlation, this
could instead indicate a new water mass has entered the region and the seawater pCO2 values
are accurate. Similarly, a spike in seawater pCO2 accompanied by a spike in temperature or
salinity may indicate a good measurement rather than an instrument issue. This analysis step
could help in interpreting data flagged with 3 (questionable or interesting).

Comparison with external-to-OOI datasets
External-to-OOI datasets can provide an opportunity to compare with additional validation data
beyond that provided by the OOI program. Some public data products are available that may be
useful for generating climatologies, understanding realistic values, and developing regional
property-property relationships. These datasets may not be found in very close proximity to the
OOI arrays, thus decreasing their utility for direct assessment of instrument accuracy, but may
be useful to identify outliers or periods of time where the sensors were not functioning properly.
Some suggested databases include the Surface Ocean CO2 Atlas (SOCAT), the Rolling Deck to
Repository (R2R), the Marine Boundary Layer Reference dataset (MBL), the NOAA Global
Greenhouse Gas Network (CCGG), and the Lamont-Doherty Earth Observatory underway
database (LDEO). This list is not exhaustive and an OOI data user may find other useful
datasets in the Ocean Carbon and Acidification Data System (OCADS). Suggestions for using
these external databases can be found below.

Seawater surface pCO2 - Several databases can be useful to use as quality control checks for
OOI mooring data, and a user should be aware that there may be considerable overlap in the
data archived in the various databases suggested above. Many seagoing vessels, including
both scientific research vessels and other ships-of-opportunity have sensors installed to
measure surface underway seawater conditions that can be compared with the surface datasets
from the Pro-Oceanus Air-Sea sensor package, and possibly those sensors installed on the
near-surface instrument frames. Raw datasets from research vessels can be found in the R2R
repository, but these datasets may not be quality controlled. Surface fCO2 data from vessels
with underway CO2 sensors is usually submitted to the SOCAT database where it is eventually
made available in regular data releases after data quality control and review (completed by a
working group following the SOCAT QC Cookbook). SOCAT datasets are released every few
years incorporating new data that has been submitted since the last release (the current version
was released in 2022). Both individual cruise tracks and gridded data products at various
timescales are available. The LDEO database product also contains quality controlled surface
underway pCO2 data but additionally has gridded climatological air-sea CO2 flux estimates that
a user may use to identify outliers in reported CO2 flux products.

Air pCO2 - External data available from the MBL and CCGG databases can be used to help
quality control the pCO2 Air dataset from the Pro-Oceanus Air-Sea sensor on the surface
moorings. CCCG data includes samples collected at NOAA-based observatories and
volunteer-collected sites across the globe of which may be found in relatively close proximity to
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OOI array locations. MBL meridional reference data is a combined and continuous data product
from a number of NOAA observatories.

If co-located data are available, we recommend the following procedure to compare external
datasets to OOI mooring data (see example in Figure 4.7):

Figure 4.7. Example of comparison with external data. Top: Surface seawater pCO2 from April 2015 to
March 2016 at the OOI Coastal Endurance Oregon Shelf Surface Mooring Surface Buoy (44.64°N,
124.30°W; blue) compared with nearby PMEL NH10 mooring (44.6°N, 124.3°W; red). Bottom: Differences
between the pCO2 measured by the OOI mooring and the PMEL mooring

➔ The user should download or query the external database for co-located observations in
both time and space. It is up to the user to decide the appropriate search grid and
matching distance for their needs.

➔ Compute and plot differences between the observations or gridded datasets and the OOI
mooring data, and compute mean and standard deviation of the residuals per
deployment and for the whole time series. Offsets in specific deployments may indicate
sensor issues that might not be noticed when looking at individual deployments or the
full time series. Note that an observed offset from gridded or combined data products is
acceptable - a user should look for consistency in that offset over the full timeseries.
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➔ If the offset between mooring data and gridded products in any specific deployment
shows a significant difference compared to the overall time series offset, an absolute
correction to the Pro-Oceanus pCO2 Air and pCO2 seawater (from the same instrument)
may be applied. This correction, at most, should bring the offset in line with the rest of
the time series. This test is normally applied after other QC tests have been performed.
A user should note the magnitude of this correction in their metadata and which
deployments this correction was applied to.

➔ If co-located observations in both time and space are available from external discrete
datasets that are not gridded, mooring data can be directly compared and corrected if
offsets are observed.

4.6 Worked Example
We provide here an example of how to apply the end user processing workflow described in
Section 4.5 and summarized in the flowchart in Figure 4.4. This example prepares a seawater
pCO2 product for scientific use from Level 1 (L1) seawater pCO2 data (PCO2WAT-L1, processed
by OOI as shown in Figure 4.1b) from a Sunburst SAMI-CO2 instrument from the Coastal
Pioneer Central Surface Mooring Multi-Function-Node (Figure 4.8).

This example illustrates the importance of using discrete sample carbonate system chemistry
measurements from turn-around cruises to validate and, if needed, correct the final seawater
pCO2 data from the sensor. Turn-around cruises provide discrete sample DIC, total alkalinity,
and pH measurements corresponding to the location of the SAMI-CO2 at both the beginning
and end of the deployment, enabling calculation of in situ seawater pCO2 for comparison with
the sensor data.

Figure 4.8. Carbonate system chemistry worked example, preparing seawater pCO2 data from a
SAMI-CO2 instrument for analysis. Partial pressure of CO2 in the seawater (data - blue; 1 week running
standard deviation - light blue) from the Coastal Pioneer Central Surface Mooring Multi-Function-Node
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Sunburst SAMI-CO2 near the bottom (approximate depth of 133 m). Bottle samples (black) were
collected at the beginning and end of the deployment and measured for DIC, TA, and pH; pCO2 values
are calculated using CO2SYS carbon-system parameterization software using DIC and pH as input
variables.

Pseudo-Code
The pseudo-code provided below provides each step in the data processing pipeline for this
worked example, with steps organized following the sequence given in Figure 4.4 and the text in
Section 4.5. This pseudo-code is intended to support end users in developing their own data
processing sequence following these recommended steps using any programming language or
OOI data access method of their choice. The Python notebook used to implement this example,
including annotations to assist users in following the script, is provided as a supplementary
resource, but is intended solely as a reference and not as a template for end user data
processing code.

Assemble sensor data
Load and review available seawater pCO2 data;
Load and review OOI HITL Data Annotations;
In this example, cruise data are loaded below

Evaluate and clean sensor data
Plot time series of seawater pCO2 data;

Variable analyzed is User-ready output from Figure 4.1

Plot OOI quality control flags;
Filter data to remove data points considered “bad” or “suspect”;

For this example all data flagged suspect data are removed, but
note that user discretion is needed to evaluate quality flags, and
for further sensor-specific quality control

Load and evaluate cruise discrete sample data
Load carbonate system chemistry bottle measurements from turn-around
cruises;
Filter carbonate system chemistry measurements using quality control
flags;

Calculate carbon system variables
Calculate conservative physical properties of seawater needed for
carbonate system chemistry calculations;

Calculate seawater pCO2 from discrete sample measurements of Total
Alkalinity and Dissolved Inorganic Carbon using CO2SYS;
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In cases with >2 measured variables, internal consistency among
the bottle measurements can provide an additional QC check

Validate and correct sensor based on cruise data
Filter for discrete samples collected near the pCO2 sensor;
Plot sensor data together with aligned turn-around cruise bottle
data;

Compare sensor and discrete sample pCO2 from beginning and end of
deployment to determine if offset and/or drift corrections are
warranted;

Apply offset and drift corrections
Calculate offset and drift (slope) for linear fit sensor correction
based on times when discrete samples were collected on turn-around
cruises;

T1 = time of turn-around cruise at beginning of sensor deployment
T2 = time of turn-around cruise from end of sensor deployment

OffsetT1 = Discrete sample value, T1 (μatm) - sensor value, T1
(μatm)
OffsetT2 = Discrete sample value, T2 (μatm) - sensor value, T2
(μatm)

Slope = (OffsetT2 - OffsetT1) / (T2 - T1)

Apply corrections to sensor-measured seawater pCO2 data:
pCO2L1 = time series of uncorrected Level 1 seawater pCO2 data
(μatm)
pCO2CORR = corrected seawater pCO2 data (μatm)
Tn = time point between T1 and T2

pCO2CORR = pCO2L1 + (Slope * Tn + OffsetT1)

Plot analysis-ready pCO2 data

Additional Examples and Resources
As a companion to the SAMI-CO2 seawater pCO2 worked example above, we also provide
additional notebooks with examples of the processing workflows for OOI carbon system data.
These include annotations to assist users in following the scripts and data processing
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workflows. As with the notebook accompanying the example above, these are intended as a
reference and starting point for users desiring additional examples of how to implement the
workflows described in Section 4.5 and Figure 4.4, but are intended solely as a reference and
not as a template for end user data processing code.

