How much does performance differ
between people?

Max Daniel & Benjamin Todd

Some people seem to achieve orders of magnitudes more than others in the same job. For
instance, among companies funded by Y Combinator the top 0.5% account for more than %
of the total market value; and among successful bestseller authors, the top 1% stay on the
New York Times bestseller list more than 25 times longer than the median author in that

group.

This is a striking and often unappreciated fact, but raises many questions. How many jobs
have these huge differences in achievements? More importantly, why can achievements
differ so much, and can we identify future top performers in advance? Are some people
much more talented? Have they spent more time practicing key skills? Did they have more
supportive environments, or start with more resources? Or did the top performers just get
lucky?

More precisely, when recruiting, for instance, we’d want to know the following: when
predicting the future performance of different people in a given job, what does the
distribution of predicted (‘ex-ante’) performance look like?

This is an important question for EA community building and hiring. For instance, if it's
possible to identify people who will be able to have a particularly large positive impact on the
world ahead of time, we’d likely want to take a more targeted approach to outreach.

More concretely, we may be interested in two different ways in which we could encounter
large performance differences :

1. If we look at a random person, by how much should we expect their performance to
differ from the average?

2. What share of total output should we expect to come from the small fraction of
people we’re most optimistic about (say, the top 1% or top 0.1%) — that is, how
heavy-tailed is the distribution of ex-ante performance?

(See this appendix for how these two notions differ from each other.)

Depending on the decision we're facing we might be more interested in one or the other.
Here we mostly focused on the second question, i.e., on how heavy the tails are.

This document contains our findings from a shallow literature review and theoretical
arguments. Max was the lead author, building on some initial work by Ben, who also

provided several rounds of comments.

You can see a short summary of our findings below.



We expect this post to be useful for:

e (Primarily:) Junior EA researchers who want to do further research in this area. See
in particular the section on Further research.

e (Secondarily:) EA decision-makers who want to get a rough sense of what we do and
don’t know about predicting performance. See in particular this summary and the
bolded parts in our section on Findings.

o We weren’t maximally diligent with double-checking our spreadsheets etc.; if
you wanted to rely heavily on a specific number we give, you might want to do
additional vetting.

To determine the distribution of predicted performance, we proceed in two steps:

1. We start with how ex-post performance is distributed. That is, how much did the
performance of different people vary when we look back at completed tasks?
On these questions, we’ll review empirical evidence on both typical jobs and expert
performance (e.g. research).

2. Then we ask how ex-ante performance is distributed. That is, when we employ our
best methods to predict future performance by different people, how will these
predictions vary? On these questions, we review empirical evidence on measurable
factors correlating with performance as well as the implications of theoretical
considerations on which kinds of processes will generate different types of
distributions.

Here we adopt a very loose conception of performance that includes both short-term
(e.g. sales made on one day) and long-term achievements (e.g. citations over a whole
career). We also allow for performance metrics to be influenced by things beyond the
performer’s control.

Our overall bottom lines are:

e Ex-post performance appears ‘heavy-tailed’ in many relevant domains, but with
very large differences in how heavy-tailed: the top 1% account for between 4%
to over 80% of the total. For instance, we find ‘heavy-tailed’ distributions (e.g.
log-normal, power law) of scientific citations, startup valuations, income, and media
sales. By contrast, a large meta-analysis reports ‘thin-tailed’ (Gaussian)
distributions for ex-post performance in less complex jobs such as cook or
mail carrier': the top 1% account for 3-3.7% of the total. These figures illustrate
that the difference between ‘thin-tailed’ and ‘heavy-tailed’ distributions can be
modest in the range that matters in practice, while differences between
‘heavy-tailed’ distributions can be massive. (More.)

e Ex-ante performance is heavy-tailed in at least one relevant domain: science.
More precisely, future citations as well as awards (e.g. Nobel Prize) are predicted by
past citations in a range of disciplines, and in mathematics by scores at the
International Maths Olympiad. (More.)

' For performance in “high-complexity” jobs such as attorney or physician, that meta-analysis (Hunter
et al. 1990) reports a coefficient of variation that's about 1.5x as large as for ‘medium-complexity’ jobs.
Unfortunately, we can’t calculate how heavy-tailed the performance distribution for high-complexity
jobs is: for this we would need to stipulate a particular type of distribution (e.g. normal, log-normal),
but Hunter et al. only report that the distribution does not appear to be normal (unlike for the low- and
medium-complexity cases).


https://en.wikipedia.org/wiki/Coefficient_of_variation

e More broadly, there are known, measurable correlates of performance in many
domains (e.g. general mental ability). Several of them appear to remain valid in the
tails. (More.)

e However, these correlations by itself don’t tell us much about the shape of the
ex-ante performance distribution: in particular, they would be consistent with either
thin-tailed or heavy-tailed ex-ante performance. (More.)

e Uncertainty should move us toward acting as if ex-ante performance was
heavy-tailed — because if you have some credence in it being heavy-tailed, it's
heavy-tailed in expectation — but not all the way, and less so the smaller our
credence in heavy-tails. (More.)

e To infer the shape of the ex-ante performance distribution, it would be more useful to
have a mechanistic understanding of the process generating performance, but such
fine-grained causal theories of performance are rarely available. (More.)

e Nevertheless, our best guess is that moderately to extremely heavy-tailed
ex-ante performance is widespread at least for ‘complex’ and ‘scaleable’ tasks.
(I.e. ones where the performance metric can in practice range over many orders of
magnitude and isn’t artificially truncated.) This is based on our best guess at the
causal processes that generate performance combined with the empirical data we’ve
seen. However, we think this is debatable rather than conclusively established by the
literature we reviewed. (More.)

e There are several opportunities for valuable further research. (More.)

Overall, doing this investigation probably made us a little less confident that highly
heavy-tailed distributions of ex-ante performance are widespread, and think that common
arguments for it are often too quick. That said, we still think there are often large differences
in performance (e.g. some software engineers have 10-times the output of others?), these
are somewhat predictable, and it's often reasonable to act on the assumption that the
ex-ante distribution is heavy-tailed in many relevant domains (broadly, when dealing with
something like ‘expert’ performance as opposed to ‘typical’ jobs).

