
How much does performance differ 
between people? 
Max Daniel & Benjamin Todd 
 
Some people seem to achieve orders of magnitudes more than others in the same job. For 
instance, among companies funded by Y Combinator the top 0.5% account for more than ⅔ 
of the total market value; and among successful bestseller authors, the top 1% stay on the 
New York Times bestseller list more than 25 times longer than the median author in that 
group. 
 
This is a striking and often unappreciated fact, but raises many questions. How many jobs 
have these huge differences in achievements? More importantly, why can achievements 
differ so much, and can we identify future top performers in advance? Are some people 
much more talented? Have they spent more time practicing key skills? Did they have more 
supportive environments, or start with more resources? Or did the top performers just get 
lucky? 
 
More precisely, when recruiting, for instance, we’d want to know the following: when 
predicting the future performance of different people in a given job, what does the 
distribution of predicted (‘ex-ante’) performance look like?  
 
This is an important question for EA community building and hiring. For instance, if it’s 
possible to identify people who will be able to have a particularly large positive impact on the 
world ahead of time, we’d likely want to take a more targeted approach to outreach. 
 
More concretely, we may be interested in two different ways in which we could encounter 
large performance differences : 
 

1.​ If we look at a random person, by how much should we expect their performance to 
differ from the average? 

2.​ What share of total output should we expect to come from the small fraction of 
people we’re most optimistic about (say, the top 1% or top 0.1%) – that is, how 
heavy-tailed is the distribution of ex-ante performance? 

 
(See this appendix for how these two notions differ from each other.) 
 
Depending on the decision we’re facing we might be more interested in one or the other. 
Here we mostly focused on the second question, i.e., on how heavy the tails are. 
 
This document contains our findings from a shallow literature review and theoretical 
arguments. Max was the lead author, building on some initial work by Ben, who also 
provided several rounds of comments. 
 
You can see a short summary of our findings below. 
 



We expect this post to be useful for: 
●​ (Primarily:) Junior EA researchers who want to do further research in this area. See 

in particular the section on Further research. 
●​ (Secondarily:) EA decision-makers who want to get a rough sense of what we do and 

don’t know about predicting performance. See in particular this summary and the 
bolded parts in our section on Findings. 

○​ We weren’t maximally diligent with double-checking our spreadsheets etc.; if 
you wanted to rely heavily on a specific number we give, you might want to do 
additional vetting. 

 
To determine the distribution of predicted performance, we proceed in two steps: 

1.​ We start with how ex-post performance is distributed. That is, how much did the 
performance of different people vary when we look back at completed tasks? 
On these questions, we’ll review empirical evidence on both typical jobs and expert 
performance (e.g. research). 

2.​ Then we ask how ex-ante performance is distributed. That is, when we employ our 
best methods to predict future performance by different people, how will these 
predictions vary? On these questions, we review empirical evidence on measurable 
factors correlating with performance as well as the implications of theoretical 
considerations on which kinds of processes will generate different types of 
distributions. 

 
Here we adopt a very loose conception of performance that includes both short-term 
(e.g. sales made on one day) and long-term achievements (e.g. citations over a whole 
career). We also allow for performance metrics to be influenced by things beyond the 
performer’s control. 
 
Our overall bottom lines are: 

●​ Ex-post performance appears ‘heavy-tailed’ in many relevant domains, but with 
very large differences in how heavy-tailed: the top 1% account for between 4% 
to over 80% of the total. For instance, we find ‘heavy-tailed’ distributions (e.g.  
log-normal, power law) of scientific citations, startup valuations, income, and media 
sales. By contrast, a large meta-analysis reports ‘thin-tailed’ (Gaussian) 
distributions for ex-post performance in less complex jobs such as cook or 
mail carrier1: the top 1% account for 3-3.7% of the total. These figures illustrate 
that the difference between ‘thin-tailed’ and ‘heavy-tailed’ distributions can be 
modest in the range that matters in practice, while differences between 
‘heavy-tailed’ distributions can be massive. (More.)  

●​ Ex-ante performance is heavy-tailed in at least one relevant domain: science. 
More precisely, future citations as well as awards (e.g. Nobel Prize) are predicted by 
past citations in a range of disciplines, and in mathematics by scores at the 
International Maths Olympiad. (More.) 

1 For performance in “high-complexity” jobs such as attorney or physician, that meta-analysis (Hunter 
et al. 1990) reports a coefficient of variation that’s about 1.5x as large as for ‘medium-complexity’ jobs. 
Unfortunately, we can’t calculate how heavy-tailed the performance distribution for high-complexity 
jobs is: for this we would need to stipulate a particular type of distribution (e.g. normal, log-normal), 
but Hunter et al. only report that the distribution does not appear to be normal (unlike for the low- and 
medium-complexity cases). 

https://en.wikipedia.org/wiki/Coefficient_of_variation


●​ More broadly, there are known, measurable correlates of performance in many 
domains (e.g. general mental ability). Several of them appear to remain valid in the 
tails. (More.) 

●​ However, these correlations by itself don’t tell us much about the shape of the 
ex-ante performance distribution: in particular, they would be consistent with either 
thin-tailed or heavy-tailed ex-ante performance. (More.) 

●​ Uncertainty should move us toward acting as if ex-ante performance was 
heavy-tailed – because if you have some credence in it being heavy-tailed, it’s 
heavy-tailed in expectation – but not all the way, and less so the smaller our 
credence in heavy-tails. (More.) 

●​ To infer the shape of the ex-ante performance distribution, it would be more useful to 
have a mechanistic understanding of the process generating performance, but such 
fine-grained causal theories of performance are rarely available. (More.) 

●​ Nevertheless, our best guess is that moderately to extremely heavy-tailed 
ex-ante performance is widespread at least for ‘complex’ and ‘scaleable’ tasks. 
(I.e. ones where the performance metric can in practice range over many orders of 
magnitude and isn’t artificially truncated.) This is based on our best guess at the 
causal processes that generate performance combined with the empirical data we’ve 
seen. However, we think this is debatable rather than conclusively established by the 
literature we reviewed. (More.) 

●​ There are several opportunities for valuable further research. (More.) 
 
Overall, doing this investigation probably made us a little less confident that highly 
heavy-tailed distributions of ex-ante performance are widespread, and think that common 
arguments for it are often too quick. That said, we still think there are often large differences 
in performance (e.g. some software engineers have 10-times the output of others2), these 
are somewhat predictable, and it’s often reasonable to act on the assumption that the 
ex-ante distribution is heavy-tailed in many relevant domains (broadly, when dealing with 
something like ‘expert’ performance as opposed to ‘typical’ jobs). 
 
Some advice for how to work with these concepts in practice: 

●​ In practice, don’t treat ‘heavy-tailed’ as a binary property. Instead, ask how heavy 
the tails of some quantity of interest are, for instance by identifying the frequency of 
outliers you’re interested in (e.g. top 1%, top 0.1%, …) and comparing them to the 
median or looking at their share of the total.3 

3 Similarly, don’t treat ‘heavy-tailed’ as an asymptotic property – i.e. one that by definition need only 
hold for values above some arbitrarily large value. Instead, consider the range of values that matter in 
practice. For instance, a distribution that exhibits heavy tails only for values greater than 10^100 
would be heavy-tailed in the asymptotic sense. But for e.g. income in USD values like 10^100 would 
never show up in practice – if your distribution is supposed to correspond to income in USD you’d only 
be interested in a much smaller range, say up to 10^10. Note that this advice is in contrast to the 
standard definition of ‘heavy-tailed’ in mathematical contexts, where it usually is defined as an 
asymptotic property. Relatedly, a distribution that only takes values in some finite range – e.g. 
between 0 and 10 billion – is never heavy-tailed in the mathematical-asymptotic sense, but it may well 

2 Claims about a 10x output gap between the best and average programmers are very common, as 
evident from a Google search for ‘10x developer’. In terms of value rather than quantity of output, the 
WSJ has reported a Google executive claiming a 300x difference. For a discussion of such claims 
see, for instance, this blog post by Georgia Institute of Technology professor Mark Guzdial. Similarly, 
slide 37 of this version of Netflix's influential 'culture deck' claims (without source) that "In 
creative/inventive work, the best are 10x better than the average". 

http://online.wsj.com/articles/SB113271436430704916
https://cacm.acm.org/blogs/blog-cacm/180512-is-there-a-10x-gap-between-best-and-average-programmers-and-how-did-it-get-there/fulltext
https://www.slideshare.net/reed2001/culture-1798664


●​ Carefully choose the underlying population and the metric for performance, in 
a way that’s tailored to the purpose of your analysis. In particular, be mindful of 
whether you’re looking at the full distribution or some tail (e.g. wealth of all citizens 
vs. wealth of billionaires). 

 
In an appendix, we provide more detail on some background considerations: 

●​ The conceptual difference between ‘high variance’ and ‘heavy tails’: Neither 
property implies the other. Both mean that unusually good opportunities are much 
better than typical ones. However, only heavy tails imply that outliers account for a 
large share of the total, and that naive extrapolation underestimates the size of future 
outliers. (More.) 

●​ We can often distinguish heavy-tailed from light-tailed data by eyeballing (e.g. in a 
log-log plot), but it’s hard to empirically distinguish different heavy-tailed 
distributions from one another (e.g. log-normal vs. power laws). When 
extrapolating beyond the range of observed data, we advise to proceed with caution 
and to not take the specific distributions reported in papers at face value. (More.) 

●​ There is a small number of papers in industrial-organizational psychology on the 
specific question whether performance in typical jobs is normally distributed or 
heavy-tailed. However, we don’t give much weight to these papers because their 
broad high-level conclusion (“it depends”) is obvious but we have doubts about the 
statistical methods behind their more specific claims. (More.) 

●​ We also quote (in more detail than in the main text) the results from a 
meta-analysis of predictors of salary, promotions, and career satisfaction. 
(More.) 

●​ We provide a technical discussion of how our metrics for heavy-tailedness are 
affected by the ‘cutoff’ value at which the tail starts. (More.) 

 
Finally, we provide a glossary of the key terms we use, such as performance or heavy-tailed. 
 

Findings 
Ex-post performance can be heavy-tailed depending on domain and metric, with large 
differences in how heavy-tailed 
Scientific achievement is heavy-tailed ex-ante 
We know of measurable predictors of performance in many domains, including for the 
tails of performance 

Performance in typical jobs is predicted by general mental ability, but unclear by how 
much 
General mental ability predicts a number of other performance-related quantities 
Other predictors of performance 
In several cases, predictors remain valid in the tails 

Measurable predictors of heavy-tailed ex-post performance don’t imply that predicted 
performance is heavy-tailed 
Uncertainty should move us toward acting as if ex-ante performance was heavy-tailed – 
but not all the way 

be in the “practical” sense (where you anyway cannot empirically distinguish between a distribution 
that can take arbitrarily large values and one that is “cut off” beyond some very large maximum). 

https://docs.google.com/document/d/1nlL9lClpZksxcSrcuUquyJNXW9VnNBJczYvFc6CZdUc/edit#heading=h.6kje2v70wlpl
https://docs.google.com/document/d/1nlL9lClpZksxcSrcuUquyJNXW9VnNBJczYvFc6CZdUc/edit#heading=h.bh53qv3zipy7
https://en.wikipedia.org/wiki/Log%E2%80%93log_plot
https://docs.google.com/document/d/1nlL9lClpZksxcSrcuUquyJNXW9VnNBJczYvFc6CZdUc/edit#heading=h.533aa6canajk
https://docs.google.com/document/d/1nlL9lClpZksxcSrcuUquyJNXW9VnNBJczYvFc6CZdUc/edit#heading=h.75ksgpfbve6a


Causal models of performance would be useful, but we haven’t found one that would be 
‘shovel-ready’ for making predictions in EA contexts 
Why we’d guess that ex-ante performance at complex tasks is often heavy-tailed 

Further research 

Appendix 
High variance vs. heavy tails 
It’s hard to empirically distinguish different heavy-tailed distributions from one another, 
e.g. log-normal vs. power law 

Fundamental difficulties 
Practical difficulties 

I/O psychology papers on whether job performance is heavy-tailed don’t update us much 
Results from a meta-analysis of predictors of career success 
How do our metrics of heavy-tailedness depend on the value at which the tail starts? 

Key concepts and terminology 

References 

Findings 

Ex-post performance can be heavy-tailed depending on domain 
and metric, with large differences in how heavy-tailed 
There is abundant evidence that the ex-post distribution of some measures of 
performance in some relevant domains, e.g. scientific citations or startup valuations, 
is heavy-tailed (to varying degrees) across people (see Table 1). This roughly means 
that when we look back at completed tasks, outliers account for a disproportionately large 
share of total output.  
 
However, heavy-tailed performance distributions are not universal. Depending on how 
performance is measured, we may find a light-tailed (e.g. normal) distribution instead, 
especially in ‘typical’ rather than unusually complex jobs. For examples and a systematic 
discussion, see Aguinis et al. (2016), Beck et al. (2014), and Hunter, Schmidt, & Judiesch 
(1990). For selected light-tailed examples, see Table 2.  
 
Note that performance measures can also be light-tailed ‘by design’. For instance, the 
popular website IMDb.com rates movies on a scale from 1 to 10. The highest-rated movies 
could only account for a significant share of the sum of ratings across all movies if people 
rated the majority of movies with values that are orders of magnitude smaller than 1, which 
in practice is not how raters interpret and use this scale. It is therefore no surprise that Liu et 
al. (2018) uses a light-tailed distribution to model IMDb ratings. 
 
Of course, this doesn’t tell us anything about whether the ‘performance’ of movies might be 
heavy-tailed when measured in a different way, for example by their box office revenue.  
 



As one example of heavy-tailed ex-post performance, among companies funded by Y 
Combinator the top 1% account for more than ⅘ of the total market value. Other cases are 
less extreme, e.g.: 

●​ In 2005 the global top 1% accounted for 21% of world income (adjusted for 
purchasing power).4  

●​ Among scientists with long careers, the top 1% most-cited ones get around 7% of all 
citations, and the top 1% most prolific ones author 4.0% of all papers.5  

 
For comparison, in a normal distribution fitted to output data from various 
“medium-complexity” jobs (e.g. cook) the top 1% account for 3.7% of total output. This is not 
that different from the 4.0% top-1%-share figure for papers-by-author despite the former 
being from a ‘light-tailed’ and the latter being from a ‘heavy-tailed’ distribution.6 On the other 
hand, we have seen that among different heavy-tailed distributions the top-1%-share can 
vary by a factor of more than 10. 
 