Carbon system Python notebooks:

● Bottle_Data: This notebook provides an outline and example of working with and
processing OOI discrete bottle data. It reviews how to load bottle data, parse the data
quality flags for initial quality control, and calculate carbon system variables using
CO2SYS to yield carbonate system chemistry variables for direct comparison with OOI
in situ sensor data as well as assessment of internal consistency among the measured
discrete sample carbonate system chemistry variables..

● Downloading_Data: This notebook highlights two methods for programmatically
accessing and downloading data for OOI carbon system. The first method utilizes OOI’s
API to perform machine-to-machine (M2M) queries for data from the OOI THREDDS
data server. The second method requests data from OOI’s Data Explorer ERDDAP
server.

● PCO2A: This notebook provides an example of working with seawater pCO2 data from a
Pro-Oceanus CO2 Pro-Atmosphere instrument. It utilizes data from the PCO2A dataset
deployed on the Global Irminger Apex Surface Mooring (see Figure A.2). The example
steps through the process for loading data, plotting data, applying annotations, initial
data quality control, and validation against bottle discrete sample data.

● PHSEN: This notebook provides an example of working with pH data from a Sunburst
SAMI-pH sensor. It utilizes data from the PHSEN dataset from the Global Irminger
Flanking Mooring A at 30 m depth (see Figure A.2). The example steps through loading
data, plotting data, applying annotations, quality control, and validation against bottle pH.

● PCO2W: This notebook provides an example of working with pCO2 data from a Sunburst
SAMI-CO2 sensor. It utilizes data from the PCO2W dataset from the Coastal Pioneer
Central Surface Mooring at an approximate depth of 133m (see Figure A.3). The
example steps through loading data, plotting data, applying annotations, quality control,
and validation against pCO2 values calculated from discrete bottle carbon system
measurements, and is further described above in the worked example in Figure 4.7 and
accompanying pseudo-code.

Carbon system MATLAB notebook:

● This MATLAB live script provides an example of working with seawater pCO2 data from a
Pro-Oceanus CO2 Pro-Atmosphere instrument. It utilizes data from the PCO2A dataset
deployed on the Coastal Pioneer Array Inshore Surface Mooring (see Figure A.3). The
example steps through plotting data, applying annotations, initial data quality control,
and validation and correction against bottle discrete sample data.
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Chapter 5: Bio-optical measurements

5.1 Introduction to the OOI bio-optical sensors
The term ‘bio-optical’ refers to methods and associated sensors that use light to infer
information about biota in the ocean. Two common methods discussed herein are fluorometry
and optical backscatter. Fluorescence is the excitation of organic molecules by ‘short’
wavelength light that subsequently stimulates measurable emission of longer-wavelength light.
Fluorescence sensors are used to infer concentrations of chlorophyll-a and fluorescent
dissolved organic matter (FDOM) in seawater. Backscatter sensors measure backscattered light
at 700 nm, which provides information about particles (living and dead) in the water. These two
sensors/methods taken together comprise an ensemble of active optical in situ observations
relevant to ocean biology. Additionally, both FDOM and backscatter measurements are used for
making corrections in estimating nitrate concentrations (see Chapter 3: Nitrate).

Measurement principle of chlorophyll-a fluorometry
All plant life contains chlorophyll-a, a photosynthetic pigment. In vivo chlorophyll-a fluorescence
is a widely used method to estimate chlorophyll-a concentration, although the accurate
determination of chlorophyll-a concentration from fluorescence is not trivial and requires several
assumptions and a number of procedural steps to improve the quality of the end data product
(Cullen, 1982; Falkowski and Kiefer, 1985). The primary assumption is that the fluorescence
intensity of chlorophyll-a is directly proportional to its concentration.

1. A volume of water is illuminated with a blue-green excitation light source
2. This excitation energy is absorbed by chlorophyll-a in phytoplankton photosystem II
3. Subsequently the pigment molecules emit lower-energy red light
4. Emitted light is detected by a sensor and recorded in terms of an intensity value
5. This detected signal is standardized in a calibration process (“factory calibration”) that

depends in part on metadata supplied by the manufacturer

Measurement principle of FDOM fluorometry
Fluorescent Dissolved Organic Matter (FDOM) observation works on the same principle as
chlorophyll-a, except FDOM absorbs ultraviolet light and fluoresces blue light. FDOM is a proxy
estimate for Colored Dissolved Organic Matter (CDOM), although only a subset of all CDOM is
fluorescent. In open ocean marine systems, this type of fluorescence signal is primarily from
organic molecules associated with phytoplankton, while in coastal regions a significant fraction
of CDOM can be supplied by terrestrial sources.

The nature of CDOM probed by fluorometry is a function of both the excitation and emission
wavelength that is chosen. Near-ultraviolet light (370 nm) is used for excitation, and emission is
measured in the blue wavelength (460 nm). As the bio-optical instrument used for fluorometry
by the OOI program (see details below) has only a single channel to measure excitation and
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emission wavelengths, this sensor cannot provide information on the composition of the CDOM
present, which requires information on the spectral shape of CDOM absorption.

Measurement principle of the optical backscatter sensor
Rather than measuring a fluorescence response, optical backscatter sensors (here abbreviated
‘bb700’) both transmit and receive red light (700 nm). Optical Backscatter (red wavelengths)
data are used to provide estimates of turbidity and suspended solids in seawater that scatter
photons of red light (wavelengths of light that fall between roughly 630 and 740nm) in the
backward direction (see Section 5.3 and Figure 5.1 below for information on the OOI data
backscatter data products). Turbidity commonly describes water clarity and is a gross
assessment of light attenuation by suspended solids. As an optical method, backscatter
measures the relative quantity of suspended solids but not their composition.

Table 5.1: Model and internal-to-OOI instrument class-series (six letter reference indicator) for the
Sea-Bird/WETLabs fluorometers operated by OOI, and the platforms on which they are deployed.
For the class-series, the class FLORD represents the 2-wavelength fluorometer (‘D’ indicates DUO),
measuring chlorophyll-a fluorescence (CJHLAFLO) and optical backscattering (FLUBSCT), and the class
FLORT represents the 3-wavelength fluorometer (‘T’ indicates TRIPLE), which also measures
Fluorescent Dissolved Organic Matter, FDOM (CDOMFLO5). See Table 5.2 for further information about
each of these parameters. The last letter of the class-series is an internal classification by OOI and
represents the series (determined by specifications related to the sampling rate, deployment duration,
deployment depth, etc.). For a summary of fluorometers deployed across each of the OOI arrays, see
Table 1.1. For deployment locations within each array, see Figures A.1-A.6.

Model OOI Class-Series Platforms

Sea-Bird/ WETLabs
ECO-FLBBCD (triplet)

FLORTD Fixed depths on all array moorings

FLORTJ/ FLORTK Endurance & Pioneer Profiler moorings

FLORTM/ FLORTO Gliders

FLORTN Pioneer AUVs

Sea-Bird/ WETLabs
ECO-FLbb (duplet)

FLORDG Global Apex surface moorings (≥ 40 m)

FLORDL Global subsurface Profiler moorings

FLORDM Global array Gliders

Sea-Bird/ WETLabs
ECO-FLNTU (duplet) FLNTU Endurance and Regional Cabled Deep Profiler

moorings

Sea-Bird/ WETLabs
ECO-FL (FDOM) FLCDR Endurance and Regional Cabled Deep Profiler

moorings

5 FDOM is a proxy measurement of Colored/chromophoric dissolved organic matter (CDOM) in this sensor leading to
occasional conflation of acronyms in OOI metadata files and in the literature.
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OOI bio-optical instrumentation
There are two instruments used for fluorometry in the OOI program, both from the Sea-Bird
Environmental Characterization Optics (ECO) series (Table 5.1). The first fluorometric
instrument is a duo configuration that measures chlorophyll-a and backscatter. The second is a
triplet version that also measures FDOM. WETLabs originally designed and manufactured the
fluorometer used by the OOI, before the company was acquired by Sea-Bird in 2010 (and
together with Satlantic - the maker of the OOI nitrate sensors, which was acquired by Sea-Bird
in 2011). Sea-Bird was subsequently rebranded as Sea-Bird Scientific. The WETLabs legacy
name is maintained by Sea-Bird as part of the fluorometer model reference. Details of each of
the parameters measured by these instruments is provided in Table 5.2.