Some advice for how to work with these concepts in practice:

e |n practice, don’t treat ‘heavy-tailed’ as a binary property. Instead, ask how heavy
the tails of some quantity of interest are, for instance by identifying the frequency of
outliers you're interested in (e.g. top 1%, top 0.1%, ...) and comparing them to the
median or looking at their share of the total.?

2 Claims about a 10x output gap between the best and average programmers are very common, as
evident from a Google search for ‘10x developer’. In terms of value rather than quantity of output, the
WSJ has reported a Google executive claiming a 300x difference. For a discussion of such claims
see, for instance, this blog post by Georgia Institute of Technology professor Mark Guzdial. Similarly,
slide 37 of this version of Netflix's influential 'culture deck' claims (without source) that "In
creative/inventive work, the best are 10x better than the average".

3 Similarly, don’t treat ‘heavy-tailed’ as an asymptotic property — i.e. one that by definition need only
hold for values above some arbitrarily large value. Instead, consider the range of values that matter in
practice. For instance, a distribution that exhibits heavy tails only for values greater than 107100
would be heavy-tailed in the asymptotic sense. But for e.g. income in USD values like 102100 would
never show up in practice — if your distribution is supposed to correspond to income in USD you’d only
be interested in a much smaller range, say up to 10*10. Note that this advice is in contrast to the
standard definition of ‘heavy-tailed’ in mathematical contexts, where it usually is defined as an
asymptotic property. Relatedly, a distribution that only takes values in some finite range — e.g.
between 0 and 10 billion — is never heavy-tailed in the mathematical-asymptotic sense, but it may well


http://online.wsj.com/articles/SB113271436430704916
https://cacm.acm.org/blogs/blog-cacm/180512-is-there-a-10x-gap-between-best-and-average-programmers-and-how-did-it-get-there/fulltext
https://www.slideshare.net/reed2001/culture-1798664

e Carefully choose the underlying population and the metric for performance, in
a way that’s tailored to the purpose of your analysis. In particular, be mindful of
whether you're looking at the full distribution or some tail (e.g. wealth of all citizens
vs. wealth of billionaires).

In an appendix, we provide more detail on some background considerations:

e The conceptual difference between ‘high variance’ and ‘heavy tails’: Neither
property implies the other. Both mean that unusually good opportunities are much
better than typical ones. However, only heavy tails imply that outliers account for a
large share of the total, and that naive extrapolation underestimates the size of future
outliers. (More.)

e We can often distinguish heavy-tailed from light-tailed data by eyeballing (e.g. in a
log-log plot), but it’s hard to empirically distinguish different heavy-tailed
distributions from one another (e.g. log-normal vs. power laws). When
extrapolating beyond the range of observed data, we advise to proceed with caution
and to not take the specific distributions reported in papers at face value. (More.)

e There is a small number of papers in industrial-organizational psychology on the
specific question whether performance in typical jobs is normally distributed or
heavy-tailed. However, we don’t give much weight to these papers because their
broad high-level conclusion (“it depends”) is obvious but we have doubts about the
statistical methods behind their more specific claims. (More.)

e We also quote (in more detail than in the main text) the results from a
meta-analysis of predictors of salary, promotions, and career satisfaction.
(More.)

e We provide a technical discussion of how our metrics for heavy-tailedness are
affected by the ‘cutoff’ value at which the tail starts. (More.)

Finally, we provide a glossary of the key terms we use, such as performance or heavy-tailed.

Findings
Ex-post performance can be heavy-tailed depending on domain and metric, with large
differences in how heavy-tailed
Scientific achievement is heavy-tailed ex-ante
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tails of performance
Performance in typical jobs is predicted by general mental ability, but unclear by how

much

General mental ability predicts a number of other performance-related quantities
Other predictors of performance

In several cases, predictors remain valid in the tails

Measurable predictors of heavy-tailed ex-post performance don’t imply that predicted
performance is heavy-tailed

Uncertainty should move us toward acting as if ex-ante performance was heavy-tailed —
but not all the way

be in the “practical” sense (where you anyway cannot empirically distinguish between a distribution
that can take arbitrarily large values and one that is “cut off” beyond some very large maximum).


https://docs.google.com/document/d/1nlL9lClpZksxcSrcuUquyJNXW9VnNBJczYvFc6CZdUc/edit#heading=h.6kje2v70wlpl
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Causal models of performance would be useful, but we haven’t found one that would be
‘shovel-ready’ for making predictions in EA contexts

Why we’d guess that ex-ante performance at complex tasks is often heavy-tailed

Further research

Appendix
High variance vs. heavy tails

It's hard to empirically distinguish different heavy-tailed distributions from one another,
e.q. log-normal vs. power law

Fundamental difficulties
Practical difficulties
1/0 psychology papers on whether job performance is heavy-tailed don’t update us much

Results from a meta-analysis of predictors of career success
How do our metrics of heavy-tailedness depend on the value at which the tail starts?
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Findings

Ex-post performance can be heavy-tailed depending on domain
and metric, with large differences in how heavy-tailed

There is abundant evidence that the ex-post distribution of some measures of
performance in some relevant domains, e.g. scientific citations or startup valuations,
is heavy-tailed (to varying degrees) across people (see Table 1). This roughly means
that when we look back at completed tasks, outliers account for a disproportionately large
share of total output.

However, heavy-tailed performance distributions are not universal. Depending on how
performance is measured, we may find a light-tailed (e.g. normal) distribution instead,
especially in ‘typical’ rather than unusually complex jobs. For examples and a systematic
discussion, see Aguinis et al. (2016), Beck et al. (2014), and Hunter, Schmidt, & Judiesch
(1990). For selected light-tailed examples, see Table 2.

Note that performance measures can also be light-tailed ‘by design’. For instance, the
popular website IMDb.com rates movies on a scale from 1 to 10. The highest-rated movies
could only account for a significant share of the sum of ratings across all movies if people
rated the majority of movies with values that are orders of magnitude smaller than 1, which
in practice is not how raters interpret and use this scale. It is therefore no surprise that Liu et
al. (2018) uses a light-tailed distribution to model IMDb ratings.