This illustrates that it’s useful to ask how heavy the tail of performance is in a specific 
case, rather than just asking the binary question whether the tails are heavier than for an 
exponential distribution (a common maths definition of ‘heavy-tailed’ as a binary property). 
For practical purposes there are large differences among heavy-tailed distributions. 
They range from “winner takes most” situations to ones where the difference to a 
normal distribution remains modest across the full range of values we’ll ever 
encounter in practice.7 
 
To compare the heavy-tailedness of different distributions, we suggest the share of 
expected value in the top X% (top 20%, 10%, 1%, etc.) – see Table 3. This measure has 
several advantages: it focuses on the key difference between heavy-tailed and light-tailed 
distributions; it highlights that the property of interest isn’t binary but varies continuously; it 
has a straightforward interpretation; and we can apply it to different families of distributions 
as well as unparameterized data.  
 
One disadvantage of this measure is that it depends on the ‘underlying population’ – for 
instance, whether we look at all authors of scientific papers or only those who have 
published consistently over many years. (Consider that a large share of paper authors only 

7 Among the distributions we found, the share of the top 0.01% (1 in 10,000) differed by a factor of 
less than 2 between the heaviest ‘thin-tailed’ and the least heavy ‘heavy-tailed’ distribution – but by a 
factor of more than 500 among different ‘heavy-tailed’ distributions! 

6 Note that the difference between any ‘heavy-tailed’ and ‘thin-tailed’ distribution must become 
arbitrarily large in the limit of increasingly extreme top-shares. That is, if we look at the top 1%, top 
0.1%, top 0.01%, and so on, the top-share of the light-tailed distribution will eventually fall much 
quicker than that for the heavy-tailed distribution (and so the ratio of the top-shares becomes 
arbitrarily large). However, in practice it matters when the difference becomes large: e.g. we often 
deal with sufficiently large groups of people that it’s useful to know about the top 1% but we will rarely 
if ever be interested in some property of the top 10^{-100}. 

5 Based on Sinatra et al. (2016); note that the figures are based on their fitted distribution, not the 
actual data. The distribution of total citations to authors has no closed-form expression but can be 
simulated based on Sinatra and colleagues’ model. Specifically, I generated 100 independent 
samples of 1 million scientists each. The mean top-1%-share across the 100 samples was 7.17%, 
with a standard deviation of 0.0267%. The script I used for the simulation is here, and a screenshot of 
the output from running the script on March 6th 2021 is here.  

4 Anand & Segal (2014, Table 11.5), the first estimate of the world income distribution that takes into 
account estimates of top earners within countries. 

https://drive.google.com/file/d/1Rs5tyzWGsDMUEsZsp0C17zQN8pVXvvzv/view?usp=sharing
https://drive.google.com/file/d/1POrmqrigb9eyIdxnEiG8pj7Yg9vxMFyI/view?usp=sharing


have very few publications, e.g. people who leave academia after their PhDs.) More broadly, 
certain distributions such as power laws usually only apply in the tails of performance, and 
then we need to be careful to distinguish between the share of the total in the tail and the 
share of the total in the full distribution. For instance, the third row in Table 3 says that the 
top 20% of US billionaires account for about 88% of the wealth of all US billionaires. If the 
underlying population instead were all Americans, then the top 20% of billionaires would 
correspond to a much higher quantile of that population (perhaps the top 0.0001%) but since 
we’re now comparing to a larger amount of total wealth their share would also be lower than 
88% (in fact at most 30%).8 
 
This means that a direct comparison of different entries in our tables may be 
misleading if they report the same quantity (e.g. citations) for different population 
subsets (e.g. all scientists vs. tail of highly cited scientists). 
 
(Another disadvantage is that it has a straightforward interpretation only for distributions that 
range only over positive values. If negative values ‘cancel out’ positive ones in expectation, 
this will push the mean toward zero, and thus increase the share of the top X% irrespective 
of how fast the tails diminish. In the extreme case of a distribution with mean zero, the “share 
of the total” for any top X% would involve a division by zero and thus be undefined.) 
 
The data in Table 3 suggests that the same quantity (e.g. wealth) tends to be more 
heavy-tailed for more “elite” populations, i.e. smaller populations that have been more 
heavily selected for performance (e.g. US billionaires vs. all Americans, scientists published 
in Nature vs. less prestigious journals). This is also suggested by some theoretical 
considerations9, but we don’t know how generally it holds. If it holds more widely, it would for 
instance be relevant to assessing replaceability in competitive jobs. 
 
In Tables 3 and 4 we provide more detail on some heavy-tailed performance distributions. 
However, as explained in the appendix, our confidence in this more specific information – 
including the type of distribution, say log-normal vs. Pareto – is low; we think the main robust 
findings simply are that (i) many performance metrics across many domains are, in a broad 
sense, heavy-tailed, and that (ii) different performance metrics or samples can vary 
considerably in how heavy the tails are, even for data in the same broad domain (e.g. 
wealth). 
 
If you are more interested in variance, for some of these distributions we provide a scale-free 
measure of variance (the ‘coefficient of variation’, i.e. standard deviation over mean) in Table 
5. 
 

9 Roughly: the more heavily the population has been selected, the more room there was for ‘success 
begets success’ dynamics to amplify differences, and the more performance tends to depend on a 
larger number of factors – both of which push toward more heavy tails. For a more detailed 
explanation, see the later subsection on why we’d guess that ex-ante performance is often 
heavy-tailed. 

8 The 0.0001% and 30% figures given here are very crude ballpark estimates based on assuming that 
there are 1,000 US billionaires (as of March 2020 probably an overestimate by a factor of ~2) in a 
population of 300 million (in fact ~330 million in 2019), and that the share of total wealth held by 
billionaires is 35% (which in fact is about the share held by the top 1%, whereas billionaires are on the 
order of the top 0.0001%). 

https://80000hours.org/2019/08/how-replaceable-are-top-candidates-in-large-hiring-rounds/
https://www.google.com/search?q=how+many+us+billionaires&rlz=1C5CHFA_enLU709DE711&oq=how+many+us+billio&aqs=chrome.0.0i457j0j69i57j0l5.2512j1j1&sourceid=chrome&ie=UTF-8
https://www.forbes.com/billionaires/
https://en.wikipedia.org/wiki/Wealth_inequality_in_the_United_States#Statistics


 
Table 1. Examples of heavy-tailed distributions of ex-post performance.  

 

Performance-relevant quantity found to be 
heavy-tailed 

Sources 

Citations by scientist (whole career) Liu et al. (2018), Sinatra et al. (2016), 
Petersen, Wang, & Stanley (2010)  

Number of publications by scientists (whole 
career) 

Sinatra et al. (2016), Petersen, Wang, & 
Stanley (2010), Clauset et al. (2009) 

Profits by startup founders 80,000 Hours (2014a, 2014b) 

Various metrics of success in arts & 
entertainment by artist, e.g. weeks on the NYT 
bestseller list by fiction author or movie box 
office gross by director 

Tauberg (2018) 

Wealth by individual (worldwide and within 
various countries) 

Atkinson & Bourguignon (eds., 2014), 
Clauset et al. (2009) 

Income by individual (worldwide and within 
various countries) 
 

Atkinson & Bourguignon (eds., 2014), 
Our World in Data 

Citations by paper Brzezinski (2015), Golosovsky & 
Solomon (2012), Wallace, Larivière, & 
Gingras (2009), Clauset et al. (2009), 
Radicchi, Fortunato, & Castellano 
(2008), Redner (1998), Price (1965) 

Programmer output Bryan (1994) 

Returns to stock indices by time period (e.g. 
1-min returns of the S&P 500) 

Malevergne, Pisarenko, & Sornette 
(2005) 

Auction prices by artwork Liu et al. (2018) 

 
 

Table 2. Examples of light-tailed distributions of ex-post performance.  
 

Performance-relevant quantity found to be 
light-tailed (i.e. not heavy-tailed) 

Source 

Average call handle-time by call center 
employee 

Beck et al. (2014, Fig. 2, p. 541f.) 

Points scored per minute on court in the NBA 
(by basketball player) 

Beck et al. (2014, Fig. 12b, p. 554f.) 

Output count of various ‘low-’ and 
‘medium-complexity’ jobs such as machine 

Hunter et al. (1990, Tables 4-6, pp. 
33ff.) 

https://80000hours.org/2014/05/how-much-do-y-combinator-founders-earn/
https://80000hours.org/2014/06/the-payoff-and-probability-of-obtaining-venture-capital/
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://ourworldindata.org/income-inequality
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=291203


operators, mail handlers, file clerks, 
proofreaders 

 
 

Table 3. Share of the right tail in the total for various metrics of ex-post performance (see 
notes below) 

 

 
Quantity 

Share of the total held by the top 
... 

20% 10% 1% 0.1% 0.01% 

Startup founder equity by company, among Y 
Combinator companies [80,000 Hours 2014] 

  >80
% 

  

Wealth (England & Wales, 1910), whole economy 
[Roine & Waldenström 2014, Fig. 7.17] 

 93% 69%   

Wealth (US, 2003), among individuals with net 
worth > 600 million $ [Newman 2005] 

88% 83% 68% 57% 47% 

Box Office Gross among directors of major US 
movies (1970-2018) [Tauberg 2018] 

80%     

Donations among EA survey 2019 respondents   57%   

Weeks on NYT Fiction Bestseller list by author with 
at least 6 weeks on that list [Tauberg 2018] 

76% 68% 46% 32% 22% 

Wealth (US, 2010), whole economy, by household 
[Roine & Waldenström 2014, Fig. 7.18] 

 74% 34%   

Weeks in Billboard Hot-100 by musician, top 5500 
artists [Tauberg 2018] 

70%     

‘Citation shares’ (split between coauthors) of papers 
published in Nature 1958-2008, among scientists 
with roughly above-average citations of that type 
[Petersen et al. 2010, Table II] 

62% 51% 26% 13% 6.6% 

Income (worldwide, 2005) [Anand & Segal 2014]  60% 21%   

Income (South Africa, 2011) [Our World in Data]  51%    

‘Paper shares’ (split between coauthors) published 
in Nature 1958-2008, among scientists with at least 
the equivalent of one single-authored paper (~8% of 
all data) [Petersen et al. 2010, Table III] 

50% 38% 14% 5.3% 2.0% 

Income (US; 2013 for top 10% [Our World in Data], 
2005 for top 0.1% [Bakija, Cole, & Heim 2012]) 

 30%  7.3%  

Citations to scientists (whole career) [Sinatra et al. 51% 34% 7.2% 1.3% .21% 

https://80000hours.org/2014/05/how-much-do-y-combinator-founders-earn/
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://forum.effectivealtruism.org/posts/29xPsh2MKkYGCuJhS/ea-survey-2019-series-donation-data
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://ourworldindata.org/grapher/income-share-held-by-richest-10
https://ourworldindata.org/grapher/income-share-held-by-richest-10


2016]10 

Box Office Gross by US top-200 movie director 
[Tauberg 2018] 

40% 27% 7.1% 1.9% .5% 

Exponential distribution 
[see: when this is a sensible comparison?] 

52% 33% 5.6% .79% .10% 

Weeks in Billboard Hot-100 (1970-2018) by 
musician, among artists with at least 282 weeks in 
these charts [Tauberg 2018] 

35% 22% 5.0% 1.1% .25% 

Income (Sweden, 2014) [Our World in Data]  22%    

Papers coauthored by mathematicians with at least 
133 publications [Clauset et al. 2009] 

33% 20% 4.0% .81% .16% 

Papers written by scientist (whole career) [Sinatra et 
al. 2016] 

39% 24% 4.0% .59% .083% 

Right half of a standard normal distribution 
[see: when this is a sensible comparison?] 

44% 26% 3.6% .45% .052% 

Output in typical jobs (“medium” complexity, e.g. 
cook) among applicants for such jobs [Hunter, 
Schmidt, & Judiesch 1990] 

58% 31% 3.7% .41% .045% 

Output in typical jobs (“low” complexity, e.g. mail 
carrier) among applicants for such jobs [Hunter, 
Schmidt, & Judiesch 1990] 

51% 27% 3.0% .33% .035% 

 
Table 3. Share of the right tail in the total for various metrics of ex-post performance, as 
calculated in this spreadsheet. Italicized are non-performance-related ‘benchmarks’ we 

report for comparison. Ordered by descending share of the top 1%. Color scheme: Green = 
descriptive share in observed or estimated data; Yellow = predicted share by log-normal 

model; Orange = predicted share by power-law model11; Blue = shares in non-heavy-tailed 
distributions for comparison.12 

 
Table 4. Quantiles as multiple of the median for various metrics of ex-post performance (see 

notes below). 
 

 
Quantity 

Quantiles as multiple of median 

.8 .9 .99 .999 .9999 

12 Figures based on models are less affected by noise and allow us to extrapolate beyond the range of 
observed data (e.g. there aren’t actually 10,000 US citizens with net worth > 600 million). On the other 
hand, such extrapolated numbers may be misleading because the models may be invalid beyond the 
range of observed data (cf. the appendix). 

11 We used a continuous power law, i.e. a Pareto distribution, even for discrete data. Our best guess is 
that this doesn’t make much of a difference for this purpose, but haven’t checked. 

10 See footnote 4. 

https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://ourworldindata.org/grapher/income-share-held-by-richest-10
https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing


Equity held by startup founders after startup death 
or acquisition [80,000 Hours 2014, and paper linked 
there] 

Infinite – about 75% of founders (so 
incl. the median) end up with 
nothing. 

Wealth (US, 2003), among individuals with net 
worth > 600 million $ [Newman 2005] 

2.3 4.4 36 300 2500 

Donations among EA survey 2019 respondents 7.3 17 160   

Weeks on NYT Fiction Bestseller list by author with 
at least 6 weeks on that list [Tauberg 2018] 

2.1 3.8 26 180 1200 

‘Citation shares’ (split between coauthors) to papers 
published in Nature 1958-2008, among scientists 
with roughly above-average citations of that type 
[Petersen et al. 2010, Table II] 

1.9 3.1 16 80 400 

Income (worldwide, 2005) [Anand & Segal 2014, 
11.5.1, median stipulated from Table 11.5]  

  19   

Income (worldwide, 2005) [Anand & Segal 2014, 
stipulated from Table 11.5] 

2.7 4.5 15 37 78 

Income (US, 2005, pre-tax) within 10 highest-paying 
professions (e.g. medicine, law) [80,000 Hours] 

  6.6–
28  

  

‘Paper shares’ (split between coauthors) published 
in Nature 1958-2008, among scientists with at least 
the equivalent of one single-authored paper (~8% of 
all data) [Petersen et al. 2010, Table III] 

1.7 2.5 9.5 36 130 

Citations to scientists (whole career) [Sinatra et al. 
2016]13 

2.1 3.1 7.5 14 25 

Income (US, 2013) [LIS Database]  2.2    

Box Office Gross by US top-200 movie director 
[Tauberg 2018] 

1.5 2.0 5.3 14 38 

Exponential distribution 
[see: when this is a sensible comparison?] 