Additional bio-optical sensors used in OOI
In addition to the fluorometers and backscattering sensors discussed above, the OOI program
includes several other bio-optical measurements. Discussion of these instruments and
associated data processing are outside the scope of this document; however, we list them here
for the reference of the reader:

● Photosynthetically Active Radiation (PARAD) sensors, which integrate downwelling light
within a wavelength band relevant to photosynthesis: 400-700 nm

● Downwelling Spectral Irradiance (SPKIR) sensors, measuring downwelling irradiance at
7 channels

● Spectrophotometer measurements of hyperspectral absorption and attenuation (OPTAA
sensors; WetLabs (now Sea-Bird) AC-S instrument, 4 Hz, ~80 spectral channels across
the visible wavelengths 400-700 nm).

Table 5.2. ECO fluorometers and backscattering sensors (User manual, 2019)

Parameter Wavelength Range, Sensitivity Output variables and units

Chlorophyll-a (Chl)
(CHLAFLO)

470/695 nm
(EX/EM)

0–30, 0.015 μg L-1

0–50, 0.025μg L-1
Raw counts and estimated
chlorophyll-a concentration (μg L-1)

Scattering
(FLUBSCT)

700 nm 0–3, 0.002 m-1

0–5, 0.003 m-1
Raw counts, volume scattering
function (Beta, m-1 sr-1) and total
optical backscattering (m-1) corrected
for temperature and salinity using data
from a co-located CTD is what is
reported by OOI

Fluorescent
Dissolved Organic
Matter (FDOM)
(CDOMFLO+)

370/460 nm
(EX/EM)

0–375, 0.184 ppb Raw counts and fluorometric FDOM
concentration (ppb)

+FDOM is a proxy measurement of Colored/chromophoric dissolved organic matter (CDOM) in this sensor leading to
occasional conflation of acronyms in OOI metadata files and in the literature.
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5.2 OOI standard practices for bio-optical sensor deployment and
calibration
5.2.1 Calibration information
Factory calibration information, i.e., using scale factors and dark counts supplied by the
instrument maker for calibration of the raw sensor output, is used by OOI for fluorometers;
secondary calibrations, i.e., using discrete chlorophyll-a measurements, are not performed by
OOI and are left for the end user (see Section 5.5). A detailed application note from the vendor
describes the calculation of calibration coefficients. The original calibration sheets are provided
by the manufacturer and are accessible on OOI’s Alfresco server:

OOI > Instrument & Platform Documents > Calibration and Repair >
Coastal-Global Arrays >{Instrument ID}

5.2.2 Instrument turnaround information
Sensors are mounted on the platform and integrated with the data logger system, confirming the
data and power to/from the sensor are functioning as expected. Depending on where the sensor
is mounted (e.g., fixed depth sensor in the photic zone), it may be taped with 3 mm
polypropylene black pipe tape. In areas where biofouling is a large issue, such as the photic
zone (~upper 40 m) off the coasts of Oregon and Washington, an additional wrap of copper foil
tape is added around the sensor as well as a copper plate with wipers on the face of the sensor
to help prevent biofouling from developing on the side and growing down into the light field of
the sensor. Fluorometers on gliders or profilers and those on the Pioneer Array (New England
Shelf) have not required additional biofouling measures beyond the factory-installed wiper and
copper plates. This practice will be re-examined when the Pioneer Array is relocated to the
southern Mid-Atlantic Bight in 2024. The biofouling treatment is not documented in the metadata
or calibration documentation, except in pre- and post-deployment photos. AUV’s do not have
biofouling issues due to their short deployment duration.

Following mooring recovery, all sensors are returned to the vendor for factory service and
calibration. OOI’s baseline plan is to service and calibrate AUV and glider fluorometers
annually, though they will occasionally be redeployed for a second year without servicing if
needed quickly for a subsequent deployment. Sensors returned from the vendor go through an
Instrument Receiving (IR) process (collecting vendor supplied documentation, entering receipt
of the sensor into the database, etc.) followed by a Quality Conformance Test (QCT) to verify
the sensor is working as expected. The results of the QCTs are available OOI’s Alfresco server:

OOI > Instrument & Platform Documents > Test Documents >
Instruments > Coastal-Global Arrays > {Instrument ID}

This test is limited, as it is run in the laboratory and so cannot be used to comprehensively test
in situ conditions. Updated sensor calibrations that were generated post recovery are not
applied by OOI to previously gathered data; they are only used for the next deployment.
However, these post-recovery calibrations can be obtained by contacting OOI.
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Figure 5.1. Summary of the internal-to-OOI processing workflow for data from Sea-Bird ECO
Triplet (FLORT), FLbb (FLORD), FLNTU, and FL (FLCDR) bio-optical sensors. The user-ready
bio-optical data products provided by OOI require further processing by the end user to evaluate, clean,
and apply corrections to the data. The user-ready output from OOI’s internal data processing in this figure
is the starting point sensor data for the recommended end user data processing outlined in Section 5.5
and summarized in the flowchart in Figure 5.2
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5.3 Internal to OOI Data Processing Workflow
OOI data management defines three different levels of data associated with fluorometer
information. Level 0 (L0) are the raw data counts, Level 1 (L1) are values of the variables of
interest following application of the factory calibrations, and Level 2 (L2) data are secondary
variables produced using ancillary data (Figure 5.1). OOI provides detailed documentation on
the computations used to calculate the OOI L1 Fluorometric Chlorophyll-a Concentration
(CHLAFLO) data product (WetLabs two and three channel fluorometers; sensor codes =
FLORD, FLORT; OOI Document Control number 1341-00530); the OOI L1 Fluorometric CDOM
concentration (CDOMFLO) data product (WetLabs three wavelength instrument, sensor code =
FLORT; OOI Document Control Number 1341-00550); and the OOI L1 and L2 Optical
Backscatter (FLUBSCT) data products (WETLabs two and three channel fluorometers, sensor
codes = FLORD, FLORT; OOI Document Control Number 1341-00540).

With respect to backscatter, it is further worth mentioning that OOI reports “total optical
backscattering”, which contains backscattering by seawater. Some other programs, for example
the BGC-Argo program, report particle backscattering (bbp, m-1), from which the seawater
contribution has been removed. Therefore, if the user wishes to compare OOI data to other
backscatter data, this needs to be taken into consideration and the seawater contribution either
subtracted from the OOI data, or added to the bbp data.

5.4 Common Data Quality Issues
Common to all bio-optical sensors mentioned here, data issues can occur that relate to sensor
functioning and/or outside interference. Specific issues relating to sensor functioning can
include offsets in the dark counts, drift over the course of the deployment and biofouling.

5.4.1 Dark counts
In situ dark measurements are often different from factory calibration. Dark measurement
differences with respect to the factory calibration show up as offsets in the time series, such as
when instrument packages are exchanged. Offsets are particularly apparent when the offset
results in negative engineering values at low signal levels. This issue can be addressed by
adjusting observed values across time using data from depths where the variance is expected
to be small for a particular measurand, e.g., at depths where the chlorophyll signal is expected
to be close to zero. Adjusting observed values using an intercomparison with multiple sensors
or discrete bottle samples is described in more detail in Section 5.5.4 below.

5.4.2 Sensor drift
Drift over the course of deployment as the light source ages. Drift in light output from LEDs
significant to the measurements is generally expected to be small and is indistinguishable from
biofouling from biofilm development on the face of the instrument. Diagnosing drift in
fluorometer data can be done using:
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● Engineering data as an indicator: Recorded voltage over time can change as
components age and change resistance.

● Comparisons with discrete bottle samples measured by high performance liquid
chromatography (HPLC). HPLC samples are typically collected pre- and
post-deployment, and so can be used to compare to sensor data at the time of HPLC
sample collection, but the nature of sensor drift cannot be diagnosed throughout the
duration of the deployment without additional discrete samples.. It may also be possible
to use surface satellite data from the duration of the deployment to assess estimated
chlorophyll concentrations, but a full discussion of this method is beyond the scope of
this guide.