Of course, this doesn’t tell us anything about whether the ‘performance’ of movies might be
heavy-tailed when measured in a different way, for example by their box office revenue.



As one example of heavy-tailed ex-post performance, among companies funded by Y
Combinator the top 1% account for more than % of the total market value. Other cases are
less extreme, e.g.:
e In 2005 the global top 1% accounted for 21% of world income (adjusted for
purchasing power).*
e Among scientists with long careers, the top 1% most-cited ones get around 7% of all
citations, and the top 1% most prolific ones author 4.0% of all papers.®

For comparison, in a normal distribution fitted to output data from various
“medium-complexity” jobs (e.g. cook) the top 1% account for 3.7% of total output. This is not
that different from the 4.0% top-1%-share figure for papers-by-author despite the former
being from a ‘light-tailed’ and the latter being from a ‘heavy-tailed’ distribution.® On the other
hand, we have seen that among different heavy-tailed distributions the top-1%-share can
vary by a factor of more than 10.

This illustrates that it's useful to ask how heavy the tail of performance is in a specific
case, rather than just asking the binary question whether the tails are heavier than for an
exponential distribution (a common maths definition of ‘heavy-tailed’ as a binary property).
For practical purposes there are large differences among heavy-tailed distributions.
They range from “winner takes most” situations to ones where the difference to a
normal distribution remains modest across the full range of values we’ll ever
encounter in practice.’

To compare the heavy-tailedness of different distributions, we suggest the share of
expected value in the top X% (top 20%, 10%, 1%, etc.) — see Table 3. This measure has
several advantages: it focuses on the key difference between heavy-tailed and light-tailed
distributions; it highlights that the property of interest isn’t binary but varies continuously; it
has a straightforward interpretation; and we can apply it to different families of distributions
as well as unparameterized data.

One disadvantage of this measure is that it depends on the ‘underlying population’ — for
instance, whether we look at all authors of scientific papers or only those who have
published consistently over many years. (Consider that a large share of paper authors only

4 Anand & Segal (2014, Table 11.5), the first estimate of the world income distribution that takes into
account estimates of top earners within countries.

5 Based on Sinatra et al. (2016); note that the figures are based on their fitted distribution, not the
actual data. The distribution of total citations to authors has no closed-form expression but can be
simulated based on Sinatra and colleagues’ model. Specifically, | generated 100 independent
samples of 1 million scientists each. The mean top-1%-share across the 100 samples was 7.17%,
with a standard deviation of 0.0267%. The script | used for the simulation is here, and a screenshot of
the output from running the script on March 6th 2021 is here.

® Note that the difference between any ‘heavy-tailed’ and ‘thin-tailed’ distribution must become
arbitrarily large in the limit of increasingly extreme top-shares. That is, if we look at the top 1%, top
0.1%, top 0.01%, and so on, the top-share of the light-tailed distribution will eventually fall much
quicker than that for the heavy-tailed distribution (and so the ratio of the top-shares becomes
arbitrarily large). However, in practice it matters when the difference becomes large: e.g. we often
deal with sufficiently large groups of people that it's useful to know about the top 1% but we will rarely
if ever be interested in some property of the top 10*{-100}.

” Among the distributions we found, the share of the top 0.01% (1 in 10,000) differed by a factor of
less than 2 between the heaviest ‘thin-tailed’ and the least heavy ‘heavy-tailed’ distribution — but by a
factor of more than 500 among different ‘heavy-tailed’ distributions!


https://drive.google.com/file/d/1Rs5tyzWGsDMUEsZsp0C17zQN8pVXvvzv/view?usp=sharing
https://drive.google.com/file/d/1POrmqrigb9eyIdxnEiG8pj7Yg9vxMFyI/view?usp=sharing

have very few publications, e.g. people who leave academia after their PhDs.) More broadly,
certain distributions such as power laws usually only apply in the tails of performance, and
then we need to be careful to distinguish between the share of the total in the tail and the
share of the total in the full distribution. For instance, the third row in Table 3 says that the
top 20% of US billionaires account for about 88% of the wealth of all US billionaires. If the
underlying population instead were all Americans, then the top 20% of billionaires would
correspond to a much higher quantile of that population (perhaps the top 0.0001%) but since
we’re now comparing to a larger amount of total wealth their share would also be lower than
88% (in fact at most 30%).2

This means that a direct comparison of different entries in our tables may be
misleading if they report the same quantity (e.g. citations) for different population
subsets (e.g. all scientists vs. tail of highly cited scientists).

(Another disadvantage is that it has a straightforward interpretation only for distributions that
range only over positive values. If negative values ‘cancel out’ positive ones in expectation,
this will push the mean toward zero, and thus increase the share of the top X% irrespective
of how fast the tails diminish. In the extreme case of a distribution with mean zero, the “share
of the total” for any top X% would involve a division by zero and thus be undefined.)

The data in Table 3 suggests that the same quantity (e.g. wealth) tends to be more
heavy-tailed for more “elite” populations, i.e. smaller populations that have been more
heavily selected for performance (e.g. US billionaires vs. all Americans, scientists published
in Nature vs. less prestigious journals). This is also suggested by some theoretical
considerations®, but we don’t know how generally it holds. If it holds more widely, it would for
instance be relevant to assessing replaceability in competitive jobs.

In Tables 3 and 4 we provide more detail on some heavy-tailed performance distributions.
However, as explained in the appendix, our confidence in this more specific information —
including the type of distribution, say log-normal vs. Pareto — is low; we think the main robust
findings simply are that (i) many performance metrics across many domains are, in a broad
sense, heavy-tailed, and that (ii) different performance metrics or samples can vary
considerably in how heavy the tails are, even for data in the same broad domain (e.g.
wealth).

If you are more interested in variance, for some of these distributions we provide a scale-free
measure of variance (the ‘coefficient of variation’, i.e. standard deviation over mean) in Table
5.

& The 0.0001% and 30% figures given here are very crude ballpark estimates based on assuming that
there are 1,000 US billionaires (as of March 2020 pr ly an overestimat factor of ~2) in a
population of 300 million (in fact ~330 million in 2019), and that the share of total wealth held by
billionaires is 35% (which in fact is about the share held by the top 1%, whereas billionaires are on the
order of the top 0.0001%).