2.3 3.3 6.6 10 13 

Weeks in Billboard Hot-100 (1970-2018) by 
musician, among artists with at least 282 weeks in 
these charts [Tauberg 2018] 

1.4 1.8 3.9 8.8 20 

Income (Sweden, 2005) [LIS Database]  1.6    

Papers coauthored by mathematicians with at least 
133 publications [Clauset et al. 2009] 

1.3 1.6 3.3 6.6 13 

Papers written by scientist (whole career) [Sinatra et 
al. 2016] 

1.6 2.1 3.8 5.9 8.5 

13 See footnote 2. 

https://80000hours.org/2014/06/the-payoff-and-probability-of-obtaining-venture-capital/
https://80000hours.org/2014/06/the-payoff-and-probability-of-obtaining-venture-capital/
https://forum.effectivealtruism.org/posts/29xPsh2MKkYGCuJhS/ea-survey-2019-series-donation-data
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://80000hours.org/articles/highest-paying-jobs/
http://www.lisdatacenter.org/lis-ikf-webapp/app/search-ikf-figures
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
http://www.lisdatacenter.org/lis-ikf-webapp/app/search-ikf-figures


Right half of a standard normal distribution 
[see: when this is a sensible comparison?] 

1.9 2.4 3.8 4.9 5.8 

Output in typical jobs (“medium” complexity, e.g. 
cook) among all job applicants [Hunter, Schmidt, & 
Judiesch 1990] 

1.3 1.4 1.7 2.0 2.2 

Output in typical jobs (“low” complexity, e.g. mail 
carrier) among all job applicants [Hunter, Schmidt, & 
Judiesch 1990] 

1.2 1.2 1.4 1.6 1.7 

 
Table 4. Quantiles as multiple of the median for various metrics of ex-post performance, as 

calculated in this spreadsheet. Italicized are non-performance-related ‘benchmarks’ we 
report for comparison. Color scheme: Green = descriptive values in observed or estimated 
data; Yellow = predicted by log-normal model; Orange = predicted by lower-law model14; 

Blue = predicted by non-heavy-tailed model 
 

Table 5. Coefficient of variation of various metrics of ex-post performance (see notes below). 
 

Quantity Coefficient of variation, i.e. 
stdev/mean 

Wealth (US, 2003), among individuals with net 
worth > 600 million $ [Newman 2005] 

infinity (i.e. infinite standard 
deviation but finite mean) 

Weeks on NYT Fiction Bestseller list by author with 
at least 6 weeks on that list [Tauberg 2018] 

infinity 

‘Citation shares’ (split between coauthors) to papers 
published in Nature 1958-2008, among scientists 
with roughly above-average citations of that type 
[Petersen et al. 2010, Table II] 

infinity 

Income (worldwide, 2005) [Anand & Segal 2014, 
stipulated from Table 11.5] 

1.71 

‘Paper shares’ (split between coauthors) published 
in Nature 1958-2008, among scientists with at least 
the equivalent of one single-authored paper (~8% of 
all data) [Petersen et al. 2010, Table III] 

infinity 

Citations to scientists (whole career) [Sinatra et al. 
2016]15 

1.06 

Box Office Gross by US top-200 movie director 
[Tauberg 2018] 

1.10 

Exponential distribution 
[see: when this is a sensible comparison?] 

1 

15 See footnote 4. 

14 We used a continuous power law, i.e. a Pareto distribution, even for discrete data. Our best guess is 
that this doesn’t make much of a difference for this purpose, but we’re not sure. 

https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c


Pareto distribution with cdf shape parameter alpha = 
sqrt(2)+1 (around 2.41)16 

1 

Weeks in Billboard Hot-100 (1970-2018) by 
musician, among artists with at least 282 weeks in 
these charts [Tauberg 2018] 

.638 

Papers coauthored by mathematicians with at least 
133 publications [Clauset et al. 2009] 

.483 

Papers written by scientist (whole career) [Sinatra et 
al. 2016] 

.625 

Output in typical jobs (“high” complexity, e.g. 
physician) among applicants for such jobs [Hunter, 
Schmidt, & Judiesch 1990] 

.475 

Output in typical jobs (“medium” complexity, e.g. 
cook) among applicants for such jobs [Hunter, 
Schmidt, & Judiesch 1990] 

.318 

Output in typical jobs (“low” complexity, e.g. mail 
carrier) among applicants for such jobs [Hunter, 
Schmidt, & Judiesch 1990] 

.193 

Height of contemporary adult US men [Wikipedia] .0429 

 
Table 5. Coefficient of variation – i.e. the standard deviation as fraction of the mean – of 
various metrics of ex-post performance, as calculated in this spreadsheet. Italicized are 

non-performance-related ‘benchmarks’ we report for comparison. Color scheme: Green = 
descriptive values in observed or estimated data; Yellow = predicted by log-normal model; 

Orange = predicted by lower-law model17; Blue = predicted by non-heavy-tailed model 

Scientific achievement is heavy-tailed ex-ante 
On academic performance measured by citations, there is evidence suggesting that 
performance can be well predicted by a product of a person-internal factor and luck, 
both of which are heavy-tailed (see Table 6). In addition, for scientists at least about 15 
years into their career, we can estimate the person-internal factor based on their citation 
record. Thus, in at least one highly relevant case, there is direct empirical evidence in 
favor of a heavy-tailed ex-ante performance distribution. 
 
 

 
Quantity 

Share of the total held by the top 
... 

20% 10% 1% 0.1% 0.01% 

17 We used a continuous power law, i.e. a Pareto distribution, even for discrete data. Our best guess is 
that this doesn’t make much of a difference for this purpose, but we’re not sure. 

16 The coefficient of variation of a Pareto distribution is independent of its scale parameter. 

https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://en.wikipedia.org/wiki/Standard_deviation#Standard_deviation_of_average_height_for_adult_men
https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing


‘Luck’ factor p proportional to expected number of 
citations per paper for a fixed scientist, by paper 

55% 38% 8.7% 1.7% .29% 

Citations to scientists (whole career)18 51% 34% 7.2% 1.3% .21% 

Exponential distribution 52% 33% 5.6% .79% .10% 

Papers written N, by scientist (whole career)  39% 24% 4.0% .59% .083% 

Right half of a standard normal distribution 44% 26% 3.6% .45% .052% 

Scientist’s ‘ability factor’ Q proportional to the 
expected number of citations per paper 

35% 21% 3.1% .42% .056% 

 
Table 6. Top shares of distributions relevant to scientific citations from Sinatra et al. (2016), 

as calculated in this spreadsheet. Color scheme: Yellow = log-normal distributions from 
Sinatra et al. (2016); Blue = non-heavy-tailed distributions for comparison   

 

 
Quantity 

Quantiles as multiple of median 

.8 .9 .99 .999 .9999 

‘Luck’ factor p proportional to expected number of 
citations per paper for a fixed scientist, by paper 

2.3 3.4 9.4 20 36 

Citations to scientists (whole career)19 2.1 3.1 7.5 14 25 

Exponential distribution 2.3 3.3 6.6 10 13 

Papers written by scientist (whole career) 1.6 2.1 3.8 5.9 8.5 

Right half of normal distribution 1.9 2.4 3.8 4.9 5.8 

Scientist’s ‘ability factor’ proportional to the 
expected number of citations per paper 

1.5 1.8 2.9 4.1 5.5 

 
Table 7. Top quantiles as multiple of the median for distributions relevant to scientific 

citations from Sinatra et al. (2016), as calculated in this spreadsheet. Color scheme: Yellow 
= log-normal distributions from Sinatra et al. (2016); Blue = non-heavy-tailed distributions for 

comparison 
 

We briefly remark that there also is some evidence suggesting heavy-tailed ex-ante 
citations and productivity specifically in the tails, albeit based on just one discipline 
(mathematics) and a different predictor: each additional point scored on the International 
Mathematics Olympiad “is associated with a 2.6 percent increase in mathematics 
publications and a 4.5 percent increase in mathematics citations” (Agarwal & Gaulé 2018, p. 
3). In other words, the ex-ante distribution of citations (or productivity) conditional on 
IMO score is log-normal. 
 

19 See footnote 2. 
18 See footnote 2. 

https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing


Apart from that, our conclusions are based on a Science paper by Sinatra et al. (2016). 
Most of their analysis and the quantitative results reported below are based on a large 
sample of physics publications. Specifically, they use the dataset of all publications (n > 
450,000) in the Physical Review family of journals20 between 1893 and 2010. However, 
they’ve checked that their qualitative conclusions are also valid for the cognitive sciences, 
chemistry, ecology, economics, biology and neuroscience by using data from Web of 
Science and Google Scholar. 
 
Before performing statistical analysis, Sinatra et al. excluded from their data sets scientists 
with short careers.21 In the Physical Review dataset, 2,887 scientists remain. All results 
should thus be interpreted as being about the population of scientists who regularly 
publish papers throughout a long career. ‘Citations’ generally refers to the number of 
citations to papers ten years after publication. Sinatra et al. (2016, S1.4, S1.6) perform 
various robustness checks to ensure their conclusions don’t depend on the details of dataset 
selection or the citation measure. 
 
They assume that citations to papers are independent draws from a product of two factors, a 
scientist’s “ability” and (paper-specific) luck. Specifically, citations for one paper are Q_i * p, 
where Q_i is an ‘ability factor’ specific to each scientist i (and constant throughout their 
career) and p is a random factor representing ‘luck’, with the same distribution for all 
scientists. For each of the N_i papers that scientist i writes over their career, we take an 
independent draw of the ‘luck’ component p. 
 
In this model, the expected total number of citations to a scientist over their whole career 
thus depends on three things: 

●​ The distribution of the ‘luck’ component p. (The same for all scientists.) 
●​ The value of the ‘ability factor’ Q_i. (Different for each scientist.) 
●​ The number N_i of published papers. (Different for each scientist.) 

 
Sinatra et al. assume that each of these three factors is log-normal (where for Q_i and N_i 
the distribution is across scientists), and that luck is independent of ability and productivity. 
Using maximum-likelihood estimation, they find the following parameters (ibid., p. 
aaf5239-3). They refer to the means and covariance matrix of the trivariate normal 
distribution of log p, log Q, log N. 
 

●​ mu = (mu_p, mu_Q, mu_N) = (0.92, 0.93, 3.34) 

21 In more detail, they include only “scientists that (i) have authored at least one paper every 5 years, 
(ii) have published at least 10 papers, (iii) their publication career spans at least 20 years in the APS 
dataset and at least 10 years in the WoS dataset”. (Sinatra et al. 2016., S1.3) 

20 Physical Review A, B, C, D, E, I, L, ST, and Review of Modern Physics 



●​  
 
Sinatra et al. performed various statistical checks to support the validity of their model. In 
particular, they statistically rejected a simpler model that assumed no ability differences 
between scientists (ibid., Figs. 3CDE), and they showed that the data is consistent with 
randomness and constant ability within fixed careers (ibid., Figs. 2 and 5).22 However, they 
did not compare their log-normal model to other heavy-tailed distributions (cf. our appendix); 
therefore, we think that for the purpose of extrapolating beyond the range of observed data 
their results should at most be considered weak evidence in favor of a log-normal distribution 
in particular (as opposed to, e.g., a power law). 
 
A few qualitative conclusions from this model are: 

●​ Average citations per paper Q and the number of publications N are positively 
correlated, but only very weakly.  

●​ For a single paper, the variance in citations is dominated by luck. However, since 
career scientists publish many papers, when comparing whole careers the effect of 
luck ‘averages out’. That is, the variance of total citations over full careers is mostly 
not due to differences in luck. 

●​ Productivity varies a bit more between scientists than the ‘ability factor’ Q; however, 
the latter improves citations for each paper, thus having a large effect over a whole 
career.  

●​ As a consequence of the previous two points, total citations vary dramatically 
between scientists primarily because of differences in the ability factor Q_i 
(e.g. ibid., Fig. 3E). 

●​ Total citations are more heavy-tailed than each factor individually: we’ll see 
disproportionately many citations to scientists who have high ability and high 
productivity and got lucky. 

22 Liu et al. (2018) add an interesting wrinkle: they find evidence of “hot streaks” within scientific – as 
well as artistic and cultural – careers, i.e. short periods of increased performance. However, they still 
find that the timing of such hot streaks within each career is random (i.e. each piece of work has the 
same probability of starting a hot streak, no matter whether it’s early or late in a career). This 
contradicts Sinatra and colleagues’ assumption that, for a given scientist, the expected number of 
citations to any single paper is constant throughout a career, and determined for each paper 
independently. For example, on Sinatra and colleagues’ model, the locations of the most-cited and 
second-most-cited paper within each career should be independent, but Liu et al. find a higher chance 
of them being close to each other. However, at a more coarse-grained level the results from Liu et al. 
(2018) and Sinatra et al. (2016) are consistent, and in particular they both find that any paper is as 
likely as any other to be a scientist’s most-cited one. 



 
Of course, these are conclusions from a model fitted to ex-post data. However, Sinatra et al. 
also show that we can do reasonably well at predicting future citations based on estimating 
the ‘ability factor’ Q_i from just the early-career citation record. For example, this figure (ibid., 
Fig. 6E) illustrates how we can predict the Hirsch index h – a popular citation measure – 
based on the first 20 or 50 papers:2324 
 

24 Acuna, Allesina, & Kording (2012) had previously proposed a simple linear model for predicting 
scientists’ Hirsch index. However, the validity of their model for the purpose of predicting the quality of 
future work is undermined more strongly by the worry explained in the previous footnote; in addition, 
the reported validity of their model is inflated by their heterogeneous sample that, unlike the sample 
analyzed by Sinatra et al. (2016), contains both early- and late-career scientists. (Both points were 
observed by Penner et al. 2013.) 

23 Note that the evolution of the Hirsch index depends on two things: (i) citations to future papers and 
(ii) the evolution of citations to past papers. It seems easier to predict (ii) than (i), but we care more 
about (i). This raises the worry that predictions of the Hirsch index are a poor proxy of what we care 
about – predicting citations to future work – because successful predictions of the Hirsch index may 
work largely by predicting (ii) but not (i). This does make Sinatra and colleagues’ ability to predict the 
Hirsch index less impressive and useful, but the worry is attenuated by two observations: first, the 
internal validity of their model for predicting successful scientific careers is independently supported 
by its ability to predict Nobel prizes and other awards; second, they can predict the Hirsch index over 
a very long period, when it is increasingly dominated by future work rather than accumulating citations 
to past work.   

https://en.wikipedia.org/wiki/H-index


 



Similarly, estimates of Q_i based on the first 6, 10, or 15 years of publication activity do 
better at predicting Nobel prize winners than other metrics including the total number of 
citations or the Hirsch index, as shown in the following ROC plots (ibid., Fig. S48): 
 

 
In these plots, the dashed diagonal would represent a predictor that’s no better than chance, 
and predictors are more valid the further their curves are shifted to the left. Two interesting 
observations are that predictions based on productivity are barely better than chance, and 
that predictions based on Q_i get much better if based on more years of publication activity, 
especially in the upper tail. 
 