5.4.3 Biofouling
Biofouling impacts the accuracy of fluorescence measurements by obscuring the sensor. Users
can check the cruise data notes and photos for the post-deployment inspection, noting observed
biofouling or lack thereof placed in the HITL metadata. Sequences of decreasing maximum
chlorophyll signal are indicative of heterotrophic biofilm growth, particularly in data sets showing
diel cycles. Increasing signal levels, especially if they demonstrate no diel cycle and they
exponentially approach the maximum output from the instrument, are indicative of growth of
autotrophic films on the face of the instrument or more generally on the mooring or vehicle.

Biofouling impact on the backscattering sensor is generally seen as a linear or exponential
increase in signal over time. The impact of biofouling on the backscattering sensor is generally
more pronounced compared to the chlorophyll sensor. If biofouling is suspected for the
backscattering data then the chlorophyll sensor should also be evaluated.
Unlike other BGC sensors, sensor delay has not been documented in fluorometers, as the
detected fluorescence is a fairly instantaneous response to the emitted light and should
accurately represent the phytoplankton present in the targeted water volume at the
measurement time.

5.4.4 Issues specific to chlorophyll-a fluorescence
Here we systematically outline frequently encountered issues concerning the chlorophyll-a
fluorescence sensor, some of which are sensor-issues, while the bulk of issues relates to
phytoplankton physiology, which affects the fluorescence measurement. The issues related to
phytoplankton physiology, are discussed in more detail in the Section 5.5.5 below. The following
issues result in difficulties using chlorophyll-a fluorescence to estimate chlorophyll-a
concentration and/or phytoplankton biomass:

● Cells synthesize more or less chlorophyll-a as a function of light and nutrient availability,
and so the chlorophyll-a: carbon ratio in phytoplankton cells varies as a function of
environmental factors, including depth and community composition (e.g., Graff et al.,
2015). As a result, changes in chlorophyll-a concentrations are not always reflective of
changes in phytoplankton biomass.
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● Species composition and other factors (e.g., nutrient status, light acclimation status)
affect the fluorescence emitted per unit of chlorophyll-a, with variations in the factor
relating factory-calibrated fluorescence-derived chlorophyll-a and HPLC-derived
(discrete sampling) chlorophyll-a ranging between 1 and 8 in the global oceans (Roesler
et al., 2017).

● Depression of fluorescence due to non-photochemical quenching (NPQ) under
super-saturating irradiance levels will be lower during the middle of the day than at night
for the same chlorophyll-a concentration.

The distinction between sensor functioning and physiological issues is useful, as different end
users may have different requirements. For example, a user interested in the “best possible”
estimate of chlorophyll-a will want to make all the possible adjustments that are available for an
improved estimate of chlorophyll-a. Someone interested in cross-referencing the data with other
fluorometer data (e.g., from BGC-Argo floats) may be satisfied with an NPQ-correction, followed
by a standardized application of the “Roesler factor”, i.e., a universal division by two to adjust
the fluorescence-derived chlorophyll-a estimate for the global bias observed for WETLabs ECO
fluorometers (Roesler et al., 2017).

Deriving chlorophyll-a from fluorescence is not trivial, hence data from the chlorophyll-a
fluorescence sensor should be treated with extra caution, as outlined below. Users of L1 data
should note that the units for this sensor are already in concentration for chlorophyll-a. This
factory-calibrated chlorophyll-a estimate can be off by up to factor 8 when compared to high
performance liquid chromatography (HPLC)-derived chlorophyll-a estimates from discrete
samples (Roesler et al., 2017).

How different kinds of issues can be approached for a given sensor depends in part on where
the sensor is mounted. For example, if the sensor is profiling, then the in situ dark can be
estimated from deep data, i.e., from strata of the water column where the chlorophyll-a
concentration is expected to be nil. If the sensor is mounted at a fixed depth, this correction is
not available and the resulting increased uncertainty in the chlorophyll-a estimates needs to be
taken into consideration.

5.4.5 Issues specific to backscatter
On profiling instruments such as gliders, the presence of bubbles in the upper water column can
affect measurement quality during the downcast as soon as the glider leaves the surface. This
effect is seen in the backscattering sensor maxing out at shallower depths, followed by an
exponential decay to normal backscattering values. The magnitude of the effect tends to be
related to the sea state but does not result in predictable affected depth layers. It is
recommended that where possible, users only use backscatter data from upcasts (for
simplicity), or remove the affected data from the profile. As described above for
fluorescence-based chlorophyll-a, backscatter values should also be corrected using dark value
measurements.
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Figure 5.2. Summary of the recommended end user processing workflow for bio-optical data.
These steps will allow the user to evaluate, clean, and apply corrections to the data provided by OOI (see
Figure 5.1) in order to process it into analysis-ready chlorophyll-a, backscatter and FDOM data products.
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5.5 Recommendations for end user Data Processing
The recommended steps for end user processing of bio-optical data are summarized in Figure
5.2. These steps will allow end users to properly evaluate, clean and apply additional
corrections to the data. These steps are essential to prepare the OOI-provided bio-optical
chlorophyll-a, backscatter and FDOM data for scientific applications and analyses, especially
those involving quantitative interpretation.

Chapter 1 of this document provides an overview of QA/QC procedures recommended for all
OOI BGC sensors (Section 1.5), and provides a high-level walk-through and context for each
step in the recommended end user bio-optical data processing. We recommend that users
intending to work with OOI bio-optical data use the flowchart in Figure 5.2 and instructions in
Section 1.5 as a starting point and reference for each data processing step. Here, we walk
through each of the steps outlined in Figure 5.2, which synthesize the approaches end users
can take to correct OOI data products for the most common bio-optical sensor-specific
behaviors and data quality issues described in Section 5.4.

In the following subsections we discuss the general end user data processing steps in terms of
bio-optical data, but highlight any steps or procedures that are specific to any of the specific
data products, e.g., chlorophyll-a concentration, backscatter, FDOM.

5.5.1 Assemble Data
Users will need to assemble bio-optical sensor data, accompanying OOI HITL annotations, and
corresponding turn-around cruise data to use in preparing their final analysis-ready bio-optical
data. See Section 1.5.1 for details of each of these components.

5.5.2 Evaluation and cleaning & sensor-specific quality control
The initial step in recommended end user OOI bio-optical sensor data processing is to prepare
a “cleaned” dataset, applying both automated and human-in-the-loop (HITL) QA/QC to evaluate
the data and identify points that may need to be filtered or removed. Section 1.5.2 summarizes
the recommended steps for OOI BGC sensor end user data evaluation and cleaning. Here we
provide additional context on the application of these steps specifically for OOI bio-optical
sensor data:

1. Evaluate and apply OOI-provided HITL Data Annotations. Annotations by the OOI data
team identify many platform-wide issues users may need to be aware of (e.g., power
failure-caused data gaps, etc.), as well as bio-optical sensor-specific issues.

2 & 3. Apply QA/QC based on published QARTOD recommendations. As of April 2023,
automated data quality flags for chlorophyll-a fluorescence (FLORD, FLORT) are in
development within OOI (see Section 1.3.2), but are not yet fully implemented. Users are
encouraged to check for and apply OOI’s automated data quality flags once they become
available. End users are strongly encouraged to implement their own version of the tests listed
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in Table 5.3 and/or to manually inspect data to determine whether any of these issues are
present in their dataset. OOI is not currently prioritizing the development of automated data
quality flags for FDOM (CDOMFLO) or backscatter (FLUBSCT) data products, and so users are
urged, when possible, to implement their own QARTOD tests for these data products. We
provide below some brief instructions on the implementation of appropriate QARTOD tests for
bio-optical data, summarized in Table 5.3.These are based on the IOOS Manual for Real-Time
Quality Control of Ocean Optics Data.

Table 5.3: Summary of QARTOD test recommendations for OOI bio-optical data.