°® Roughly: the more heavily the population has been selected, the more room there was for ‘success
begets success’ dynamics to amplify differences, and the more performance tends to depend on a
larger number of factors — both of which push toward more heavy tails. For a more detailed
explanation, see the later subsection on why we'd quess that ex-ante performance is often

heavy-tailed.



https://80000hours.org/2019/08/how-replaceable-are-top-candidates-in-large-hiring-rounds/
https://www.google.com/search?q=how+many+us+billionaires&rlz=1C5CHFA_enLU709DE711&oq=how+many+us+billio&aqs=chrome.0.0i457j0j69i57j0l5.2512j1j1&sourceid=chrome&ie=UTF-8
https://www.forbes.com/billionaires/
https://en.wikipedia.org/wiki/Wealth_inequality_in_the_United_States#Statistics

Table 1. Examples of heavy-tailed distributions of ex-post performance.

Performance-relevant quantity found to be
heavy-tailed

Sources

Citations by scientist (whole career)

Liu et al. (2018), Sinatra et al. (2016),
Petersen, Wang, & Stanley (2010)

Number of publications by scientists (whole
career)

Sinatra et al. (2016), Petersen, Wang, &
Stanley (2010), Clauset et al. (2009)

Profits by startup founders

80,000 Hours (2014a, 2014b)

Various metrics of success in arts &
entertainment by artist, e.g. weeks on the NYT
bestseller list by fiction author or movie box
office gross by director

Tauberg (2018)

Wealth by individual (worldwide and within
various countries)

Atkinson & Bourguignon (eds., 2014),
Clauset et al. (2009)

Income by individual (worldwide and within
various countries)

Atkinson & Bourguignon (eds., 2014),
Our World in Data

Citations by paper

Brzezinski (2015), Golosovsky &
Solomon (2012), Wallace, Lariviére, &
Gingras (2009), Clauset et al. (2009),
Radicchi, Fortunato, & Castellano
(2008), Redner (1998), Price (1965)

Programmer output

Bryan (1994)

Returns to stock indices by time period (e.g.
1-min returns of the S&P 500)

Malevergne, Pisarenko, & Sornette
(2005)

Auction prices by artwork

Liu et al. (2018)

Table 2. Examples of light-tailed distributions of ex-post performance.

Performance-relevant quantity found to be
light-tailed (i.e. not heavy-tailed)

Source

Average call handle-time by call center
employee

Beck et al. (2014, Fig. 2, p. 541f.)

Points scored per minute on court in the NBA
(by basketball player)

Beck et al. (2014, Fig. 12b, p. 554f.)

Output count of various ‘low-" and
‘medium-complexity’ jobs such as machine

Hunter et al. (1990, Tables 4-6, pp.
33ff.)



https://80000hours.org/2014/05/how-much-do-y-combinator-founders-earn/
https://80000hours.org/2014/06/the-payoff-and-probability-of-obtaining-venture-capital/
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://ourworldindata.org/income-inequality
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=291203

operators, mail handlers, file clerks,
proofreaders

Table 3. Share of the right tail in the total for various metrics of ex-post performance (see

notes below)

Quantity

Citations to scientists (whole career) [Sinatra et al.

Share of the total held by the top

20% [10% (1% |0.1% | 0.01%

51% | 34% | 7.2% [1.3% | .21%



https://80000hours.org/2014/05/how-much-do-y-combinator-founders-earn/
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://forum.effectivealtruism.org/posts/29xPsh2MKkYGCuJhS/ea-survey-2019-series-donation-data
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://ourworldindata.org/grapher/income-share-held-by-richest-10
https://ourworldindata.org/grapher/income-share-held-by-richest-10

2016]"

Papers written by scientist (whole career) [Sinatra et .083%
al. 2016]

Table 3. Share of the right tail in the total for various metrics of ex-post performance, as
calculated in this spreadsheet. Italicized are non-performance-related ‘benchmarks’ we
report for comparison. Ordered by descending share of the top 1%. Color scheme: Green =
descriptive share in observed or estimated data; Yellow = predicted share by log-normal
model; Orange = predicted share by power-law model”’; Blue = shares in non-heavy-tailed
distributions for comparison.’

Table 4. Quantiles as multiple of the median for various metrics of ex-post performance (see
notes below).

Quantiles as multiple of median

Quantity
.8 9 .99 999 (.9999

' See footnote 4.

" We used a continuous power law, i.e. a Pareto distribution, even for discrete data. Our best guess is
that this doesn’t make much of a difference for this purpose, but haven’t checked.

2 Figures based on models are less affected by noise and allow us to extrapolate beyond the range of
observed data (e.g. there aren’t actually 10,000 US citizens with net worth > 600 million). On the other
hand, such extrapolated numbers may be misleading because the models may be invalid beyond the
range of observed data (cf. the ndix).


https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://ourworldindata.org/grapher/income-share-held-by-richest-10
https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing

Income (worldwide, 2005) [Anand & Segal 2014, 27 |45 15 37 78
stipulated from Table 11.5]

Citations to scientists (whole career) [Sinatra et al.
2016]"

Papers written by scientist (whole career) [Sinatra et
al. 2016]

3 See footnote 2.



https://80000hours.org/2014/06/the-payoff-and-probability-of-obtaining-venture-capital/
https://80000hours.org/2014/06/the-payoff-and-probability-of-obtaining-venture-capital/
https://forum.effectivealtruism.org/posts/29xPsh2MKkYGCuJhS/ea-survey-2019-series-donation-data
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://80000hours.org/articles/highest-paying-jobs/
http://www.lisdatacenter.org/lis-ikf-webapp/app/search-ikf-figures
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
http://www.lisdatacenter.org/lis-ikf-webapp/app/search-ikf-figures

Table 4. Quantiles as multiple of the median for various metrics of ex-post performance, as
calculated in this spreadsheet. Italicized are non-performance-related ‘benchmarks’ we
report for comparison. Color scheme: Green = descriptive values in observed or estimated
data; Yellow = predicted by log-normal model; Orange = predicted by lower-law model'*;
Blue = predicted by non-heavy-tailed model

Table 5. Coefficient of variation of various metrics of ex-post performance (see notes below).