(Note that, to perform e.g. the estimation ‘based on the first 6 years’ of publication activity, 
we’d in fact need to wait 16 years since everything is based on citations 10 years after 
publication.) 
 
These predictions are much better than chance, but their reliability is far from perfect: if we 
estimate Q_i based on the first 20 papers, then for about 40% of scientists with productive 
careers of > 70 papers the predicted Hirsch index will be off by more than two standard 
deviations (ibid., Fig. 3G).  
 
More broadly, there is a large field quantitatively studying citations and other scientific 
metrics – called bibliometrics, scientometrics, or the science of science. For reviews see 
Clauset, Larremore, & Sinatra (2017) and Fortunato et al. (2018). 

We know of measurable predictors of performance in many 
domains, including for the tails of performance 
Our best predictions generally model performance as depending on three types of 
factors: 

●​ Measurable ‘person-internal’ characteristics such as intelligence or 
conscientiousness; 

●​ Measurable ‘personal-external’ characteristics such as the size of a market or the 
difficulty of a task; 

●​ ‘Luck’, i.e. unmeasured additional factors that appear as random variation of 
performance. 

 

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


By person-internal we roughly mean characteristics that would be unaffected by changing 
the environment of an individual. For example, if a worker changes companies, their 
person-internal characteristics should stay the same.  
 
The boundary between person-internal and person-external is admittedly fuzzy. It depends 
on the performance measure, and in particular the time scale over which we observe 
performance. For example, consider a skill that improves with practice. The level of skill at a 
particular point in time may be ‘person-internal’; but if we measure skill-dependent 
performance over an extended period of time, then the amount of improvement in the skill 
will be partly ‘person-external’ (e.g. workers who get more feedback from their managers 
might improve faster). Conversely, an individual’s environment also depends on 
‘person-internal’ characteristics, e.g. more hard-working people may be able to access better 
universities. 
 
However, in a fixed context we believe it’s often reasonably clear which property would count 
as person-internal, person-external, or luck, and that this will have major practical relevance.  
 
Suppose you know that performance in some domain is heavy-tailed. Should you try to 
become a high performer in that domain? If performance was purely determined by luck (as 
e.g. in a lottery), then everyone has the same chance to become a high performer, and it 
could be worth trying. If instead the key driver of performance was a heavy-tailed 
personal-external contribution (e.g. amount of available capital), this would mean you should 
focus your efforts on modifying your environment accordingly (e.g. seek large amounts of 
funding). And if performance was heavy-tailed primarily because of measurable 
person-internal characteristics (e.g. the level in certain skills), then the crucial question would 
be how you measure up on these characteristics – some people will (predictably) perform far 
better than others. 
 
We mostly searched for person-internal predictors of performance, which is reflected in 
the findings reported below. However, the literature also discusses several person-external 
predictors of performance. For example, the book Chasing Stars (Groysberg 2012) argues 
that context – or ‘firm-specific capital’ – is more important to performance than commonly 
assumed. Regarding academic performance, there are a number of papers investigating the 
effects that ‘superstar’ scientists may have on others in their department (e.g. Azoulay, Zivin, 
& Wang 2010; Waldinger 2012), and similarly for CEOs (e.g. Brown 2011; Ammann, 
Hoersch, & Oesch 2016). More broadly, there is a small industry trying to identify “peer 
effects” in academia or companies. 

Performance in typical jobs is predicted by general mental ability, but 
unclear by how much  
There is a large literature in industrial-organizational psychology on performance in typical 
jobs. In fact, Judiesch & Schmidt (2000, p. 529) state that “job performance is perhaps the 
most important dependent variable in industrial-organizational psychology.” 
 
There are dozens of individual studies across multiple decades that report measures of 
ex-post job performance as well as potential predictors. On one hand, we can thus draw on 
a lot of primary data. For example, a meta-analysis by Aguinis et al. (2016, p. 3) is based on 



“229 datasets including 633,876 productivity observations collected from approximately 
625,000 individuals in occupations including research, entertainment, politics, sports, sales, 
and manufacturing” – and they mostly limited their analysis to studies published since 2006. 
 
On the other hand, this data comes with a lot of challenges such as convenience samples, 
small sample sizes, unreliable measurements, and data heterogeneity (observations are 
from different populations in different jobs with different measures of performance). 
Psychologists disagree on the extent to which it’s possible to statistically ‘correct for’ these 
problems in order to reach robust conclusions based on pooled data. 
 
On the optimistic end, psychologists Frank Schmidt, John Hunter, and collaborators (e.g. 
Hunter & Hunter 1984; Hunter et al. 1990; Schmidt & Hunter 1992, 1998, 2004; Schmidt et 
al. 2016) have in particular stressed the validity of general mental ability (GMA, similar to 
general intelligence g or IQ) as a reasonably strong predictor of job performance across 
domains. For instance, Schmidt et al. (2016, Table 1) report a positive correlation of r = 
0.65 between GMA tests and job performance, the largest correlation among the 31 
predictors reported. (The second-largest correlation is r = 0.58 for employment interviews.) 
They also find that combining GMA with a second predictor doesn’t add much – the highest 
gain in the correlation coefficient, for adding an integrity test, is 0.13 or 20%. Another theme 
in that literature is that GMA is a better predictor of performance, and that performance is 
higher-variance, in more complex jobs (see in particular Hunter & Hunter 1984 and Hunter et 
al. 1990). 
 
On the pessimistic end, Richardson & Norgate (2015) based on broadly the same data urge 
for caution, for instance citing the fact that different ways of correcting for range 
restriction and measurement unreliability have led two different meta-analyses – 
Schmidt & Hunter (1998) and Hartigan & Wigdor (1989) – to wildly different reported 
GMA-job performance correlations of 0.51 and 0.22, respectively. They also question 
the findings on the role of job complexity. 
 
We did not try to adjudicate this debate, though one of us (Max) got the tentative impression 
that the optimistic perspective is closer to the received wisdom in the field. In any case there 
seems to be no doubt that there is some positive correlation between GMA and job 
performance for most jobs. However, whether the GMA–job performance correlation is 
closer to 0.2 or 0.7 would make the difference between GMA being one predictor among 
many (see Other predictors of performance below) and the by far single best one (at least for 
performance in a wide range of typical jobs). 

General mental ability predicts a number of other performance-related 
quantities 
GMA also correlates with a number of other quantities that are in some loose sense related 
to performance. Examples include: 

●​ Patentable inventions. For instance, based on data from Finland, Aghion et al. (2017, 
p. 3) find that “IQ has [...] a direct effect on the probability of inventing which is almost 
five times as large as that of having a high-income father”. 

●​ Academic achievement, e.g. grades in school: see Wikipedia. 

https://en.wikipedia.org/wiki/G_factor_(psychometrics)#Academic_achievement


●​ Income. For instance, based on a representative sample of the working-age 
population of 19 high-income countries (total n = 69,901), Ganzach & Patel (2018) 
claim that “there is not much more than g [general mental ability]” for predicting 
wages, at least after controlling for age and sex. 

●​ Occupational attainment, i.e. roughly how prestigious one’s job is as opposed to how 
well one performs in a given job. E.g., in a large US data set Schmidt & Hunter 
(2004, p. 163) found an uncorrected correlation with GMA of 0.65. 

Other predictors of performance  
The literature has identified other correlates of job performance or performance-related life 
outcomes. However, our impression is that these are less well supported, are less strongly 
correlated with performance, or only apply to more specific tasks (e.g. height predicts 
success in basketball much better than for most other jobs). 
 
With a very quick search, we found only one meta-analysis (Ng et al. 2005) that examines a 
wide range of different predictors at the same time (human capital, organizational 
sponsorship, socio-demographic variables, and stable individual differences including 
personality, GMA, proactivity, and locus of control). It did not, however, include all of the 
predictors we’ve encountered in the literature and list below.  
 
Ng et al. (2005) find that: 

●​ The predictors surveyed by them tend to work better for salary level (corrected 
correlations up to r_c = .29, and many above .2) than for promotions (most r_c below 
.1, only one predictor with r_c barely above .2). 

●​ These two measures of ‘objective career success’ tend to be predicted by different 
variables than ‘subjective career success’, i.e. career satisfaction. Support from 
employers, personality, and non-cognitive skills tend to correlate more strongly with 
subjective career success, while human-capital and socio-demographic variables 
tend to correlate more strongly with objective career success. 

●​ The 5 best predictors of salary level among the 27 variables surveyed are (r_c 
between .29 and .26, in descending order): Education level, political knowledge & 
skills, cognitive ability, work experience, age. 

 
One caveat is that Ng et al. include cognitive ability only in their analysis of predictors of 
salary levels – but not for promotions or career satisfaction. Another limitation is that they 
don’t provide information about correlations between predictors (e.g. age and work 
experience are clearly related); taking their results at face value would thus understate the 
role of variables that are causally prior to many others (e.g. we would guess that cognitive 
ability causally contributes to education level; similarly, some personality traits and 
non-cognitive skills may, via influencing motivation, causally contribute to hours worked etc.). 
For their full results, see the appendix. 
 
Beyond that, predictors of job performance or career success that appear in the literature 
include: 

●​ Personality, especially conscientiousness and related constructs such as “integrity”, 
“self-discipline”, or Duckworth’s “grit”. 



○​ Borghans et al. (2016), in a paper published in PNAS, analyze data from 4 
cohorts from high-income countries with between 347 and 8,874 individuals. 
They find correlations of 0.29 to 0.45 between personality measures and 
scores on achievement tests at school, and correlations of 0.25 to 0.43 
between personality and grades. (Their reported correlation with IQ is 
stronger than that for achievement tests, but weaker for grades.) Regarding 
longer-term outcomes, they state that “Personality is generally more 
predictive than IQ on a variety of important life outcomes.” (p. 13354).25 

○​ Barrick & Mount (1991) performed a meta-analysis of correlations between 
the Big Five personality traits with 3 measures of job performance (job 
proficiency, training proficiency, personnel data) in 5 occupational groups 
(professionals, police, managers, sales, skilled/semi-skilled). They found that 
conscientiousness correlates at about 0.2 with all measures of performance in 
all studied occupations. (Though ‘uncorrected’ correlations were smaller, at 
most 0.13.) Results for other personality traits were more mixed or 
inconclusive. Another meta-analysis by Tett, Jackson, and Rothstein (1991) 
features similar conclusions. 

○​ However, in the meta-analysis by Ng et al. (2005), conscientiousness does 
not appear to be more predictive of objective career success (salary and 
promotions) than other Big Five personality traits. Instead, correlations with all 
personality traits are similarly small, between -0.12 (neuroticism and salary) 
and 0.18 (extroversion and promotions).  

○​ Kaufman et al. (2016), in four samples of in total n = 1,035 individuals, find 
that two different facets of the Big Five trait openness to experience – namely 
‘openness’ and ‘intellect’ – correlate with achievement in the arts and 
sciences, respectively. 

■​ More broadly, there is a recent literature trying to identify correlations 
with subfacets of the Big Five traits. 

○​ Using nonstandard personality dimensions and questionnaires administered 
to 196 biologists, 201 chemists, and 171 physicists, Busse & Mansfield (1984) 
found that their measure of “commitment to work” correlates with the number 
of publications, while their measure of “originality” correlates with citations. 

●​ Non-cognitive skills (i.e. not primarily cognitive abilities that can be changed through 
practice or developments rather than stable traits), e.g. “character skills” (Kautz et al. 
2017[2014]). 

●​ Educational attainment (e.g. highest degree obtained, academic discipline), see e.g. 
Wai (2014) and this UK government study.  

●​ Academic performance, e.g. grades or test scores. For instance, the PNAS paper by 
Borghans et al. (2016, p. 13354) mentioned above states that “both grades and 
achievement tests are substantially better predictors of important life outcomes than 
IQ.” 

●​ Organizational sponsorship, i.e. the extent to which individuals receive career 
support by their employers. For instance, a meta-analysis by Ng et al. (2005) reports 
‘corrected’ correlation of 0.05 to 0.24 between different measures of organizational 

25 At a glance, Max perceives some claims from Borghans et al. (2016) to be at odds with what he 
read elsewhere. This might indicate either that his understanding of other views is mistaken or that 
there is some problem with this study. Max didn’t try to resolve this issue. 

https://en.wikipedia.org/wiki/Big_Five_personality_traits
https://www.nber.org/papers/w20749
https://www.nber.org/papers/w20749
https://www.psychologytoday.com/files/attachments/56143/wai-the-global-elite-in-press.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/811047/Elitist_Britain_2019_-_Summary_Report.pdf


sponsorship and objective career success (salary or promotions), and of 0.38 to 0.44 
between different measures of organizational sponsorship and career satisfaction. 

●​ Attractiveness. See e.g. Hamermesh and Biddle (1994) and Hamermesh, Meng, & 
Zhang (2002) 

●​ Demographic characteristics, e.g. age or marital status. For instance, Azoulay et al. 
(2018, p. 1) found that, in the US, the “mean founder age for the 1 in 1,000 fastest 
growing new ventures is 45.0”. 

●​ Socio-economic status (SES) of parents. 
○​ Strenze (2007), in a meta-analysis of longitudinal studies, finds that 

“intelligence is a powerful predictor of success [as measured by education, 
occupation, and income] but, on the whole, not an overwhelmingly better 
predictor than parental SES or grades“. 

○​ Aghion et al. (2017) find both a direct correlation and an interaction effect with 
IQ of father income with the probability of becoming an inventor. 

●​ Career success of parents, see e.g. 80,000 Hours (2015).  
●​ Specific skills or abilities (rather than a general ability factor), see e.g. 80,000 Hours 

(2017) and Grobelny (2018). 
 
We didn’t try to be comprehensive and didn’t examine any of these studies in more detail.  

In several cases, predictors remain valid in the tails 
Several studies have specifically examined the tails of performance or the tails of measured 
predictors. Examples include: 

●​ Wealth. Wai & Lincoln (2016) analyze a data set of n = 18,245 ultra-high net worth 
individuals (wealth > $30 million). They find that “smarter (more educated) people 
were wealthier, gave more, and had more powerful social networks (but when 
controlling for multiple confounds the association between education/ability and 
wealth was found to be quite small)” (p. 1). 

●​ Executive management. Adams et al. (2018, p. 392) find that in a large sample of 
Swedish men “the median large-company CEO belongs to the top-17% of the 
population in cognitive ability, and to the top-5% in the combination of cognitive, 
non-cognitive ability, and height”. 