Chlorophyll-a (FLORD,
FLORT)

Total Optical
Backscatter (FLUBSCT)

FDOM (CDOMFLO)

Flat line test fixed-depth and profiling
sensor data; use L0 data

fixed-depth and profiling
sensor data; use L0 data

fixed-depth and profiling
sensor data; use L0 data

Gross range
test

fixed-depth and profiling
sensor data; use L1 data

fixed-depth and profiling
sensor data; use L1 data

fixed-depth and profiling
sensor data; use L1 data

Climatology
test

fixed-depth and profiling
sensor data; use L1 or
higher

fixed-depth and profiling
sensor data; use L1 or
higher

fixed-depth and profiling
sensor data; use L1 or
higher

Spike test Fixed-depth data only; L0
or L1 data OK

Fixed-depth data only; L0
or L1 data OK

Fixed-depth data only; L0
or L1 data OK

Flat line test: The flat line test should be applied to raw (count) data rather than calibrated data.
The test is expected to catch issues with sensor performance. It is applicable to all data types
(fluorescence and backscatter) and should be used on fixed-depth as well as profiling sensor
data.
The flat line test on the burst level is implemented to catch instrument problems, i.e., if a sensor
is stuck on a single value for the duration of a burst. Data should be flagged as bad if the
variability in data during a burst is equal to zero.

The flat line test can further be applied to data that has been pooled, for example by taking the
median of each measurement burst. Alternatively, it can be applied to the burst level data but
with a different window of comparison, i.e., rather than comparing the data across a single burst
(see above), the test can also be applied over a given time or depth interval where natural
variability in the measurements is expected.

➔ For fixed-depth sensors, this test can be implemented on data gathered over the
course of a day. The expectation is that some variability should be observed over 24
hours if the sensor were performing correctly, so if the sensor is stuck on a single value
over the course of the day, the data should be flagged as suspicious or bad. If there is a
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data gap such that the first and last data point in a data window are more than 26 hours
apart, the test is not performed and the data are flagged as “probably good”.

➔ For profiling sensors, this test can be implemented on a “per profile” basis, again with
the expectation that some variability should be observed in a profile. If the sensor is
stuck on a single value over the whole profile, the data should be flagged as suspicious
or bad.

Gross Range test: The gross range test checks whether data are within a reasonable range
and is applicable to all sensors and regardless of where/how they are mounted. For
chlorophyll-a, all data <-0.2 or >100 mg m-3 are flagged as “probably bad”. The assumption is
that the sensor is performing correctly in these cases, but biofouling of some sort (e.g.,
gooseneck barnacles in the field of view) is affecting the signal. For backscatter data, the gross
range test is performed on the calculated particle backscattering coefficient (bbp) or total
backscattering coefficient (bb; see Figure 5.1 and Section 5.3 for context on how OOI produces
these variables). All bbp <0 or >0.01 m-1 are flagged as “suspect or of high interest”, and all total
optical backscattering <0 or >1 m-1 are flagged as “suspect or of high interest”. Since scatterers
such as barnacles have a stronger effect on the backscatter signal than on fluorescence, but are
also expected to confound the fluorescence signal, fluorescence data (both for chlorophyll-a and
FDOM) should also be flagged where the backscatter signal failed this test. For FDOM, no
automated flagging is performed and users will need to use their own judgment to devise limits
for this test.

Climatology test: The climatology test is similar to the Gross Range test, but the bracket of
allowable values is based on local knowledge of the area where a mooring or glider is deployed,
and so will be smaller. For chlorophyll-a data it is also advised to do this test on data that has
had physiological adjustments done (see Section 5.5.5 on physiological adjustments below), so
that the “best chlorophyll-a estimate” is used. All data outside a range of values appropriate for
the region are flagged as “suspect or of high interest”.

Spike test: The spike test is implemented to identify spikes in data from fixed depth platforms,
presumably caused by interference from bio-fouling or fish. It is currently not standard practice
to flag spikes in profiling data as these spikes are considered valuable data, useful in identifying
larger particles or aggregates (e.g., of phytoplankton or detrital matter; Briggs et al., 2011;
2020). In data from moored sensors, such particles could cause spikes in single measurements
in a burst. However, assuming that a burst does not last longer than a few seconds and given
the small field of view of the sensor, it is highly unlikely that a particle remains in the field of view
for the duration of a burst. Therefore, if burst data have been pooled, for example by using the
median, then any remaining spikes are not expected to be due to particles passing through the
field of view of the sensor and thus are not considered data of interest, but rather data
anomalies that should be removed.

Due to the reasons outlined above, the spike test is recommended to be run on pooled (i.e., not
burst-level) data. The spike test can be implemented on any time window deemed appropriate,
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determined by the native time resolution of the data set. In the below example of an
implementation, we assume that data were acquired hourly.

1. A running median and standard deviation with a window size representative of 1 day is
calculated (e.g., 23 or 25 data points for hourly data) using only data not previously
flagged as bad or probably bad. The window should be centered on the individual data
point of interest (e.g., 11 or 12 measurements on either side of the individual point for
hourly data).

2. The difference between each individual data point and the running median for the
respective point is calculated.

3. The test is failed if the absolute value of the difference is greater than 3 times the
standard deviation over the time window.

4. Manually inspect data to identify and address commonly-known issues. Bio-optical data
users should check for evidence of biofouled sensors, and in particular for chlorophyll-a data for
diel variability due to photo-physiological variability (Section 5.4.4). While some examples of
biofouling will be flagged by OOI-provided Data Annotations, variability due to physiological
processes will not, and users should carefully inspect all data in preparation for their own
analysis. At this stage, “cleaned” FDOM and total optical backscatter data will be ready for
comparison with co-located data and analysis, but chlorophyll-a and particulate backscatter data
products will require further processing as outlined in the steps below.

Figure 5.3 Application of the seawater
backscatter correction to derive
particulate backscatter from
OOI-provided total optical backscatter.
An example profile of total optical
backscattering (blue, FLUBSCT-L2) and
particulate backscattering (red), are
plotted in the left (dots are all data points,
lines are the 200-point running median).
The seawater scattering coefficient
(black) is plotted on the right. These data
were collected on March 10, 2021 by the
Regional Cabled Array Oregon Slope
Base Shallow Profiler Mooring.
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5.5.3 Particulate backscatter correction
OOI provides data on total backscatter (FLUBSCT), that has not had the backscatter due to
seawater removed. In order to derive particulate backscatter data, the user will need to subtract
the seawater backscatter contribution from the total optical backscatter (see example in Figure
5.3).

5.5.4 Dark correction for chlorophyll-a
The dark reading of the fluorometer sensor in situ is frequently slightly different from the dark
measured in the factory. Therefore, if the data allow such a correction, the chlorophyll-a
fluorescence signal is corrected with an in situ dark value. At the moment, this correction is
only possible on data from profiling sensors, not those mounted at a fixed depth. The
correction can be done on either L0 or L1 data, with implementation on L1 data slightly less
complicated as there is no need to go through an updated calibration process.

For fluorometers on profiling platforms (including gliders), an in situ dark can be estimated from
deep profiles. Preferably, a dark estimate should only be attempted on profiles that reach
deeper than 950 m, however shallower profiles can also be considered if they’re well below the
mixed layer and the user is confident that chlorophyll-a at the deepest depths measured is
effectively zero. The dark value on any suitable profile is the minimum chlorophyll-a
fluorescence measured on that profile (at any depth; it does not have to be below 950 m). The
in situ dark value for a deployment can be estimated based on a number of profiles and then
assumed to be constant. One recommendation is to take the median of the first five darks that
are estimated for a sensor deployment (i.e., from the first five profiles that were sufficiently
deep) and then apply that dark value for the whole time series of the deployment. This is the
latest approach recommended for chlorophyll-a data from BGC-Argo floats (the documentation
is in the process of being updated). Then, as a QC measure, one can check the dark over time
and see how much it drifts. On a well-functioning sensor, the dark value should not drift
significantly, so any significant drift is a flag for a potential problem, e.g., due to biofouling.

Once a dark has been estimated for a deployment, it should be subtracted from all chlorophyll-a
fluorescence data. In principle, the backscatter and FDOM measurements may also suffer from
a discrepancy between the factory and in situ darks, but there is no straightforward way to
correct for that as neither backscatter nor FDOM can be assumed to be zero at depth.