Quantity Coefficient of variation, i.e.
stdev/imean

Income (worldwide, 2005) [Anand & Segal 2014,
stipulated from Table 11.5]

Citations to scientists (whole career) [Sinatra et al. 1.06
2016]"

* We used a continuous power law, i.e. a Pareto distribution, even for discrete data. Our best guess is
that this doesn’t make much of a difference for this purpose, but we’re not sure.
'® See footnote 4.


https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c

Pareto distribution with cdf shape parameter alpha = | 1
sqrt(2)+1 (around 2.41)"°

Weeks in Billboard Hot-100 (1970-2018) by .638
musician, among artists with at least 282 weeks in

these charts [Tauberg 2018]

Papers coauthored by mathematicians with at least | .483
133 publications [Clauset et al. 2009]

Papers written by scientist (whole career) [Sinatra et | .625
al. 2016]

Output in typical jobs (“high” complexity, e.g. AT5
physician) among applicants for such jobs [Hunter,
Schmidt, & Judiesch 1990]

Output in typical jobs (“medium” complexity, e.g. 318
cook) among applicants for such jobs [Hunter,
Schmidt, & Judiesch 1990]

Output in typical jobs (“low” complexity, e.g. mail 193
carrier) among applicants for such jobs [Hunter,
Schmidt, & Judiesch 1990]

Height of contemporary adult US men [Wikipedia] .0429

Table 5. Coefficient of variation — i.e. the standard deviation as fraction of the mean — of
various metrics of ex-post performance, as calculated in this spreadsheet. Italicized are
non-performance-related ‘benchmarks’ we report for comparison. Color scheme: Green =
descriptive values in observed or estimated data; Yellow = predicted by log-normal model;
Orange = predicted by lower-law model'’; Blue = predicted by non-heavy-tailed model

Scientific achievement is heavy-tailed ex-ante

On academic performance measured by citations, there is evidence suggesting that
performance can be well predicted by a product of a person-internal factor and luck,
both of which are heavy-tailed (see Table 6). In addition, for scientists at least about 15
years into their career, we can estimate the person-internal factor based on their citation
record. Thus, in at least one highly relevant case, there is direct empirical evidence in
favor of a heavy-tailed ex-ante performance distribution.

Share of the total held by the top
Quantity

20% [10% [ 1% 0.1% [ 0.01%

6 The coefficient of variation of a Pareto distribution is independent of its scale parameter.
7 We used a continuous power law, i.e. a Pareto distribution, even for discrete data. Our best guess is
that this doesn’t make much of a difference for this purpose, but we’re not sure.


https://michaeltauberg.medium.com/power-law-in-popular-media-7d7efef3fb7c
https://en.wikipedia.org/wiki/Standard_deviation#Standard_deviation_of_average_height_for_adult_men
https://docs.google.com/spreadsheets/d/13ZRiHeTZ9ZBuVsAALkhq2rOrs-1Kf_cGDxC-HvVPZT4/edit?usp=sharing

‘Luck’ factor p proportional to expected number of 55% [38% | 8.7% |1.7% | .29%
citations per paper for a fixed scientist, by paper

Citations to scientists (whole career)'® 51% | 34% | 7.2% [1.3% | .21%
Exponential distribution 52% [ 33% | 5.6% |.79% | .10%
Papers written N, by scientist (whole career) 39% [24% | 4.0% |.59% | .083%
Right half of a standard normal distribution 44% | 26% | 3.6% |.45% | .052%
Scientist’s ‘ability factor’ Q proportional to the 35% |21% [ 3.1% | .42% | .056%
expected number of citations per paper

Table 6. Top shares of distributions relevant to scientific citations from Sinatra et al. (2016),
as calculated in this spreadsheet. Color scheme: Yellow = log-normal distributions from
Sinatra et al. (2016); Blue = non-heavy-tailed distributions for comparison

Quantiles as multiple of median

Quantity
.8 9 .99 999 |.9999

‘Luck’ factor p proportional to expected number of 23 |34 94 20 36
citations per paper for a fixed scientist, by paper

Citations to scientists (whole career)' 21 [31 [75 |14 25
Exponential distribution 23 |33 |[6.6 10 13
Papers written by scientist (whole career) 1.6 |21 3.8 5.9 8.5
Right half of normal distribution 179 (24 |38 4.9 5.8
Scientist’s ‘ability factor’ proportional to the 1.5 1.8 2.9 4.1 5.5

expected number of citations per paper

Table 7. Top quantiles as multiple of the median for distributions relevant to scientific
citations from Sinatra et al. (2016), as calculated in this spreadsheet. Color scheme: Yellow
= log-normal distributions from Sinatra et al. (2016); Blue = non-heavy-tailed distributions for

comparison

We briefly remark that there also is some evidence suggesting heavy-tailed ex-ante
citations and productivity specifically in the tails, albeit based on just one discipline
(mathematics) and a different predictor: each additional point scored on the International
Mathematics Olympiad “is associated with a 2.6 percent increase in mathematics
publications and a 4.5 percent increase in mathematics citations” (Agarwal & Gaulé 2018, p.
3). In other words, the ex-ante distribution of citations (or productivity) conditional on
IMO score is log-normal.

'8 See footnote 2.
' See footnote 2.
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Apart from that, our conclusions are based on a Science paper by Sinatra et al. (2016).
Most of their analysis and the quantitative results reported below are based on a large
sample of physics publications. Specifically, they use the dataset of all publications (n >
450,000) in the Physical Review family of journals® between 1893 and 2010. However,
they’ve checked that their qualitative conclusions are also valid for the cognitive sciences,
chemistry, ecology, economics, biology and neuroscience by using data from Web of
Science and Google Scholar.

Before performing statistical analysis, Sinatra et al. excluded from their data sets scientists
with short careers.?' In the Physical Review dataset, 2,887 scientists remain. All results
should thus be interpreted as being about the population of scientists who regularly
publish papers throughout a long career. ‘Citations’ generally refers to the number of
citations to papers ten years after publication. Sinatra et al. (2016, S1.4, S1.6) perform
various robustness checks to ensure their conclusions don’t depend on the details of dataset
selection or the citation measure.