●​ GMA and educational attainment as predictors of wealth, income, and influence. Wai 
(2014) analyzes N = 1,426 billionaires, N = 231 ‘powerful’ people (by Forbes 
ranking), and N = 2,624 World Economic Forum attendees. In this highly ‘elite’ 
sample, he finds that, in the US, top-1%-ability individuals were overrepresented by a 
factor of 45 to 85, and that “[e]ven within the top 0.0000001% of wealth, higher 
education and ability were associated with higher net worth, even within self-made 
and non-self-made billionaires, but not within China and Russia.” 

●​ GMA as a predictor of income. Gensowski et al. (2011) report a correlation of IQ and 
lifetime earnings in a prospective cohort study of n = 617 high-IQ individuals (IQ > 
135). They also find correlations of income with personality and education, and 
confirm that significant correlations with IQ and personality remain after controlling for 
education. 

●​ GMA as a predictor of academic, creative, and scientific achievement. 
○​ Park, Lubinski, & Benbow (2008), in a cohort of n = 1,586 individuals with 

exceptional maths abilities assessed during adolescence (top 1% of 

https://80000hours.org/2015/07/in-some-careers-your-parents-can-give-you-a-huge-boost-should-you-do-what-they-did/
https://80000hours.org/articles/skills-most-employable/
https://80000hours.org/articles/skills-most-employable/
https://www.gwern.net/docs/iq/2018-wai-2.pdf
https://www.gwern.net/docs/iq/2011-gensowski.pdf


performance in the maths portion of the SAT at age 13), find that adolescent 
SAT scores correlate with the probability of having at least one patent or 
scientific publication, even after controlling for the highest academic degree 
obtained. See also Park, Lubinski, & Benbow (2008) and Robertson et al. 
(2010). 

○​ Makel et al. (2016), in two cohorts of n = 320 and n = 259 individuals 
assessed to be in the top 0.01% of verbal or maths ability before age 13, 
found markedly higher levels of achievement than in samples of 
top-1%-ability individuals. In fact, on average their top-0.01% individuals by 
age 40 had achieved at least as much as top-1% individuals by age 50 (p. 9).  

●​ IMO scores as a predictor of success in academic mathematics. Agarwal & Gaulé 
(2018) find that performance in the International Maths Olympiad (IMO) correlates 
with various measures of success in academic mathematics26, e.g. completing a 
PhD, citation counts, and getting a Fields medal (the most prestigious award in 
mathematics, comparable to a Nobel Prize). These correlations hold across the 
whole range of a sample that is in the extreme right tail of maths ability, and seem 
strong e.g. “the conditional probability that an IMO gold medalist will become a Fields 
medalist is two order of magnitudes larger than the corresponding probability for a 
PhD graduate from a top 10 mathematics program.” (p. 4) The authors perform two 
additional analyses to control for confounders. First, they look at the subsample of 
IMO participants who later got a maths PhD; second, they compare individuals who 
participated in the IMO in the same year and got their PhD from the same university. 
In both analyses, the correlations remain positive and are almost as large as in the 
full sample. 

●​ Height as a predictor of success in basketball. This Forbes article suggests that the 
proportion of 20-40 year-old men who play in the NBA (the US’s top basketball 
league), as well as the average earnings of basketball players, increases with height 
up to heights greater than 7 feet, the top 0.000038% of height.  

 
Again, we didn’t try to be comprehensive. 
 
Note that even if a predictor remains valid in the tails, ex post the highest performers will 
usually exhibit very high but not the absolute highest values of the predictor. 

Measurable predictors of heavy-tailed ex-post performance 
don’t imply that predicted performance is heavy-tailed 
Recall that our best predictions generally model performance as depending on three 
types of factors: 

●​ Measurable ‘person-internal’ characteristics such as intelligence or 
conscientiousness; 

●​ Measurable ‘personal-external’ characteristics such as the size of a market or the 
difficulty of a task; 

26 “Each additional point scored on the IMO (out of a total possible score of 42) is associated with a 
2.6 percent increase in mathematics publications and a 4.5 percent increase in mathematics 
citations.” (p. 3) (Correlation with log cites is still around 4% among subsample who got maths PhDs, 
Table 4.) 

https://www.forbes.com/sites/dandiamond/2013/06/27/nba-draft-is-being-7-feet-tall-the-fastest-way-to-get-rich-in-america/?sh=4a4223ea6522
https://www.lesswrong.com/posts/dC7mP5nSwvpL65Qu5/why-the-tails-come-apart
https://www.lesswrong.com/posts/dC7mP5nSwvpL65Qu5/why-the-tails-come-apart


●​ ‘Luck’, i.e. unmeasured additional factors that appear as random variation of 
performance. 

 
Observing heavy-tailed ex-post performance doesn’t by itself tell us whether or not 
any contributing factor of any type (person-internal, person-external, or luck) is 
heavy-tailed. This is because this observation is consistent with any of the following 
possibilities: 

a)​ All three factors (internal, external, and luck) being heavy-tailed. 
b)​ A single factor being heavy-tailed, and all other factors being light-tailed or even 

constant. For instance, a lottery can have heavy-tailed ex-post results that are purely 
due to luck. For another example, suppose that the amount of investor optimism 
(measured in the amount of seed funding they’re providing for a given startup) was 
heavy-tailed, and that startup success is the sum (or product) of investor optimism, 
market size, founders’ intelligence, and how much founders work per week. Startup 
success would then be heavy-tailed even if all these other factors were constant 
across startups. 

c)​ No individual factor being heavy-tailed, but performance depending on the product of 
many factors. This is possible because of the mathematical fact that, under certain 
conditions that often hold in practice, the product of an increasing number of 
light-tailed factors will converge toward a heavy-tailed distribution.27 

 
Furthermore, knowing a measurable correlate of heavy-tailed ex-post performance 
doesn’t by itself imply heavy-tailed ex-ante performance. 
 
Here is why. Suppose we know that:  

●​ Some metric of performance Y is heavy-tailed ex-post (say, scientific citations); and 
●​ Some characteristic (person-internal or -external, say a scientist’s IQ or the ranking of 

their university) X that is measurable ex-ante is positively correlated with Y. 
 
The short version is that the predictor might only tell us about a factor that doesn’t drive the 
heavy tail.  
 
Formally, ex-ante performance then is the conditional expected value E[Y | X] (note that 
unlike the unconditional expected value E[Y], the conditional expected value is a random 
variable, i.e. something that has a probability distribution).  
 
What is E[Y | X]? In practical terms, imagine that you measure X for a large number of 
randomly selected people, thus obtaining a sample of measured values X = x_1, X = x_2, … 
, X = x_N (e.g., x_1 could be the first person’s IQ, x_2 the second person’s IQ, etc.). You can 
then calculate these people’s expected performance y_1 = E[Y | X = x_1], y_2 = E[Y | X = 
x_2], … , y_N = E[Y | X = x_N]. Each y_i is a single number representing the predicted level 

27 For example, if after taking the logarithm the conditions of the Central Limit Theorem are fulfilled, 
then the product will converge to a log-normal distribution. We’ve sometimes encountered the 
misconception that products of light-tailed factors always converge to a log-normal distribution. 
However, in fact, depending on the details the limit can also be another type of heavy-tailed 
distribution, such as a power law (see, e.g., Mitzenmacher 2004, sc. 5-7 for an accessible discussion 
and examples). Relevant details include whether there is a strictly positive minimum value beyond 
which products can’t fall (ibid., sc. 5.1), random variation in the number of factors (ibid., sc. 7), and 
correlations between factors. 

https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Central_limit_theorem


of performance based on x_i; for example, y_i could be the predicted number of publications 
by a scientist with IQ x_i. The conditional expected value E[Y | X] simply is the distribution of 
the numbers y_i that will emerge for large samples sizes N. 
 
As a sanity check, if we could predict performance perfectly, then ex-post and ex-ante 
performance should coincide. And indeed, E[Y | Y] = Y. Conversely, if all ex-ante information 
X is irrelevant to ex-post performance Y then you can do no better than to predict the 
unconditional expected value for everyone: and indeed, if X and Y are statistically 
independent then E[Y | X] = E[Y].  
 
The key point is that ex-ante performance E[Y | X] can be light-tailed even if ex-post 
performance Y is heavy-tailed and X correlates with Y. For example, suppose that 
ex-post performance is the product of two independent factors X and X’: 
 

Y = X * X’ 
 
Then, by basic properties of conditional expected values, ex-ante performance is  
 

E[Y | X] = E[X * X’ | X] = X * E[X’ | X] = X * E[X’].  
 
Thus, ex-ante performance is captured wholly by the measurable correlate X, up to a 
constant factor that depends only on the unmeasured part X’. In particular, ex-ante 
performance E[Y | X] is heavy-tailed if and only if the measurable predictor X itself is 
heavy-tailed. 
 
This also makes sense intuitively. For example, consider a lottery in which every ticket has 
the same small chance of winning a fixed price. Suppose we can measure how many lottery 
tickets X each participant has bought. We then know that ex-post lottery winnings are 
heavy-tailed and can measure a correlate X of these heavy-tailed winnings – but the shape 
of our distribution of predicted lottery winnings will look exactly like the distribution of 
observed ticket sales. Ex-ante lottery winnings will be normally distributed if and only if ticket 
sales were normally distributed; ex-ante lottery winnings will follow a power law if and only if 
ticket sales followed a power law; and so on.  
 
How would this look like in more relevant toy models? Suppose that ‘performance = 
intelligence * luck’, with intelligence being normally distributed and measurable, luck being 
log-normally distributed and unmeasurable, and the two factors being independent. Then 
performance would be heavy-tailed, intelligence would be a measurable predictor of 
performance, but the ex-ante distribution of predicted performance based on intelligence 
would be normally distributed (i.e. thin-tailed): 
 

E[performance | intelligence] = intelligence * E[luck] 
 
Our best guess is that heavy-tailed ex-ante distributions are widespread, at least for 
expert performance on complex tasks, such as scientific research or organizational 
leadership. However, this guess relies more on priors and broad gestalt impressions of 
the world rather than the specific evidence we investigated here. 

https://en.wikipedia.org/wiki/Conditional_expectation#Basic_properties


Uncertainty should move us toward acting as if ex-ante 
performance was heavy-tailed – but not all the way 
At first glance there is an argument to act as if ex-ante performance was heavy-tailed even 
in cases where we’re uncertain: Suppose, for instance, we’re uncertain whether the ex-ante 
distribution has one of two forms, X_heavy or X_thin, the former being more heavy-tailed. If 
we have credence p in X_heavy and we use expected value to account for our uncertainty, 
then we should act as if ex-ante performance was distributed like p * X_heavy + (1-p) * 
X_thin. And this sum becomes as heavy-tailed as X_heavy if we look sufficiently far down 
the tail.  
 
However, in practice we usually aren’t interested in the limit of infinitesimally unlikely tail 
events but in a fixed quantile, say the top 1%, compared to the median. At any fixed quantile, 
the sum p * X_heavy + (1-p) * X_thin will be more heavy-tailed than X_thin but not all the 
way as heavy-tailed as X_heavy. Therefore, in practice, uncertainty about the tails of 
ex-ante performance should move us some but not all the way toward the hypothesis 
of heavy-tailed ex-ante performance, by an amount that depends on our credence in the 
heavy-tailed hypothesis.  

Causal models of performance would be useful, but we haven’t 
found one that would be ‘shovel-ready’ for making predictions 
in EA contexts 
Due to the limitations of observational research – e.g. distinguishing correlation from 
causation, or distinguishing different heavy-tailed distributions from one another – it would be 
very helpful to have a causal theory of performance: understanding how various resources, 
traits, and behaviors interact to actually produce performance. 
 
Of particular interest in our context is whether different factors used to explain performance – 
whatever they are – combine additively or multiplicatively to yield performance. This is 
because the sum of many light-tailed factors will usually again be light-tailed, while 
their product will be heavy-tailed. (Of course, in general a sum can be heavy-tailed as 
well, e.g. if one of the summands was heavy-tailed itself.) 
 
There is a debate in industrial-organizational psychology on whether job performance 
is better modeled as the sum or product of employee traits such as intelligence and 
personality (e.g. Sackett, Gruys, & Ellingson 1998 analyze four data sets that support an 
additive model, thus questioning three earlier papers that found support for a multiplicative 
model; a recent meta-analysis by Van Iddekinge et al., 2017, also favors an additive model). 
This debate is thus highly relevant: if traits multiply, then we should job performance to be 
more heavy-tailed than if the same traits add. On the other hand, like most psychology work 
on job performance, this debate seems largely based on data from ‘typical’ jobs rather than 
high-complexity areas such as science or upper management. Since we were more 
interested in the latter, we didn’t review this debate in more detail and didn’t try to form 
our own view. 
 



Beyond that, we found a number of claims about specific causal mechanisms – for example, 
the ‘Matthew effect’ (e.g. Merton 1968) according to which the ‘rich get richer’, i.e. success 
begets further success. Unfortunately, we found it hard to vet these claims or to synthesize 
them into a comprehensive theory. So we just list them here: 
 

●​ Schmidt & Hunter (2004, p. 170) review evidence for the causal hypothesis that 
general mental ability predicts job performance because it helps with the acquisition 
of job knowledge, which in turn causes better performance. 

●​ Kremer’s (1993) famous “O-ring theory of economic development” posits that many 
economic production processes consist of many steps, at each of which the whole 
process can fail, resulting in a product of zero value. (Similar to how the whole Space 
Shuttle Challenger exploded because a single part – an ‘O-ring’ – failed.) Kremer 
proposes a multiplicative model to capture this property. He describes several 
implications, for example that maximization of total output leads to ‘assortative 
matching’, i.e., a division into consistently high-quality and consistently low-quality 
production processes (e.g. the most able employees will flock to the same few ‘elite’ 
firms). 

●​ Rosen (1981) presents potential causes for an increase in highly concentrated 
markets (which have a heavy-tailed distribution of e.g. revenue across sellers) such 
as imperfect substitution or zero marginal cost. 

●​ Shockley (1957, pp. 284ff., sc. VI) presents two hypotheses that could explain the 
heavy-tailed distributions of scientific citations: one is that there are small differences 
(normally distributed) in how many ideas people can consider simultaneously, which 
results in heavy-tailed performance differences because the total number of idea 
combinations one can consider increases rapidly with this parameter; the second is 
that publishing papers depends on the multiplicative interactions of many traits such 
as “1) ability to think of a good problem, 2) ability to work on it, 3) ability to recognize 
a worthwhile result, 4) ability to make a decision as to when to stop and write up the 
results, 5) ability to write adequately, 6) ability to profit constructively from criticism, 7) 
determination to submit the paper to a journal, 8) persistence in making changes” 
(ibid., p. 286). 