5.5.5 Physiological adjustments for chlorophyll-a
Two types of physiological adjustments may be required for data collected by the fluorescence
sensor:

● For daytime data, a non-photochemical quenching (NPQ) correction may need to be
applied

● In order to improve the absolute chlorophyll-a estimate, the sensor may need to be
compared against other data sources (in situ samples, satellites, independent
chlorophyll-a estimates based on light attenuation, e.g, from PAR sensors). If this isn’t
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possible and the sensor is an ECOpuck, then the “Roesler factor” should be applied, i.e.,
a division by 2 to adjust the chlorophyll-a estimate for the global bias observed for
ECOpuck fluorometers (Roesler et al., 2017).

NPQ correction
For fixed-depth mooring data, it is recommended that only night-time data should be used.
Alternatively one can make use of the backscatter signal, for example one can estimate the ratio
between chlorophyll-a fluorescence and backscatter at night, then apply that ratio to the daytime
backscatter data to estimate chlorophyll-a fluorescence (Thomalla et al., 2018). That way, one
gets an around-the-clock chlorophyll-a estimate that is not affected by NPQ.

For profile data, an NPQ correction has been described by Xing et al. (2012, 2018), and is
widely used to correct BGC-Argo data, with some modifications (Schmechtig et al., 2018) that
can be applied to day and night time data. However, non-photochemical quenching correction
relies on several assumptions and knowledge of the dynamics of a given environment, namely
the structure of the phytoplankton distribution in the water column (e.g., existence of deep
chlorophyll maxima). While the NPQ correction is beyond the scope of this document, we
provide some references above and encourage the user to read them to decide the best
correction method for a given dataset.

5.5.6 Validate chlorophyll-a fluorescence data with discrete samples
Discrete samples (collected in Niskin bottles on the CTD rosette) are collected during OOI
turn-around cruises in proximity to OOI in situ sensors. From these samples, comparable
measurements can be made that are independent analogs of OOI in situ sensor data.
Guidelines for how close discrete measurements need to be compared to fluorometry sensors
varies by oceanographic region. In the case of chlorophyll-a, concentrations are determined
from discrete water samples using High Performance Liquid Chromatography (HPLC) laboratory
analysis (Van Heukelem et al., 2001). The extent to which HPLC chlorophyll-a concentrations
can be used for validation of fluorometry depends on the proximity of the measurements in
space and time. With the low temporal resolution of cruises, calibration curves (over time) are
not possible in relation to other sources of variability. However, discrete sample measurements
can be used to estimate sensor drift over time, as described below.

Getting to “true” chlorophyll-a
Even though chlorophyll-a fluorescence stems from chlorophyll-a, it is not necessarily an
accurate indicator of chlorophyll-a in vivo because conversion of fluorescence measurement to
chlorophyll-a concentration can vary by about factor 10 in nature due to species composition,
light acclimation and nutrient status of the resident phytoplankton (Roesler et al., 2017). The
widely used Wetlabs ECOPuck instrument was (and is) calibrated against a standard that refers
back to a “lab rat” phytoplankton culture of Thalassiosira weissflogii. Globally, this leads to an
average over-estimation of chlorophyll-a concentration by a factor of 2, with strong regional
variability (Roesler et al., 2017). To improve a given chlorophyll-a estimate based on
fluorescence measurements, it is thus advised - for open-ocean deployments, not necessarily
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near the coasts - to divide the chlorophyll-a concentration that the sensor calibration produces
by factor 2. This is standard practice for BGC-Argo data (Schmechtig et al., 2018). Note that
additional studies for a given region may have led to a regional estimate of the “Roesler factor”
for a given mooring. Additionally, data from other sensors or from discrete samples can be used
to calibrate/cross-check fluorescence-derived chlorophyll-a data. These include:

➔ A co-located ac-s (hyperspectral absorption and attenuation), from which the absorption
line-height at 676 nm can be derived, which can be used to estimate chlorophyll-a
concentration (Boss et al., 2013; Roesler & Barnard, 2013). When possible, it is
recommended to calculate the relationship between line-height and chlorophyll-a from
HPLC for a given deployment location, as the coefficients of this relationship can change
in different water types.

➔ Profile data from irradiance sensors, as they allow estimation of downwelling light
attenuation (Kd), based on which chlorophyll-a can be estimated (Morel et al., 2007; Xing
et al., 2011)

➔ Satellite data, which can provide an independent comparison via match-ups of estimated
chlorophyll-a concentration from remote-sensing reflectance in time and space against
which data from a fluorometer can be compared.

➔ Other co-located assets that carry well-calibrated fluorometers (e.g., gliders, floats,
profilers)

5.6 Worked Example
Here we provide an example of how to apply the end user processing workflow described in
Section 5.5 and summarized in Figure 5.2 to chlorophyll-a fluorescence data. This example
walks through the processing of Level 1 (L1) fluorometer data (L1 CHLAFLO, processed by OOI
as shown in Figure 5.1) from a Shallow Profiler on the OOI Regional Cabled Continental Margin
Array located at the ‘Oregon Slope Base’ site collected during June 2018 (see Figure A.5 for
Regional Cabled Continental Margin Array map schematic).

Figure 5.4. Comparison between chlorophyll-a
fluorescence and chlorophyll-a concentration
from bottle samples. Shallow Profiler L1
fluorometer (blue) versus lab-analyzed HPLC
chlorophyll-a from discrete bottle samples data
(filled and open circles). Observations were
co-located and simultaneous at noon on June
26th 2018.
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The L1 CHLAFLO chlorophyll-a fluorescence data are compared to the concurrently collected in
situ chlorophyll-a data from discrete samples analyzed by HPLC (Figure 5.4). Although the
shape of the chlorophyll-a profile is largely consistent between the two data sets, their
comparison reveals a significant offset between the sensor data and the discrete sample data.
The offset is apparent at all depths, with the sensor overestimating chlorophyll-a concentrations
by a factor of 2 or more in the deep chlorophyll maximum at around 40m depth.

The next step is to apply the dark correction to the chlorophyll-a fluorescence sensor data. The
method for estimating the instrument dark value is outlined in detail in Section 5.5.4. Here we
estimated the instrument dark by taking the minimum sensor chlorophyll-a value for the profile,
and then subtracting it from all of the chlorophyll-a sensor data for the profile (Figure 5.5).

Figure 5.5. Application of the dark correction to
profiling chlorophyll-a fluorescence sensor data.
In this example, the instrument dark value was
estimated based on the minimum chlorophyll-a
fluorescence value for the profile, and then
subtracted from the entire profile..

Once the dark correction has been applied, users should assess what data is likely quenched,
and flag those data (e.g., daytime data shallower than the chlorophyll-a max depth). In this
worked example, the data above the chlorophyll maximum is flagged as potentially quenched
data as the cast was taken during the day. We then apply the slope correction based on the
co-located discrete sample data. Remember that the slope correction should be determined
using only data that is likely not impacted by quenching, i.e., using the quenching filter to
determine the regression slope (Figure 5.6). The slope is estimated by applying a linear
regression with the intercept forced through zero in order to maintain zero and non-negative
chlorophyll-a concentrations in the corrected chlorophyll-a sensor data at depth. Then, apply the
calculated slope to the entire dataset, including the likely quenched data. If the user decides to
correct the data for NPQ, it should be done now, only after the in situ calibration has been done
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(i.e., the slope has been applied to the sensor data). This NPQ correction is beyond the scope
of this document, but some references for existing methods are provided in section 5.5.5.

Figure 5.6. Linear regression of
the bottle chlorophyll-a and
sensor chlorophyll-a data using
match-ups based on depth. A
quenching filter has been applied
(i.e., only data below the chlorophyll
maximum depth are used) to
determine the linear regression
relationship.

In Figure 5.7, we show the sensor data after it has had all of the above corrections applied. This
example clearly shows the extent to which the original uncorrected L1 chlorophyll-a data
downloaded from OOI overestimated chlorophyll-a concentrations throughout the top 100m of
the profile. This dataset is now analysis-ready.

Figure 5.7. Corrected chlorophyll-a sensor
data plotted along with the original
uncorrected chlorophyll-a sensor data and
the discrete bottle sample chlorophyll-a data.
The corrected data was produced by applying
each of the steps described in this worked
example.
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Pseudo-Code
The pseudo-code provided below provides each step in the data processing pipeline for this
worked example, with steps organized following the sequence given in Figure 5.2 (End User
Data Bio-Optics Data Processing Flow) and the text in Sections 5.4 and 5.5. This pseudo-code
is intended to support end users in developing their own data processing sequence following
these recommended steps using any programming language or OOI data access method of
their choice. The Python notebook used to implement this example is provided as a
supplementary resource, but is intended solely as a reference and not as a template for end
user data processing code.