They assume that citations to papers are independent draws from a product of two factors, a
scientist’s “ability” and (paper-specific) luck. Specifically, citations for one paper are Q_i * p,
where Q_j is an ‘ability factor’ specific to each scientist / (and constant throughout their
career) and p is a random factor representing ‘luck’, with the same distribution for all
scientists. For each of the N_i papers that scientist i writes over their career, we take an

independent draw of the ‘luck’ component p.

In this model, the expected total number of citations to a scientist over their whole career
thus depends on three things:

e The distribution of the ‘luck’ component p. (The same for all scientists.)

e The value of the ‘ability factor’ Q_i. (Different for each scientist.)

e The number N_j of published papers. (Different for each scientist.)

Sinatra et al. assume that each of these three factors is log-normal (where for Q jand N_i
the distribution is across scientists), and that luck is independent of ability and productivity.
Using maximume-likelihood estimation, they find the following parameters (ibid., p.
aaf5239-3). They refer to the means and covariance matrix of the trivariate normal
distribution of log p, log Q, log N.

e mu=(mu_p, mu_Q, mu_N)=(0.92,0.93, 3.34)

2 Physical Review A, B, C, D, E, I, L, ST, and Review of Modern Physics

2! In more detail, they include only “scientists that (i) have authored at least one paper every 5 years,
(ii) have published at least 10 papers, (iii) their publication career spans at least 20 years in the APS
dataset and at least 10 years in the WoS dataset”. (Sinatra et al. 2016., S1.3)
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Sinatra et al. performed various statistical checks to support the validity of their model. In
particular, they statistically rejected a simpler model that assumed no ability differences
between scientists (ibid., Figs. 3CDE), and they showed that the data is consistent with
randomness and constant ability within fixed careers (ibid., Figs. 2 and 5).?2 However, they
did not compare their log-normal model to other heavy-tailed distributions (cf. our appendix);
therefore, we think that for the purpose of extrapolating beyond the range of observed data
their results should at most be considered weak evidence in favor of a log-normal distribution
in particular (as opposed to, e.g., a power law).

A few qualitative conclusions from this model are:

e Average citations per paper Q and the number of publications N are positively
correlated, but only very weakly.

e For a single paper, the variance in citations is dominated by luck. However, since
career scientists publish many papers, when comparing whole careers the effect of
luck ‘averages out’. That is, the variance of total citations over full careers is mostly
not due to differences in luck.

e Productivity varies a bit more between scientists than the ‘ability factor’ Q; however,
the latter improves citations for each paper, thus having a large effect over a whole
career.

e As a consequence of the previous two points, total citations vary dramatically
between scientists primarily because of differences in the ability factor Q_ij
(e.g. ibid., Fig. 3E).

e Total citations are more heavy-tailed than each factor individually: we’ll see
disproportionately many citations to scientists who have high ability and high
productivity and got lucky.

2 Lju et al. (2018) add an interesting wrinkle: they find evidence of “hot streaks” within scientific — as
well as artistic and cultural — careers, i.e. short periods of increased performance. However, they still
find that the timing of such hot streaks within each career is random (i.e. each piece of work has the
same probability of starting a hot streak, no matter whether it's early or late in a career). This
contradicts Sinatra and colleagues’ assumption that, for a given scientist, the expected number of
citations to any single paper is constant throughout a career, and determined for each paper
independently. For example, on Sinatra and colleagues’ model, the locations of the most-cited and
second-most-cited paper within each career should be independent, but Liu et al. find a higher chance
of them being close to each other. However, at a more coarse-grained level the results from Liu et al.
(2018) and Sinatra et al. (2016) are consistent, and in particular they both find that any paper is as
likely as any other to be a scientist's most-cited one.



Of course, these are conclusions from a model fitted to ex-post data. However, Sinatra et al.
also show that we can do reasonably well at predicting future citations based on estimating
the ‘ability factor’ Q_i from just the early-career citation record. For example, this figure (ibid.,
Fig. 6E) illustrates how we can predict the Hirsch index h — a popular citation measure —
based on the first 20 or 50 papers:*®*

2 Note that the evolution of the Hirsch index depends on two things: (i) citations to future papers and
(i) the evolution of citations to past papers. It seems easier to predict (ii) than (i), but we care more
about (i). This raises the worry that predictions of the Hirsch index are a poor proxy of what we care
about — predicting citations to future work — because successful predictions of the Hirsch index may
work largely by predicting (ii) but not (i). This does make Sinatra and colleagues’ ability to predict the
Hirsch index less impressive and useful, but the worry is attenuated by two observations: first, the
internal validity of their model for predicting successful scientific careers is independently supported
by its ability to predict Nobel prizes and other awards; second, they can predict the Hirsch index over
a very long period, when it is increasingly dominated by future work rather than accumulating citations
to past work.

2 Acuna, Allesina, & Kording (2012) had previously proposed a simple linear model for predicting
scientists’ Hirsch index. However, the validity of their model for the purpose of predicting the quality of
future work is undermined more strongly by the worry explained in the previous footnote; in addition,
the reported validity of their model is inflated by their heterogeneous sample that, unlike the sample
analyzed by Sinatra et al. (2016), contains both early- and late-career scientists. (Both points were
observed by Penner et al. 2013.)
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Similarly, estimates of Q_ij based on the first 6, 10, or 15 years of publication activity do
better at predicting Nobel prize winners than other metrics including the total number of
citations or the Hirsch index, as shown in the following ROC plots (ibid., Fig. S48):
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In these plots, the dashed diagonal would represent a predictor that's no better than chance,

and predictors are more valid the further their curves are shifted to the left. Two interesting
observations are that predictions based on productivity are barely better than chance, and
that predictions based on Q_i get much better if based on more years of publication activity,
especially in the upper tail.

(Note that, to perform e.g. the estimation ‘based on the first 6 years’ of publication activity,
we’d in fact need to wait 16 years since everything is based on citations 10 years after
publication.)