○​ Both of these explanations are speculative. Indeed, the relevant section is 
titled “Speculations on the origin of the log-normal distribution” (ibid., p. 284). 

●​ To explain career success, some psychology work (e.g. Turner 1960, Spilerman 
1977, Rosenbaum 1984, Dreher & Ash 1990) distinguishes between a 
“contest-mobility model” (an increasingly small number of positions is allocated to the 
best applicants) and a “sponsored-mobility model” (career progression depends on 
how much organizations ‘invest into’ their employees). 

●​ Psychologist Angela Duckworth (who pioneered the study of ‘grit’) has suggested 
that “Performance = Skill * Effort” and “Skill = Talent * Effort”, thus resulting in the 
model that “Performance = Talent * Effort^2”. 

●​ Gensowski (2018, p. 177) hypothesizes that, in a sample of high-IQ men, 
conscientiousness and extraversion predict lifetime earnings because personalities 
high on these two traits accumulate human capital in school at a higher rate, which in 
turn allows people to perform higher-paid work. 

 
More theoretically, for common types of distributions (normal, exponential, log-normal, 
Pareto, etc.) we can ask which sort of mathematical processes will generate them. The 

https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster
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earlier observation on additive vs. multiplicative processes is a special case of this. 
Understanding the possible origins of different distributions could be useful because, in 
addition to looking at ex-post performance data, we could then infer the type of the 
performance distribution from empirical information on the origins of performance. 
 
We didn’t pursue this line of investigation, but here are some examples: 

●​ Two high-level insights are the principle of maximum entropy (e.g. Frank 2009) and 
the fact that for certain kinds of processes the stable distributions are the only 
possible attractors.  

●​ On generating mechanisms for power laws, see Newman (2005). 

Why we’d guess that ex-ante performance at complex tasks is 
often heavy-tailed 
If we look beyond the literature we’ve reviewed for this post and consider all relevant 
evidence (including things like gut feelings), our best guess is that, for complex tasks, it will 
often be possible to identify predictors relative to which ex-ante performance is heavy-tailed. 
 
We only gesture at why we (tentatively) believe this, in a way that we expect won’t 
necessarily be convincing to people who have different impressions. 
 
First, recall that we’ve found many examples of ex-post performance being heavy-tailed. We 
think there are theoretical reasons to expect this property to be widespread for many tasks, 
at least if performance is cashed out in terms of ‘impact on the world’ in some sense. 
Specifically, it seems that for the effects of many ‘complex’ tasks there is a metric that can 
range over many orders of magnitude and depends on a complicated combination of largely 
independent factors. If such a model is correct, then there are mathematical reasons to 
expect a heavy-tailed distribution. 
 
As an example, consider the contribution a CEO makes to the profit of their company. This 
seems to depend on many factors such as their cognitive skills, their personality, their health, 
how well their personal life is going, the actions of various people in their company, the 
actions of competitors, ‘exogenous’ events such as natural disasters, political developments, 
etc. – many of these seem to be independent from others, e.g. whether San Francisco is hit 
by an earthquake does not depend on the CEO’s skills or personality. At the same time, 
many of these factors seem to interact – e.g. the impact an earthquake would have on 
company performance does seem to depend on the CEO’s skills (have they put safeguards 
in place? how quickly would they be able to resume production? etc.). This suggests that the 
CEO’s contribution to profit depends on a complicated combination of largely independent 
factors. 
 
Similarly, many complex tasks can be broken down into successive steps of simpler tasks, 
such that the task can fail at each step. This suggests a multiplicative model similar to 
Kremer’s O-ring theory. E.g. it is often argued that heavy-tailed paper citations arise because 
there are many steps involved in a scientific publication: having a good idea, finding 
collaborators, running an experiment, analyzing the data, writing the paper, responding to 
reviewer comments, etc. 

https://en.wikipedia.org/wiki/Stable_distribution
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Second, why expect heavy-tailed ex-ante performance? Basically we would guess that in 
many cases where performance depends on the combination of many factors we will be able 
to measure (correlates of) a significant fraction of these factors – or variables that 
themselves depend on a combination of many of the same factors. This means that we can 
measure a predictor of performance which itself depends on a combination of many factors, 
and thus is heavy-tailed. 
 
Or, alternatively, we might be able to measure one predictor that correlates with many of the 
performance-determining factors. This is particularly plausible when performance depends 
on a combination of cognitive tasks since it is well established that performance on such 
tasks is positively correlated (the “positive manifold” of cognitive abilities), and it’s possible to 
psychometrically measure a ‘general mental ability’ factor that is positively correlated with 
performance on all these specific tasks. 
 
As a toy example, suppose that performance Z depends on the product of 50 measurable 
factors X_i and 50 unmeasurable factors Y_j, all of which are mutually independent. Denote 
the product of all X_i with X, and the product of all Y_j with Y. Then by the same calculation 
as in an earlier subsection, E[Z | X_1, …, X_50] = X * E[Y], and X is heavy-tailed because it 
is the product of many factors. This is not literally what we’d encounter in practice, e.g. 
because the things we can measure are rarely mutually independent. But the analog 
argument still goes through for more complicated models, and so we think the toy model is a 
good illustration for why we think heavy-tailed ex-ante performance is widespread. 
 
(Similarly, if we can’t directly determine the value of any individual X_i but can only measure 
some variable X’ that correlates with all X_i, we believe it follows that E[Z | X’] is heavy-tailed 
– though we haven’t checked this.) 
 
This still seems true to at least some extent if we restrict ourselves to ‘person-internal’ 
predictors. For example, intelligence and motivation seem both relevant for performance at 
many tasks, and do seem to interact: more intelligent people can make more use of their 
motivation and vice versa – it’s not like performance in the first half of the day depends only 
on motivation and performance in the second half only on intelligence. In a more fine-grained 
model of cognition, intelligence may in turn depend on several interacting factors such as 
‘processing speed’, memory, ability to focus, etc.; task-specific motivation may depend on 
factors such as sleep, nutrition, genetic contributions to personality traits, and which books 
one read as a child. 
 
Separately, ‘success begets success’ dynamics suggest that predictions of longer-term 
outcomes may be heavy-tailed even if they’re based on only one thin-tailed predictor. If we 
can measure some predictor X such that these dynamics tend to much more strongly28 
‘amplify’ success for people with higher values in X, then we should expect ex-ante that over 

28 More precisely, it needs to be the case that the marginal amount of ‘amplification’ increases with X. 
That is, a small increase in X ‘helps’ you more with success the larger your value of X already was. 
This condition does not hold in the lottery counterexample from a previous section: each additional 
lottery ticket ‘amplifies’ your expected winning by the same amount, no matter how many lottery 
tickets you already had. But if the chance of winning the lottery depended on e.g. the square of tickets 
purchased, then each additional ticket would be more valuable the more tickets you already have. 

https://en.wikipedia.org/wiki/G_factor_(psychometrics)#Cognitive_ability_testing


time they might turn a thin-tailed X into a heavy-tailed distribution of success. For example, 
someone with strong cognitive abilities from a privileged background is more likely to do well 
in school, therefore is more likely to get into a good university, which in turn means they’re 
more likely to land a first job in which they’ll get good mentorship and learn a lot, etc.  
 
If we’re looking at a notion of performance that requires high-performers to secure unusually 
influential and competitive positions, there is some direct evidence that educational 
attainment is a heavy-tailed ex-ante predictor. That is, some of these positions are 
dominated by graduates from the very few top universities. For example, a UK government 
study found that more than ½  of UK Cabinet members and more than ⅔ of Senior Judges 
have a degree from Oxford or Cambridge. Similarly, Wai (2014, p. 54) found that: 
 

“[R]oughly 34% of billionaires, 31% of self-made billionaires, 71% of powerful males 
[by Forbes ranking], 58% of powerful females, and 55% of Davos participants 
attended elite schools worldwide. [...] In the U.S., top 1% ability individuals were 
highly overrepresented: 45 times (base rate expectations) among billionaires, 56 
times among powerful females, 85 times among powerful males, and 64 times 
among Davos participants. [...] Even within the top 0.0000001% of wealth, higher 
education and ability were associated with higher net worth, even within self-made 
and non-self-made billionaires, but not within China and Russia. [...] These global 
elites were largely drawn from the academically gifted, with many likely in the top 1% 
of ability.” 

 
Another data point is from the Canadian Inventors Assistance Program29 (IAP). Inventors 
can pay the IAP to predict the success of their invention. Many then try to develop and 
market their invention even if the IAP was pessimistic about commercial viability. This means 
we have data on the accuracy of the IAP’s predictions, and we know that 55% of 
highest-rated inventions achieve commercial success, compared to 0% for the lowest rating.  
 
Finally, another argument is based on the evidence showing that predicting future citations 
based on past citations results in a heavy-tailed distribution. We think this is at least weak 
evidence that the phenomenon of “predicted performance conditional on past performance is 
heavy-tailed” is more widespread: put differently, we can’t think of a plausible reason why 
this relationship would be highly specific to science. 
 
Beyond these explicit arguments we’ve tried to gesture at, we also feel our take is supported 
by our broad impression of recruiting practices in highly competitive fields, anecdotes from 
our own experience, and other broad gestalt impressions of the world. 

Further research 
Here are some avenues for further research which we think might be promising, especially 
for people whose background is a good fit for answering some of these questions. 
 

29 H/T Ben West for making us aware of this data. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/811047/Elitist_Britain_2019_-_Summary_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/811047/Elitist_Britain_2019_-_Summary_Report.pdf
https://www.researchgate.net/publication/227611370_Profitable_Advice_The_Value_of_Information_Provided_by_Canadas_Inventors_Assistance_Program
https://forum.effectivealtruism.org/posts/ntLmCbHE2XKhfbzaX/how-much-does-performance-differ-between-people?commentId=zye4ihm5EnWM32xpv


They are in no particular order, and lightly held suggestions rather than carefully vetted and 
strongly recommended research projects. Their value and tractability likely differs 
substantially. 
 

●​ What can we say about the negative tails of performance or impact? In 
particular, when is negative impact heavy-tailed? We know that harmful things can 
have heavy-tailed distributions, e.g. earthquake intensity, forest fire size, or war 
casualties (see e.g. Clauset et al. 2009). But data on negative impact by people is 
scarce as most performance metrics are by definition restricted to positive values. 
Can we learn anything from existing metrics that can take both positive and negative 
values? 

○​ See also Kokotajlo & Oprea (2020) for an argument for why this question is 
important for EA. They also provide an argument for why we should expect 
heavy tails of negative impact to be common. 

○​ We do have data on this from some domains, e.g.: 
■​ The negative tail of financial returns looks similar to the positive one 

(e.g. Jondeau and Rockinger 2001). 
■​ Ben found a negative tail in a cost-benefit analysis for about 370 US 

social policies (archive), compiled by the Washington State Institute 
for Public Policy benefit-costs results database. 

■​ A negative dimension of job performance that has been extensively 
studied in industrial-organizational psychology are “counterproductive 
work behaviors” such as bullying, lateness, or theft (e.g. Dallal 2005). 
At first glance, these seem less relevant in many EA contexts, but is 
there anything useful we can infer from this literature? 

●​ Suppose that for some task the true ex-post distribution of performance is very 
heavy-tailed across people but our ability to predict performance is very 
limited. Which heuristics should we adopt in such a world? Should we e.g. rely 
more or less on gut judgments, allocate resources by lottery, or try to learn from 
analogs such as venture capital and science funding? 

●​ Do tasks differ in whether we get increasing or decreasing returns (in terms of 
altruistic impact) to better performance? As an extreme possibility, is it the case 
that one needs to exceed some performance threshold to have any impact through 
work in early-stage research fields without established questions or methods (such 
as perhaps some areas of AI safety)? 

○​ Put differently, what can we say about ex-ante altruistic impact, i.e. the 
conditional expected value E[altruistic impact | performance predictor]? 
(Rather than just ex-ante performance, i.e. E[performance metric | 
performance predictor].) 

●​ At a high level, we can distinguish different types of interventions aimed at 
increasing the EA community’s total impact: better allocation of existing 
resources, e.g. improving hiring processes helping people identify which job 
they’re the best fit for; intensive growth, e.g. helping current EAs to improve 
their skills; and extensive growth, which could be either untargeted or aimed at 
particular audiences, e.g. promoting EA in mass media versus giving 
EA-related material to IMO participants. What are the key parameters that 
determine how cost-effective these different types of intervention are? For 

https://www.wsipp.wa.gov/BenefitCost
https://www.wsipp.wa.gov/BenefitCost
https://web.archive.org/web/20190702022554/https://www.wsipp.wa.gov/BenefitCost
https://forum.effectivealtruism.org/posts/Q3TaTgFzZoYF9SX5W/when-should-eas-allocate-funding-randomly-an-inconclusive
https://forum.effectivealtruism.org/posts/CJJDwgyqT4gXktq6g/long-term-future-fund-april-2019-grant-recommendations#Mikhail_Yagudin___28_000__
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instance, what’s a good way to operationalize how good current hiring and funding 
processes are, and how costly it would be to improve them? 

●​ Are there any sources of data that are more directly relevant to EA use cases, 
thus ameliorating worries about external validity? For example, what do we know 
about the distributions of donations to EA organizations, karma on various EA fora, 
the number and value of behavior changes caused by EA conferences, or the 
number and value of plan changes caused by 80,000 Hours? 

○​ Partial answers: 
■​ Donations: EA Survey [2019, 2018, 2017] 
■​ Plan changes influenced by 80,000 Hours: Annual reviews [2019, 

2018] 
●​ Denrell & Liu (2012) show that, when using predictors of wildly different 

reliability, then naive selection by best predicted performance can be 
predictably suboptimal. (This is roughly because a very high level of predicted 
performance is disproportionately likely due to a large prediction error for one of the 
low-reliability predictors.) This is an extension of the familiar Optimizer’s Curse 
(Smith & Winkler 2006). What are the implications of this finding? Are its 
conditions ever plausible fulfilled in practice (perhaps when comparing 
interventions or cause areas using very different types of evidence)? 

●​ What should we conclude from the debate in industrial-organizational psychology on 
whether job performance is better modeled as the sum or product of employee 
traits such as intelligence and personality (e.g. Sackett, Gruys, & Ellingson 1998; 
Van Iddekinge et al., 2017)? 

●​ Can we make the following statement more precise, and what does this imply in 
practice? “If we can measure some predictor X such that ‘success-begets-success’ 
dynamics tend to much more strongly ‘amplify’ success for people with higher values 
in X, then we should expect ex-ante that over time they might turn a thin-tailed X into 
a heavy-tailed distribution of success.” 

●​ Can we infer anything useful from theoretical statements on which kinds of 
stochastic processes will result in which type of distribution? (See the end of 
our section on Causal models of performance for a brief discussion.) 