Assemble Data
Review available FLORT/FLORD/FLNTU/FLCDR data on Data Explorer;
Review OOI HITL annotations for optical sensors;

Download sensor data of interest including time, depth, asset type
and location;

Download co-occurring turn-around cruise discrete chlorophyll-a data
from HPLC analyses;

Evaluation and cleaning
Plot the sensor data;
Note and evaluate discontinuities and any other obvious issues;

Apply OOI QC flags to available sensor and discrete sample data;
Apply OOI human-in-the-loop (HITL) annotations to available sensor
and discrete sample data;

Apply QARTOD flags to available data;

Apply Manual Cleaning to available data (Except for Chlorophyll-a
Quenching, which is applied later): Refer to Common Data Quality
Issues in Chapter 5: Bio-Optical Measurements

Filter or discard data, as appropriate.

Sensor data are now “clean”.

FDOM
Analysis Ready FDOM: No additional steps are needed
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Total Optical Backscatter
Analysis Ready Total optical backscattering: (bb, at 700 nm) this is
an OOI L2 product and no additional steps are needed

Particulate Backscatter
Calculate seawater backscattering (bb_sw) as a function of matching
temperature, salinity (following Zhang et al 2009);

Subtract the seawater backscattering (bb_sw) from total optical
backscattering (bb) to derive Analysis Ready Particulate Backscatter
using the equation below

bb_p = bb - bb_sw

Reminder: bb_p is not an OOI data product.

Chlorophyll-a: dark correction
Reminder: the dark correction is only applicable to chlorophyll-a
fluorescence on profiling sensors

Requirements for Chlorophyll-a: Sensor is profiling and there are
sufficient profiles (at least 5) of required depth below the
productive layer:

Calculate the instrument specific dark value (inst_dark):
inst_dark = median[min(CHL) from first 5 profiles];

Apply dark correction to the filtered dataset:
CHL_dark_corrected = CHL - inst_dark;

Chlorophyll-a: quenching flags
Apply a filter for (daytime) quenched Chlorophyll-a data:
Simplest method:

daytime = hours between sunrise and sunset;
Be sure to use asset local time.

Second, more complex method:
use PAR data from a collocated light meter (surface mooring) to
identify daytime.
daytime = hours when PAR > 0;

Identify depth of daytime Chlorophyll-a max for per asset and per
day.
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Flag daytime Chlorophyll-a data acquired at depth less than the
Chlorophyll-a max depth.

Note: these Chlorophyll-a data are biased by non-photochemical
quenching and must be filtered from the dataset before determining
the slope calculation to be applied later to the Analysis Ready
Chlorophyll-a Fluorescence, and then returned to the final dataset.
These data biased by photoquenching should NOT BE REMOVED from the
overall dataset. They contain information on phytoplankton
physiology.

Chlorophyll-a: slope correction
Note: Mooring data with fixed depth fluorometers will have fewer
comparative sample points than profilers and gliders, and may fall
within the quenching depth filter, preventing any matchups.

Plot by depth: Discrete HPLC chlorophyll-a data against
contemporaneous OOI chlorophyll-a fluorescence sensor data.

If any, FIND matchups between quenching-filtered sensor data
(Chlorophyll-a) and QC’d OOI discrete sample data, then calculate
slope/offset corrections based on fit. (note best quality is achieved
with >3 matchups). When the dynamic range in chlorophyll from the
bottled samples is not regularly spaced (e.g., lots of points at low
concentrations and one point at high), it is recommended to calculate
the regression in log-log space. So calculate the linear regression
between log10(chlorophyll fluorescence) and log10(chlorophyll
concentration - from bottles).

Apply slope corrections to the entire dataset. In this case, it is
preferable to calculate the slope based on a zero intercept:

CHL_adj = m * CHL + 0;

where m is the slope of the regression line, and the
intercept is forced to 0.

CHL_adj is the analysis ready chlorophyll-a fluorescence dataset.
IF appropriate, users may now apply any NPQ correction method to
remove and correct quenching effects on daytime data (not described
here).

Plot analysis-ready chlorophyll-a fluorescence data
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Appendix

A1. OOI websites with key information

Observation and Sampling Plan
This document contains details on the OOI sampling approach, including the arrays, platforms
and sensors.

Instruments
Information about each instrument in the OOI array can be found here. This includes makes and
models, codes for accessing data, and data product sheets (DPS) that detail instrument
metadata, theory of operation, and implementation. DPS are often helpful in the QA/QC
process.

OOI Cruise Data and Array Documentation (Alfresco server)
Data from OOI cruises is distributed via the Alfresco repository. Discrete bottle samples,
underway measurements and CTD casts may all be helpful for QA/QC. This repository also
includes vendor documentation on delivery, recalibration, and refurbishment of instruments,
OOI’s internal design documents and pre- and post-deployment testing documentation for all
instruments and platforms.

OOI Discourse Server
OOI supports an online Discourse discussion forum for users of OOI data to share science, data
tips, and answer questions about how to most effectively use OOI data in research and in the
classroom. The News and HelpDesk channels are a great place to find updates on OOI data
platforms and to see questions posted by other users. There is also a Data Tools channel where
OOI staff and users can share tools that they have developed to work with OOI data streams.

How to use and cite OOI data

A2. Terminology

OOI Glossary
Definitions used within the OOI program for infrastructure, types of platforms and nodes, data,
and general terminology.
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OOI-specific Acronyms used in this document

General Acronyms used in this document

A3. Additional external-to-OOI resources on QA/QC and BGC
sensors

IOOS QARTOD
The United States Integrated Ocean Observing System® (U.S. IOOS®) Quality Assurance /
Quality Control of Real-Time Oceanographic Data (QARTOD) Project. Details on the quality
control steps for evaluating real-time ocean data. QARTOD tests are in the process of being
implemented by OOI, but additional tests may be recommended for the user.

Ocean Best Practices Repository
A repository of published methods and best practices documents hosted by the International
Oceanographic Data and Information Exchange (IODE). An open-access repository containing
community accepted practices towards collection, processing and quality control of
oceanographic data. This searchable resource contains recommended best practices for both
ship-borne and autonomous ocean data collection, including by biogeochemical sensors.

Online training course on BGC sensors
IOCCP & BONUS INTEGRAL Training Course on "Instrumenting our oceans for better
observation: a training course on a suite of biogeochemical sensors"

OceanGliders community
OceanGliders is the glider component of the integrated Global Ocean Observing System. This
repository facilitates sharing and discussing Best Practices for gliders, including processing and
management of data from BGC sensors.

A4. Code toolboxes

OOI Official GitHub
The OOI provides public access to Matlab, Python, R, and Julia code examples and packages
used for all data processing. Many of these repositories were referenced directly within the Best
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Practices & User Guide, but users are encouraged to peruse the full set of these
publicly-available repositories.

OOI Data Explorations GitHub Repository
Within the OOI official GitHub, the OOI Data Explorations repository contains Matlab, Python, R
and limited Julia code that users can use to access OOI data through the M2M system. The
Python code also has tools for accessing data from the OOI Gold Copy THREDDS catalog and
code that applies additional processing such as additional data QC checks to certain data sets,
and code that shows some of the QARTOD workflows.

OOI Data Labs GitHub Repository
This repository provides a series of short Jupyter Notebooks to get people started with coding in
Python using OOI data. These notebooks are very accessible and were developed with
undergraduates in mind. They include requesting OOI data, merging datasets, basic statistics
and plotting. Different folders were developed for different workshops/purposes. An explainer of
the repository can be found here. Unless otherwise noted, all examples were developed by
Sage Lichtenwalner, at the Rutgers University Center for Ocean Observing Leadership.

Biogeochemical Argo Tools
Biogeochemical Argo (BGC-ARGO) is a global network of autonomous profiling floats, which
uses many of the same BGC sensors as OOI. BGC-ARGO has developed excellent code
libraries in multiple programming languages (Python, R, and MATLAB) for data access,
visualization, and quality control that OOI BGC sensor data users may find helpful.