These predictions are much better than chance, but their reliability is far from perfect: if we
estimate Q_i based on the first 20 papers, then for about 40% of scientists with productive
careers of > 70 papers the predicted Hirsch index will be off by more than two standard
deviations (ibid., Fig. 3G).

More broadly, there is a large field quantitatively studying citations and other scientific
metrics — called bibliometrics, scientometrics, or the science of science. For reviews see
Clauset, Larremore, & Sinatra (2017) and Fortunato et al. (2018).

We know of measurable predictors of performance in many
domains, including for the tails of performance

Our best predictions generally model performance as depending on three types of

factors:
e Measurable ‘person-internal’ characteristics such as intelligence or

conscientiousness;

e Measurable ‘personal-external’ characteristics such as the size of a market or the

difficulty of a task;
e ‘Luck’, i.e. unmeasured additional factors that appear as random variation of

performance.


https://en.wikipedia.org/wiki/Receiver_operating_characteristic

By person-internal we roughly mean characteristics that would be unaffected by changing
the environment of an individual. For example, if a worker changes companies, their
person-internal characteristics should stay the same.

The boundary between person-internal and person-external is admittedly fuzzy. It depends
on the performance measure, and in particular the time scale over which we observe
performance. For example, consider a skill that improves with practice. The level of skill at a
particular point in time may be ‘person-internal’; but if we measure skill-dependent
performance over an extended period of time, then the amount of improvement in the skill
will be partly ‘person-external’ (e.g. workers who get more feedback from their managers
might improve faster). Conversely, an individual’s environment also depends on
‘person-internal’ characteristics, e.g. more hard-working people may be able to access better
universities.

However, in a fixed context we believe it's often reasonably clear which property would count
as person-internal, person-external, or luck, and that this will have major practical relevance.

Suppose you know that performance in some domain is heavy-tailed. Should you try to
become a high performer in that domain? If performance was purely determined by luck (as
e.g. in a lottery), then everyone has the same chance to become a high performer, and it
could be worth trying. If instead the key driver of performance was a heavy-tailed
personal-external contribution (e.g. amount of available capital), this would mean you should
focus your efforts on modifying your environment accordingly (e.g. seek large amounts of
funding). And if performance was heavy-tailed primarily because of measurable
person-internal characteristics (e.g. the level in certain skills), then the crucial question would
be how you measure up on these characteristics — some people will (predictably) perform far
better than others.

We mostly searched for person-internal predictors of performance, which is reflected in
the findings reported below. However, the literature also discusses several person-external
predictors of performance. For example, the book Chasing Stars (Groysberg 2012) argues
that context — or ‘firm-specific capital’ — is more important to performance than commonly
assumed. Regarding academic performance, there are a number of papers investigating the
effects that ‘superstar’ scientists may have on others in their department (e.g. Azoulay, Zivin,
& Wang 2010; Waldinger 2012), and similarly for CEOs (e.g. Brown 2011; Ammann,
Hoersch, & Oesch 2016). More broadly, there is a small industry trying to identify “peer
effects” in academia or companies.

Performance in typical jobs is predicted by general mental ability, but
unclear by how much

There is a large literature in industrial-organizational psychology on performance in typical
jobs. In fact, Judiesch & Schmidt (2000, p. 529) state that “job performance is perhaps the
most important dependent variable in industrial-organizational psychology.”

There are dozens of individual studies across multiple decades that report measures of
ex-post job performance as well as potential predictors. On one hand, we can thus draw on
a lot of primary data. For example, a meta-analysis by Aguinis et al. (2016, p. 3) is based on



“229 datasets including 633,876 productivity observations collected from approximately
625,000 individuals in occupations including research, entertainment, politics, sports, sales,
and manufacturing” — and they mostly limited their analysis to studies published since 2006.

On the other hand, this data comes with a lot of challenges such as convenience samples,
small sample sizes, unreliable measurements, and data heterogeneity (observations are
from different populations in different jobs with different measures of performance).
Psychologists disagree on the extent to which it's possible to statistically ‘correct for’ these
problems in order to reach robust conclusions based on pooled data.

On the optimistic end, psychologists Frank Schmidt, John Hunter, and collaborators (e.g.
Hunter & Hunter 1984; Hunter et al. 1990; Schmidt & Hunter 1992, 1998, 2004; Schmidt et
al. 2016) have in particular stressed the validity of general mental ability (GMA, similar to
general intelligence g or 1Q) as a reasonably strong predictor of job performance across
domains. For instance, Schmidt et al. (2016, Table 1) report a positive correlation of r =
0.65 between GMA tests and job performance, the largest correlation among the 31
predictors reported. (The second-largest correlation is r = 0.58 for employment interviews.)
They also find that combining GMA with a second predictor doesn’t add much — the highest
gain in the correlation coefficient, for adding an integrity test, is 0.13 or 20%. Another theme
in that literature is that GMA is a better predictor of performance, and that performance is
higher-variance, in more complex jobs (see in particular Hunter & Hunter 1984 and Hunter et
al. 1990).

On the pessimistic end, Richardson & Norgate (2015) based on broadly the same data urge
for caution, for instance citing the fact that different ways of correcting for range
restriction and measurement unreliability have led two different meta-analyses —
Schmidt & Hunter (1998) and Hartigan & Wigdor (1989) — to wildly different reported
GMA-job performance correlations of 0.51 and 0.22, respectively. They also question
the findings on the role of job complexity.

We did not try to adjudicate this debate, though one of us (Max) got the tentative impression
that the optimistic perspective is closer to the received wisdom in the field. In any case there
seems to be no doubt that there is some positive correlation between GMA and job
performance for most jobs. However, whether the GMA—job performance correlation is
closer to 0.2 or 0.7 would make the difference between GMA being one predictor among
many (see Other predictors of performance below) and the by far single best one (at least for
performance in a wide range of typical jobs).