Appendix 

High variance vs. heavy tails 
Which properties of the performance distribution are particularly interesting? Both the 
academic literature and previous discussions in EA have sometimes focused on variance 
and sometimes on heavy tails.30 
 

30 E.g., CEA’s (deprecated) page on their current thinking has a section Talent is high variance, while 
Owen Cotton-Barratt’s popular talk Prospecting for gold includes a section on Heavy-tailed 
distributions. In the psychology literature on job performance, Hunter, Schmidt, & Judiesch (1990) 
focus on variance, while Aguinis et al. (2016) focus on heavy tails. 

https://forum.effectivealtruism.org/posts/29xPsh2MKkYGCuJhS/ea-survey-2019-series-donation-data
https://forum.effectivealtruism.org/posts/SnE9FpArs2uXJsRtB/ea-survey-2018-series-donation-data
https://forum.effectivealtruism.org/posts/S2ypk8fsHFrQopvyo/ea-survey-2017-series-donation-data
https://80000hours.org/2020/04/annual-review-dec-2019/
https://80000hours.org/2019/05/annual-review-dec-2018/
https://forum.effectivealtruism.org/posts/Wghi6hpu5gGBZHvtj/link-the-optimizer-s-curse-and-wrong-way-reductions?commentId=wkj34oSqPehx9nrd3
https://docs.google.com/document/d/1-y8IrXiDRPBJvaKVXzp32NH2GTqM7PC5FHa-68ENDYU/edit?q=predicting+impact#heading=h.p46suv8uvyoh
https://www.centreforeffectivealtruism.org/ceas-current-thinking/#talent-is-high-variance
https://www.effectivealtruism.org/articles/prospecting-for-gold-owen-cotton-barratt/#heavy-tailed-distributions
https://www.effectivealtruism.org/articles/prospecting-for-gold-owen-cotton-barratt/#heavy-tailed-distributions


These are distinct concepts – a heavy-tailed distribution can have arbitrarily small 
variance, and a light-tailed distribution can have arbitrarily high (finite) variance.3132 
 
Depending on the purpose of your analysis, you might care about variance, heavy tails, or 
both. Here we won’t make claims about which is more important when, but simply try to 
explain how they differ. 
 
(One caveat is that there are different definitions of “heavy-tailed” in the literature. 
Throughout this post we take heavy-tailed to roughly mean having heavier tails than an 
exponential distribution. For instance, we consider any log-normal distribution to be 
heavy-tailed. There are other definitions that impose a tighter relationship between heavy 
tails and variance, e.g. ones that require heavy-tailed distributions to have infinite variance. 
For a more formal discussion, see here.) 
 
Both high variance and heavy tails imply that an unusually good individual opportunity is 
much better than an individual typical one. However, outliers – data points with much higher 
values than anything you’ve seen so far – are more common and more extreme for 
heavy-tailed distributions. We highlight two ways how this matters.33 
 
First, the sum of large samples from a heavy-tailed distribution will depend 
disproportionately on the contribution of outliers – they account for a disproportionate 
share of the total.34 For some heavy-tailed distributions, you should even expect that 
sufficiently large sums will be due to just a single extremely large summand (‘catastrophe 
principle’). This is not true of light-tailed distributions, no matter their variance. Clearly it 
could matter for community building whether or not the total impact of the EA community will 
largely be due to only very few people.35 

35 For instance, if impact across people is heavy-tailed, then 80K’s metric for plan changes needs to 
be designed in such a way that it can be dominated by outliers. 

34 This also means that the mean of a heavy-tailed distribution is much larger than its median. 
However, mean and median coming apart is not sufficient for heavy-tailedness, as shown e.g. by the 
exponential distribution (which has a larger mean than median but is not heavy-tailed). 

33 A third difference is that ‘heavy-tailed’ is a property that’s scale-invariant, while variance isn’t. Thus 
the practical relevance of the heavy-tailed property is internal to the distribution, while variance 
matters only relative to a specified relationship between the distribution and the real world. For 
example, if I told you that the distribution of skyscraper heights had variance 100 this wouldn’t mean 
anything to you without specifying the units – if the variance was 100 centimeters you’d think it was 
very low, if it was 100 kilometers you’d think it was very high. By contrast, saying that the distribution 
of skyscraper heights is heavy-tailed would tell you a lot without specifying units. [We don’t know how 
skyscraper heights are in fact distributed.] There are ways to specify variance that avoid this problem, 
e.g. the ratio of the standard deviation to the mean (‘coefficient of variation’). 

32 People also sometimes talk about distributions being skewed. This is yet another property 
conceptually distinct from both variance and heavy tails. Skewness is a conspicuous difference 
between some common heavy-tailed distributions – e.g., the log-normal and Pareto distributions – 
and the normal distribution, a paradigmatic example of a light-tailed distribution. However, 
heavy-tailed distributions need not be skewed: the Cauchy distribution is heavy-tailed but symmetric, 
i.e. not skewed (more generally this is true of any Lévy alpha-stable distribution with alpha < 2). 
Conversely, the exponential distribution is skewed but not heavy-tailed. 

31 However, only heavy-tailed distributions can have infinite variance. Conversely, there are different 
common definitions of ‘heavy-tailed’, and some of them imply infinite variance. For our purposes, 
however, it’s useful if log-normal distributions count as heavy-tailed, and for any such definition the 
statement that heavy-tailed distributions can have arbitrarily small variance is true (since it’s true for 
log-normal distributions). 

https://en.wikipedia.org/wiki/Exponential_distribution
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Second (but relatedly), for heavy-tailed distributions the sample variance and sample 
mean will severely understate the true mean and true variance – even for very large 
samples. For heavy-tailed phenomena, naive extrapolation can thus be disastrous.36 
 
To give a prominent and EA-relevant example, albeit one outside our focus: if battle deaths 
from war were heavy-tailed, we’d need to be very cautious when using historic casualty data 
to predict how deadly wars this century might be.37 Another example, this time within our 
focus: when evaluating their recruitment efforts, local EA groups would like to know what 
they can and cannot infer from past trends. 
 
This difference in what we can infer from past experience is intuitive for properties we are 
familiar with. For example, imagine you’re in a room with perhaps a few dozen other people. 
Consider on one hand their height (light-tailed), and on the other hand their wealth 
(heavy-tailed). Additional people enter the room, one after the other. What happens to the 
height of the tallest person in the room over time, and how does this differ from the wealth of 
the wealthiest person? 
 
At some point, a person that just entered will be taller than everyone else in the room. 
However, you’d be very surprised if the height difference between the new person and the 
previously tallest person was much larger than the height difference between the two 
previously tallest people.  
 
E.g. if previously the two tallest people were 1.75m and 1.80m (which means there probably 
aren’t that many people with you), you’d be quite surprised if the first person taller than that 
is 2m: it’s much more likely that someone, say, 1.83m tall enters the room first because such 
people are much more common than 2m tall people. If previously the two tallest people were 
2.11m and 2.12m (which probably means that the total number in the room is already much 
larger), then you will expect a new tallest person to be just barely rather than several cm 
taller, etc. 
 
For wealth, it would be just the other way around: as new ‘wealthiest people’ enter the room, 
their net worth will exceed the previously highest wealth by increasing margins. E.g., the first 
millionaire may well enter the room when previously no-one in the room was worth more 
than half a million, and the first billionaire may well enter the room before the first person 
worth more than half a billion. 
 
As a consequence, a single new person – e.g. the first billionaire – may well have a massive 
impact on the average wealth in the room (the sample mean understates the true mean). 
This will hardly happen for height. Similarly, by the time the first billionaire enters, she may 
well have more wealth than all other people in the room combined (the sum is dominated by 
an outlier), while this is basically impossible for height. 

37 For discussion of what data on past wars tells us about future wars, see Pinker (2011), Cirillo & 
Taleb (2016), and Braumoeller (2019). 

36 Of course, a sample from a heavy-tailed distribution does contain some information, including on 
the distribution’s mean and variance. The point is that we can only exploit this information with more 
sophisticated statistical techniques, which is beyond the scope of this post. 
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It’s hard to empirically distinguish different heavy-tailed 
distributions from one another, e.g. log-normal vs. power law 

Fundamental difficulties 
It is often easy to see whether data is heavy-tailed or light-tailed. For example, if over a large 
range the data appears as an approximately straight line in a plot with two logarithmic axes 
(for example, a rank-frequency plot), then – at least over this range – the data is 
heavy-tailed. 
 
We can also see approximately how heavy-tailed the data is in the observed range, e.g. by 
looking at the slope of the line in such a plot (the steeper the slope, the less heavy-tailed). 
 
However, it’s hard to identify the particular type of heavy-tailed distribution from 
observations alone. For example, it can be impossible to tell whether data was generated 
by a log-normal or a Pareto distribution (a continuous power law). There are also other 
contenders that are rarely even considered, e.g. the ‘double Pareto’ or ‘double 
Pareto-lognormal’ distributions proposed by Reed (2003) and Reed & Jorgensen (2004), or 
the stretched exponential/Weibull distribution (e.g. Malevergne, Pisarenko, & Sornette 2005). 
 
The basic reason for this is simply that different types of heavy-tailed distributions can 
provide almost equally good fits to the observed data. For example, while a power law is the 
only distribution that in expectation will generate a straight line in a log-log plot, data from a 
log-normal distribution can also look very much like a straight line over a large range. Since 
your observations will be noisy anyway, and your sample might not be big enough to cover 
the range where a log-normal would visibly deviate from a power law, you cannot tell the 
power law apart from the log-normal simply by seeing an approximately straight line over a 
finite range in a log-log plot. 
 
This is no problem if all you want to do is to describe the data you’ve seen. After all, by 
design, if different distributions provide good fits to the data, they all do well at describing 
that data. (Though there will be systematic differences in where the fit is better or worse, and 
sometimes you might care about this.) 
 
However, you should be very careful when extrapolating beyond the range of 
observed data.38 This is because different types of heavy-tailed distributions that fit the 
observed data about equally well will differ dramatically in what they predict beyond the 
range of observed data. For example, suppose you have observed 10,000 earthquakes and 
based on this ask yourself how severe a “1 in a million” earthquake would be; a prediction 

38 Cf. footnote 10 in Clauset et al. (2009, p. 680): “In cases where we are unable to distinguish 
between two hypothesized distributions one could claim that there is really no difference between 
them: if both are good fits to the data then it makes no difference which one we use. This may be true 
in some cases but it is certainly not true in general. In particular, if we wish to extrapolate a fitted 
distribution far into its tail, to predict, for example, the frequencies of large but rare events like 
major earthquakes or meteor impacts, then conclusions based on different fitted forms can 
differ enormously even if the forms are indistinguishable in the domain covered by the actual data. 
Thus the ability to say whether the data clearly favor one hypothesis over another can have 
substantial practical consequences.” (emphasis ours) 

https://en.wikipedia.org/wiki/Log%E2%80%93log_plot
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based on a power law would then predict a much more severe earthquake than one based 
on a log-normal that fits the observed data about equally well. 
 
Similarly, because there are only about 1,000 to 10,000 EAs, we probably couldn’t say 
very much about the performance or impact of a “1 in a million”-EA based just on 
observing the performance or impact of existing EAs, even if we could measure those 
with perfect reliability. 
 
For more detail on this problem, I recommend the paper Power-law distributions in 
empirical data by Clauset, Shalizi, & Newman (2009).39 
 
They look at 24 data sets based on which previous papers claimed to have identified a 
power law. They rule out power laws in 7 cases. For the remaining 17, in all but one case 
there is another heavy-tailed distribution (e.g. stretched exponential or log normal) that fits 
the data about as well as a power law. (In 3 cases, even the exponential distribution – 
usually considered to be just on the edge between light-tailed and heavy-tailed distributions 
– could be a plausible fit.) In other words, in only 1 out of 24 cases can we be confident 
that data was generated by a power law and not some other heavy-tailed distribution. 

Practical difficulties 
Of course, if you have enough data from sufficiently reliable measurements, you will 
sometimes be able to rule out some heavy-tailed distributions. 
 
However, even then you’ll have to use relatively sophisticated statistical techniques. In 
particular, it is usually a bad idea to just fit a line to a log-log plot. Instead, use maximum 
likelihood estimation or more complex tools such as a “uniformly most powerful unbiased 
test”.40 
 
(In a polemical blog post, statistician Cosma Shalizi claims that if everyone used appropriate 
methods when working with heavy-tailed data, this would “lead to a real change in the 
literature” and that, e.g., “half or more each issue of Physica A would disappear”.) 
 

40 Again see Clauset et al. (2009) for some basics on how to do this well. A uniformly most powerful 
unbiased (UMPU) test is used by Malevergne, Pisarenko, & Sornette (2011) to settle the ‘log-normal 
vs. power law’ debate on city sizes in favor of the latter, and they “advocate the UMPU test as a 
systematic tool to address similar controversies in the literature of many disciplines involving power 
laws, scaling, ‘fat’ or ‘heavy’ tails.” 

39 The difficulty of distinguishing different heavy-tailed distributions based on observations has been 
acknowledged, either in general or for specific cases, in many other papers. For example, in a paper 
published in Science with the telling title Critical Truths About Power Laws, Stumpf & Porter (2012) 
conclude that “although power laws have been reported in areas ranging from finance and molecular 
biology to geophysics and the Internet, the data are typically insufficient and the mechanistic insights 
are almost always too limited for the identification of power-law behavior to be scientifically useful”; 
Mitzenmacher (2004, p. 227) in a paper on computer file sizes remarks that “Very similar basic 
generative models can lead to either power law or lognormal distributions, depending on seemingly 
trivial variations. There is, therefore, a reason why this argument as to whether power law or 
lognormal distributions are more accurate has arisen and repeated itself across a variety of fields.” 
For instance, there are debates on the distribution of financial returns (e.g. Malevergne, Pisarenko, & 
Sornette 2005), city sizes (e.g. Malevergne, Pisarenko, & Sornette 2011) or citations (e.g. Golosovsky 
& Solomon 2012, Brzezinski 2015). 

http://bactra.org/weblog/491.html


Even the easier problem of identifying the ‘right’ power law – i.e. ignoring the question 
whether a log-normal or other type of heavy-tailed distribution would fit the data just as well – 
can be tricky, in part because the inferred exponent can be very sensitive to the ‘cutoff’, i.e. 
the value above which the power law is supposed to apply. 
 
As one cautionary tale, consider Michael Tauberg’s 2018 Medium post on Power Law in 
Popular Media (from which we report data in our section on Ex-post performance). Tauberg 
fitted power laws to media data, using “existing R libraries that are designed for this sort of 
analysis”. In fact, he analyzed each data set using two different R libraries, saying that this 
yields “similar results”.  
 
However, even small differences in the inferred power law exponent can have a significant 
impact on the tails.  
 