A5. GitHub repository for Worked Examples
All code and calculations used in processing the Worked Examples in the individual chapters of
this Best Practices & User Guide are provided as a supplementary resource in this GitHub
repository. The repository includes separate folders with the Worked Example calculations for
each chapter, which parallel the pseudo-code included in the chapters. This data processing
code is intended solely as a reference and not as a template for end user data processing.

Since our intention in this document is to support end users who may choose to access OOI
data using a range of approaches and complete their end user data processing in any coding
language or calculation approach, the Worked Examples across Chapters 2-5 illustrate a variety
of possible approaches:

●
● The Dissolved Oxygen Worked Example (Section 2.6) is implemented in MATLAB
● The Nitrate Worked Example (Section 3.6) is implemented as spreadsheet calculations

in Microsoft Excel workbooks.
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● The Carbonate System Chemistry and Bio-Optics Worked Examples (Sections 4.6) are
implemented in Python Jupyter notebooks.

● The Bio-Optics Worked Examples (Section 5.6) are implemented in Python Jupyter
notebooks.

Although this document is not intended as a guide for how to access OOI data, we also include
in this repository two supporting examples of current methods for accessing OOI data, as
applied to OOI BGC datasets:

● The Nitrate Data Download Example provides a step-by-step walkthrough of how the
dataset used for the Nitrate Worked Example (Section 3.6) was downloaded from OOI’s
Data Explorer

● The Carbon Data Download Jupyter Notebook illustrates two methods for
programmatically accessing and downloading OOI data, as applied in the Carbon
Worked Example (Section 4.6). The first method utilizes OOI’s API to perform
machine-to-machine (M2M) queries for data from the OOI THREDDS data server, which
serves the same datasets which can be accessed via OOI’s Data Portal. The second
method requests data from OOI’s Data Explorer ERDDAP server.

A6. OOI for Teaching

The OOI Ocean Data Labs Project
The Ocean Data Labs Project has developed numerous resources for classroom and research
use. The target audience is geoscience professors of undergraduates, but many resources may
also be relevant for high school and graduate students. Resources include 15 minute guided
data explorations with online widgets, “data nuggets” which are cleaned up and interesting data
chunks ready for use, Python code to get students started in research, individual lesson plans
using OOI data, and a complete lab manual ready for implementation in Introductory
Oceanography classes. The team also runs a blog, webinars and workshops on how to use OOI
data in the classroom.

Project EDDIE
Project EDDIE (Environmental Data-Driven Inquiry and Exploration) is an NSF funded project to
bring data into the classroom. They have developed a series of teaching models, some of which
include OOI data such as this one investigating bomb cyclones.
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A7. Schematic drawings of OOI Arrays
The following figures (A.1-A.6) provide schematic drawings of the OOI arrays, with captions
identifying the locations within each array of all BGC sensors covered in this Best Practices &
User Guide. See Table 1.1 for a synthesis of all BGC sensors included in the scope of this
document and numbers deployed across all OOI arrays.

Figure A.1. Schematic drawing of the OOI Global Station Papa Array. All platforms include BGC
sensors:
(1) Apex Profiler Mooring: Oxygen and Fluorescence/Chlorophyll-a on shallow ( 150-2100m)≈

and deep (2150-4100m) profilers.
(2) and (3) Flanking Moorings A & B: Oxygen, Fluorescence/Chlorophyll-a, and pH at 30 m.
Mobile Assets: Oxygen and Fluorescence/Chlorophyll-a on Open Ocean Gliders (0-1000 m);

Oxygen, Fluorescence/Chlorophyll-a, and Nitrate on Global Profiling Gliders (0-200 m).
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Figure A.2. Schematic drawing of the OOI Global Irminger Sea Array. Also applicable to the
Argentine Basin Array (active 2015-2018) and Southern Ocean Array (active 2015-2020). All
platforms include BGC sensors:
(1) Apex Profiler Mooring: Oxygen and Fluorescence/Chlorophyll-a on the shallow (≈

150-2100m/2600 m at Irminger) and deep ( 2150-4100m, not at Irminger) profilers.≈
(2) Apex Surface Mooring: pCO2 and Oxygen at surface, 12, 40, 80, 130 m; pH at 20 & 100 m;

Fluorescence/Chlorophyll and Nitrate at surface & 12 m.
(3) & (4) Flanking Moorings A & B: Oxygen, Fluorescence/Chlorophyll, and pH at 30 m.
Mobile Assets: Oxygen and Fluorescence/Chlorophyll on Open Ocean Gliders (0-1000 m);

Oxygen, Fluorescence/Chlorophyll, and Nitrate on Global Profiling Gliders (0-200 m).
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Figure A.3. Schematic drawing of the OOI Coastal Pioneer Array*. All platforms include BGC
sensors:
Inshore (1), Central (2), & Offshore (3) Surface Moorings: Surface buoy - pCO2; Near-surface

instrument frame (NSIF) at 7 m - pH, Oxygen, Fluorescence/Chlorophyll, Nitrate;
Multi-function node (MFN) at the bottom - pH, pCO2, Oxygen.

Inshore (4), Central Inshore (5), Central Offshore (6), & Offshore (7) Profiler Moorings: Oxygen
and Fluorescence/Chlorophyll (25 m to 20 m above bottom).

Mobile Assets: Coastal Gliders (0 - 200 m, 0 - 1000 m or 10 m above bottom) - Oxygen and
Fluorescence/Chlorophyll; Coastal Profiling Gliders (0 - 200 m or 10 m above bottom) and
AUVs - Oxygen, Fluorescence/Chlorophyll, Nitrate.

*New England Shelf location, deployed 2016-2022; the Coastal Pioneer Array will move to the
Southern Mid-Atlantic Bight with a new array configuration beginning in 2024
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Figure A.4. Schematic drawing of the OOI Coastal Endurance Array. All platforms include BGC
sensors:
Inshore Surface Moorings (1, 4): Surface Buoy - Fluorescence/Chlorophyll; Near-surface

instrument frame (NSIF) at 7 m - pCO2, pH, Oxygen, Fluorescence/Chlorophyll, Nitrate;
Multi-function node (MFN) at the bottom - pH, pCO2, Oxygen

Coastal Surface Moorings (2, 3, 5, 6): Surface Buoy - pCO2; Near-surface instrument frame
(NSIF) at 7 m - pH, Oxygen, Fluorescence/Chlorophyll, Nitrate; Washington Line (5, 6)
Multi-function node (MFN) at the bottom or Oregon Line (2, 3) co-located Cabled Benthic
Experiment Package - pH, pCO2, Oxygen

Coastal Surface-Piercing Profiler Moorings (1, 2, 4, 5): Oxygen, Fluorescence/Chlorophyll,
Nitrate (surface to bottom)

Cabled Profiler Moorings (3): Shallow (20 to 200 m) - pCO2, pH, Oxygen, Nitrate,
Fluorescence/Chlorophyll; Deep (175 to 500 m) - Oxygen, Fluorescence/Chlorophyll; Fixed
at 200 m - pH, pCO2, Oxygen

Wire-Following Profiler Mooring (6) - Oxygen, Fluorescence/Chlorophyll (15 to 540 m)
Mobile Assets: Coastal Gliders (0 - 200 m, 0 - 1000 m or 10 m above bottom) - Oxygen and

Fluorescence/Chlorophyll.
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Figure A.5. Schematic drawing of the OOI Regional Cabled Continental Margin Array. Only the
Oregon Slope Base platforms contain BGC sensors, including:
(1) Oregon Slope Base Seafloor: Oxygen
(2) Oregon Slope Base Shallow Profiler Mooring: pCO2, pH, Oxygen, Fluorescence/Chlorophyll,

Nitrate (5 to 200 m); Fixed at 100 m - pH, Oxygen, Fluorescence/Chlorophyll
(3) Oregon Slope Base Deep Profiler Mooring: Oxygen, Fluorescence/Chlorophyll (200 to 2,905

m)
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Figure A.6. Schematic drawing of the OOI Regional Cabled Axial Seamount Array. Only the Axial
Base platforms contain BGC sensors, including:
(1) Axial Base Deep Profiler Mooring: Oxygen, Fluorescence/Chlorophyll (150 to 2,465 m)
(2) Axial Base Seafloor: Oxygen
(3) Axial Base Shallow Profiler Mooring: pCO2, pH, Oxygen, Fluorescence/Chlorophyll, Nitrate

(5 to 200 m); Fixed at 200 m - pH, Oxygen, Fluorescence/Chlorophyll
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