For instance, for “weeks on the NYT bestseller list” R library igraph gives an exponent of 
2.08, while library poweRlaw gives an exponent of 2.20 (perhaps because the former 
concluded that the power law holds above a cutoff of 5 weeks on the list, while the latter 
used 6 weeks as a cutoff). (These are the exponents of the probability density function, from 
which you have to subtract 1 to get the exponent of the cumulative distribution function.) This 
difference may look innocent at first glance; but in the distribution inferred by igraph the ‘top 
1-in-a-million’ bestseller authors would account for 36% of all time on the bestseller list, while 
in the distribution inferred by poweRlaw their share would be ‘only’ 10%. Even for the top 
1%, a frequency that clearly matters in practice, the difference is sizable: the predicted 
shares of the total are 71% and 46%, respectively. 
 
Thus, if you wouldn’t appreciate the import of power law exponents that differ by about 0.1, 
or if you wouldn’t be able to adjudicate conflicting results spat out by different standard 
software, you might easily mislead yourself. 
 
Worse, even if you’re a maximally sophisticated statistician, your conclusions will still be 
quite sensitive to a small number of outliers in your data. For one, you might simply not 
be able to get enough data to observe, e.g., a “1-in-10,000” event. In addition, you’ll often 
struggle with measurement error at the far end of the data you can get in principle – and this 
measurement error matters. For instance, to accurately determine the distribution of income 
you would need reliable information about top earners, which is hard to get (Anand & Segal 
claim to provide “the first estimates of global inequality that take into account data on the 
incomes of the top one percent within countries” – in a paper from 2014 [!]; see also 80,000 
Hours). 

I/O psychology papers on whether job performance is 
heavy-tailed don’t update us much 
In the psychology literature, there’s a debate specifically on whether performance in typical 
jobs is normally distributed or heavy-tailed. 
 
For example, in an influential meta-analysis, Hunter, Schmidt, & Judiesch (1990) found that 
performance in ‘high-complexity’ jobs (e.g. physician) and sales jobs is not normally 
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distributed. More recently, business scholar Herman Aguinis and collaborators have attacked 
the “long-held assumption in human resource management, organizational behavior, and 
industrial and organizational psychology that individual performance follows a Gaussian 
(normal) distribution” (O’Boyle & Aguinis 2012, p. 79; see also e.g. Aguinis & O'Boyle 2014, 
Aguinis et al. 2016). 
 
Others have explicitly defended the claim that job performance – at least when measured 
appropriately – is usually normally distributed. For instance, Beck et al. (2014, p. 531) 
conclude that “large departures from normality are in many cases an artifact of 
measurement”. 
 
In fact, as we said in our section on Ex-post performance, it seems clear that performance 
data can be heavy-tailed or normal depending on the domain and performance measure 
used. 
 
At first glance, we were unsure whether the debate in the literature adds much to this basic 
observation. We’ve encountered several qualitative claims on when to expect heavy-tailed 
vs. normal performance distributions, and while these claims often seemed reasonable to us, 
we weren’t sure about the quantitative analysis that was supposed to support them. 
 
We have neither comprehensively reviewed this debate nor tried to adjudicate it ourselves.  
A minor reason is that a lot of the debate is about a different question: the ‘correct’ definition 
of performance rather than the empirical distribution of agreed-upon quantities (see e.g. 
Aguinis et al., 2016, pp. 4f. on “behavior-based” vs. “results-based” definitions). We think 
that the appropriate operationalization of performance depends on the question one asks, 
and thus that we can simply use whatever data seems most relevant for a given question 
rather than quarrel about the best general definition.  
 
 
More seriously, from glancing at the papers, we have tentative doubts about some of the 
statistical methods, and it would have taken more time to investigate whether these doubts 
are warranted. For example: 
 

●​ Within the literature some papers (e.g. Micceri, 1989; O’Boyle & Aguinis, 2012) point 
out potentially severe flaws in others, including on distributions stipulated to be 
normal without good reason. 

●​ Beck et al. (2014) only test normal against exponential distributions, which we find 
puzzling since the exponential distribution is not heavy-tailed, and the paper they 
respond to (O’Boyle & Aguinis 2012) claims that performance often has a Pareto 
distribution (rather than an exponential one). Beck et al. (2014, p. 539) explain that 
this is “because using the exponential distribution the @Risk program was able to 
converge for nearly all data sets, whereas the Paretian distributions failed to 
converge in several cases”. They add that “in instances where more than one 
skewed distribution converged (e.g., exponential and Paretian), the results regarding 
the skewed distributions provided the same interpretation”, but we don’t find this 
sufficiently reassuring. If there are good theoretical reasons to use a particular type of 
distribution, then the mere fact that this causes issues with a particular type of 
software doesn’t seem like a sufficient reason to change one’s analytical approach – 

https://ezproxy-prd.bodleian.ox.ac.uk:2160/ovid-b/ovidweb.cgi?QS2=
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1744-6570.2011.01239.x?casa_token=9HC8hYTQCDEAAAAA%3AmtixZJK12RfCDx05Phs6aeJACJVfrULFWdrrYS66zXga68o3GQngZKZ_XP6kQgT7X4Xh4du6sdrw5o7L


at the very least we would want to see how such a “quick hack” may affect the validity 
of results, or an analysis of why the software didn’t work. 

○​ They also make several statements that sound like they are merely checking 
whether data looks symmetric or skewed, which seems like the wrong 
question to ask since a symmetric distribution can still have a heavy tail, or 
conversely a skewed distribution could have a thin tail.  

●​ O’Boyle & Aguinis (2012) and Beck et al. (2014, p. 539) “used the Decision Tools 
Suite program @Risk which is an add-on to Microsoft Excel”. Our impression is that 
this is an uncommon choice of software among statistically literate communities, and 
that using Excel (or other spreadsheets) carries a high risk of ending up with 
unnoticed implementation errors (e.g. typos in which cells are being referenced in a 
formula). 

●​ Aguinis and colleagues’ (2016) essentially operationalize the question “does job 
characteristics X (e.g. complexity, autonomy) predict more heavy-tailed 
performance?” as “do values on an ordinal scale for X correlate with the 
Kolmogorov-Smirnov (K-S) statistic of the best power law we can fit to performance 
data”. We have several questions about this approach. 

○​ Are these correlations meaningful at all, i.e. a good measure of whether or not 
job characteristics predict the extent to which performance follows a power 
law? We are neither sure whether it makes sense to look at a correlation with 
a statistical quantity such as the K-S statistic, nor whether the K-S statistic of 
the best fitted power law is a good measure for how heavy-tailed the data is. 

○​ Is it justified to simply fit a power law to all data, and ignore other heavy-tailed 
distributions? If the best fitted power law has a high K-S statistic, this certainly 
tells us that no power law is a good fit to the data – but does it tell us anything 
whether the data is instead, say, normally or log-normally distributed? 

■​ Indeed, some of their own graphs (ibid., Fig. 3AC) look conspicuously 
like log-normal data. 

○​ The p-values associated with their Kolmogorov-Smirnov tests vary wildly even 
for at first glance similar data (e.g. p = 0.75 for ecology publications and p = 
0.00 for environmental science publications). However, they seem to ignore 
this in their further analysis. Is this justified? 

○​ A power law often only applies to a certain range of data, but their analysis 
seems to ignore this. Put differently, in their analysis a high K-S statistics 
could either indicate that the data follows a power law nowhere or that it does 
over some limited range.  

●​ Hunter, Schmidt, & Judiesch (1990) don’t seem to actually test whether the tails of 
their performance data are thin or heavy. Instead, they seem to simply assume that 
all distributions are normal by default. The reason why they reject normal 
distributions for high-complexity and sales jobs is not that they observed heavy tails 
but that their inferred normal distribution would have non-negligible probability mass 
on negative values. This seems to us to be at best a weak reason to reject a normal 
distribution (and if so, whether the actual distribution simply is a truncated normal 
distribution where values cannot fall below a certain minimum, or a different type of 
distribution altogether), but conversely we feel unsure whether the assumption of 
normality was well-founded in the first place. 

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test


Results from a meta-analysis of predictors of career success 
These are Tables 1, 2, and 3 from Ng et al. (2005, pp. 384ff.). 

 



 
 



 

How do our metrics of heavy-tailedness depend on the value at 
which the tail starts? 
Suppose we’re interested in the distribution of wealth among millionaires. This is the tail of 
the wealth distribution among all people. We might then ask: does that tail look like a Pareto 
distribution (power law), like the tail of a log-normal distribution, like an exponential 
distribution, or like the tail of a normal distribution? (And so on for other candidate 
distributions.) And what difference would this make for the top-shares and top-quantiles 
among millionaires – the metrics of heavy-tailedness we have reported in our tables? 
 
For a Pareto distribution, these metrics depend on the ‘shape’ parameter alpha – the 
exponent appearing in the pdf, which controls how fast the density converges to zero. They 



do not, however, depend on the ‘cutoff’ – the minimal value above which the Pareto 
distribution applies. 
 
So if we knew that the tail of wealth is described by a Pareto distribution with alpha = 2, then 
we would know the wealth share of the top 1% (etc.) in that tail, no matter where the tail 
starts. If the distribution describes the wealth of millionaires, we know how wealthy the top 
1% richest millionaires are compared to the total wealth owned by all millionaires. If the 
same distribution describes the wealth of billionaires, then the same number would describe 
the wealth of the top 1% richest billionaires compared to total billionaire wealth. 
 
For an exponential distribution, our metrics of heavy-tailedness do not depend on its single 
‘rate’ parameter lambda. Similarly, if we start with a normal distribution with mean 0, and 
then consider its right (positive) half as a probability distribution, by our metrics the 
heaviness of this ‘Gaussian tail’ does not depend on the variance sigma^2 of the normal 
distribution we started with. Hence we have included data for exponential and the right half 
of a mean-0 normal distribution in our tables. 
 
However, this observation is misleading: once we allow positive ‘cutoffs’ for the tail, the 
parameters lambda and sigma^2 do matter for heavy-tailedness. The apparent 
independence of parameters is an ‘artefact’ of the convention that exponential distributions 
are usually parametrized to ‘start’ at zero. But in this use case we’re actually looking at an 
exponential distribution starting at, for instance, one million (if we’re looking at the wealth of 
millionaires).  
 
More precisely, the ‘benchmark’ values we report in our tables for exponential and 
right-half-of-normal distributions are good approximations if and only if lambda is sufficiently 
small – or sigma^2 is sufficiently large, respectively. Here, “large” and “small” are in relation 
to the ‘cutoff point’ at which the tail starts, with the requirement becoming more demanding 
the larger the cutoff. So e.g. the ‘exponential distribution’ values from our tables (which are 
for any exponential distribution starting at 0) may be a good approximation for the 
exponential tail of ‘millionaire wealth’ for some fixed lambda (if it is ‘small enough’); but if we 
were using the same lambda to describe ‘billionaire wealth’, the values from our tables might 
no longer be a good approximation (namely if lambda is ‘small enough’ relative to one million 
but not ‘small enough’ relative to one billion). 
 
Here is the precise technical result from which this follows.  
 
Let X be a random variable and c be a constant real number; set Y = X + c. (Think e.g. of X 
having an exponential distribution starting at 0, c = 10^6; then Y might be the distribution 
describing the wealth of millionaires.) Let 0 < p < 1 and set q = 1 - p (representing 
probabilities). Denote the top-q-share of X with t_X(q) – so e.g. if q = 0.1 then t_X(q) would 
be the share of the top 10%. 
 
A routine calculation then shows that  
 

t_Y(q) = t_X(q)/(1 + c’) + q/(1 + 1/c’),  
 



where c’ = c/E[X], i.e. the size of the translation ‘in relation to’ the expected value of the 
original distribution. We see that if c’ is very close to zero, then t_Y(q) approximately equals 
t_X(q). As c’ becomes larger, the first summand becomes smaller and the second one larger, 
and for c’ going towards infinity the top-share t_Y(q) converges toward q. 
 
An easier calculation shows that if r_X is some quantile of X as multiple of the median, then  
 

r_Y = r_X/(1 + c’’) + 1/(1 + 1/c’’),  
 
this time with c’’ = c / median(X). Thus translations of X have a very similar effect on this 
metric, this time with 1 rather than q as the limit for large translations. 
 
(The above claims now follow since the expected value of an exponential distribution is 
1/lambda, and the expected value of a right-half-of-normal distribution increases with the 
sigma^2 of the original normal distribution. Similar remarks apply for the median.) 

Key concepts and terminology 
●​ Task = type of deliberate activity or set of activities, described at a level of specificity 

such that instances of the activity are regularly carried out by different people and by 
the same person at different times.  

○​ E.g. driving a car, assembling a chair, writing physics papers. 
●​ Performance = how well someone does at a task or set of tasks (e.g. all tasks 

relevant to a certain job, then called job performance). Usually operationalized with a 
specific metric or proxy. 

○​ Example performance metrics could be: 
■​ For driving a car: frequency of accidents per kilometer; average 

speed; satisfaction rating on a 1-10 scale by other people in the car. 
■​ For assembling a chair: required time; how much weight the 

assembled chair can endure without collapsing; amount of waste 
produced while assembling. 

■​ For writing physics papers: number of publications; citations to 
publications; ratings by academic peers. 

○​ We deliberately use performance in a very broad and loose sense. On our 
definition, “performance” can incorporate things one would usually call 
outcome or impact and that are beyond the performer’s control. We also 
include both performance at a single instance of a task and aggregate 
performance over potentially long periods of time (e.g. a whole career). 

●​ Heavy-tailed = having a heavier tail than an exponential distribution. Loosely this 
means that the tail of the probability density function approaches zero more slowly 
than the tail of an exponential distribution. Formally, it means that above some 
threshold x > x_0 the conditional mean exceedance (also known as mean residual 
lifetime) E[X - x | X > x] is a strictly increasing function of x (where E denotes 
expected value and X is a random variable with the distribution we’re talking about).41 

○​ E.g. log-normal, Pareto distribution 

41 This definition follows Bryson (1974). There are different definitions of ‘heavy tailed’ in the literature, 
see e.g. here. 

https://forum.effectivealtruism.org/posts/2XfiQuHrNFCyKsmuZ/max_daniel-s-shortform?commentId=t9td3tRgGsoNn5aCx


●​ Light-tailed = having a lighter tail than an exponential distribution. Loosely this means 
that the tail of the probability density function approaches zero faster than the tail of 
an exponential distribution. Formally, it means that above some threshold x > x_0 the 
conditional mean exceedance E[X - x | X > x] is a strictly decreasing function of x. 

○​ E.g. normal distribution 
●​ (Note that any exponential distribution has constant conditional mean exceedance. 

Thus on this definition, the exponential distribution is neither heavy-tailed nor 
light-tailed – it is right on the edge between these two properties.) 
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