General mental ability predicts a number of other performance-related
quantities

GMA also correlates with a number of other quantities that are in some loose sense related
to performance. Examples include:
e Patentable inventions. For instance, based on data from Finland, Aghion et al. (2017,
p. 3) find that “IQ has [...] a direct effect on the probability of inventing which is almost
five times as large as that of having a high-income father”.
e Academic achievement, e.g. grades in school: see Wikipedia.


https://en.wikipedia.org/wiki/G_factor_(psychometrics)#Academic_achievement

e Income. For instance, based on a representative sample of the working-age
population of 19 high-income countries (total n = 69,901), Ganzach & Patel (2018)
claim that “there is not much more than g [general mental ability]” for predicting
wages, at least after controlling for age and sex.

e Occupational attainment, i.e. roughly how prestigious one’s job is as opposed to how
well one performs in a given job. E.g., in a large US data set Schmidt & Hunter
(2004, p. 163) found an uncorrected correlation with GMA of 0.65.

Other predictors of performance

The literature has identified other correlates of job performance or performance-related life
outcomes. However, our impression is that these are less well supported, are less strongly
correlated with performance, or only apply to more specific tasks (e.g. height predicts
success in basketball much better than for most other jobs).

With a very quick search, we found only one meta-analysis (Ng et al. 2005) that examines a
wide range of different predictors at the same time (human capital, organizational
sponsorship, socio-demographic variables, and stable individual differences including
personality, GMA, proactivity, and locus of control). It did not, however, include all of the
predictors we’'ve encountered in the literature and list below.

Ng et al. (2005) find that:

e The predictors surveyed by them tend to work better for salary level (corrected
correlations up to r_c¢ = .29, and many above .2) than for promotions (most r_c below
.1, only one predictor with r_c barely above .2).

e These two measures of ‘objective career success’ tend to be predicted by different
variables than ‘subjective career success’, i.e. career satisfaction. Support from
employers, personality, and non-cognitive skills tend to correlate more strongly with
subjective career success, while human-capital and socio-demographic variables
tend to correlate more strongly with objective career success.

e The 5 best predictors of salary level among the 27 variables surveyed are (r_c
between .29 and .26, in descending order): Education level, political knowledge &
skills, cognitive ability, work experience, age.

One caveat is that Ng et al. include cognitive ability only in their analysis of predictors of
salary levels — but not for promotions or career satisfaction. Another limitation is that they
don’t provide information about correlations between predictors (e.g. age and work
experience are clearly related); taking their results at face value would thus understate the
role of variables that are causally prior to many others (e.g. we would guess that cognitive
ability causally contributes to education level; similarly, some personality traits and
non-cognitive skills may, via influencing motivation, causally contribute to hours worked etc.).
For their full results, see the appendix.

Beyond that, predictors of job performance or career success that appear in the literature
include:
e Personality, especially conscientiousness and related constructs such as “integrity”,

LT

“self-discipline”, or Duckworth’s “grit”.



o Borghans et al. (2016), in a paper published in PNAS, analyze data from 4
cohorts from high-income countries with between 347 and 8,874 individuals.
They find correlations of 0.29 to 0.45 between personality measures and
scores on achievement tests at school, and correlations of 0.25 to 0.43
between personality and grades. (Their reported correlation with 1Q is
stronger than that for achievement tests, but weaker for grades.) Regarding
longer-term outcomes, they state that “Personality is generally more
predictive than IQ on a variety of important life outcomes.” (p. 13354).%

o Barrick & Mount (1991) performed a meta-analysis of correlations between
the Big Five personality traits with 3 measures of job performance (job
proficiency, training proficiency, personnel data) in 5 occupational groups
(professionals, police, managers, sales, skilled/semi-skilled). They found that
conscientiousness correlates at about 0.2 with all measures of performance in
all studied occupations. (Though ‘uncorrected’ correlations were smaller, at
most 0.13.) Results for other personality traits were more mixed or
inconclusive. Another meta-analysis by Tett, Jackson, and Rothstein (1991)
features similar conclusions.

o However, in the meta-analysis by Ng et al. (2005), conscientiousness does
not appear to be more predictive of objective career success (salary and
promotions) than other Big Five personality traits. Instead, correlations with all
personality traits are similarly small, between -0.12 (neuroticism and salary)
and 0.18 (extroversion and promotions).

o Kaufman et al. (2016), in four samples of in total n = 1,035 individuals, find
that two different facets of the Big Five trait openness to experience — namely
‘openness’ and ‘intellect’ — correlate with achievement in the arts and
sciences, respectively.

m  More broadly, there is a recent literature trying to identify correlations
with subfacets of the Big Five traits.

o Using nonstandard personality dimensions and questionnaires administered
to 196 biologists, 201 chemists, and 171 physicists, Busse & Mansfield (1984)
found that their measure of “commitment to work” correlates with the number
of publications, while their measure of “originality” correlates with citations.

e Non-cognitive skills (i.e. not primarily cognitive abilities that can be changed through
practice or developments rather than stable traits), e.g. “character skills” (Kautz et al.
2017[20141).

e FEducational attainment (e.g. highest degree obtained, academic discipline), see e.g.
Wai (2014) and this UK government study.

e Academic performance, e.g. grades or test scores. For instance, the PNAS paper by
Borghans et al. (2016, p. 13354) mentioned above states that “both grades and
achievement tests are substantially better predictors of important life outcomes than
1Q.”

e Organizational sponsorship, i.e. the extent to which individuals receive career
support by their employers. For instance, a meta-analysis by Ng et al. (2005) reports
‘corrected’ correlation of 0.05 to 0.24 between different measures of organizational

% At a glance, Max perceives some claims from Borghans et al. (2016) to be at odds with what he
read elsewhere. This might indicate either that his understanding of other views is mistaken or that
there is some problem with this study. Max didn’t try to resolve this issue.
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sponsorship and objective career success (salary or promotions), and of 0.38 to 0.44
between different measures of organizational sponsorship and career satisfaction.
Attractiveness. See e.g. Hamermesh and Biddle (1994) and Hamermesh, Meng, &
Zhang (2002)

Demographic characteristics, e.g. age or marital status. For instance, Azoulay et al.
(2018, p. 1) found that, in the US, the “mean founder age for the 1 in 1,000 fastest
growing new ventures is 45.0”".

Socio-economic status (SES) of parents.

o Strenze (2007), in a meta-analysis of longitudinal studies, finds that
“intelligence is a powerful predictor of success [as measured by education,
occupation, and income] but, on the whole, not an overwhelmingly better
predictor than parental SES or grades®.

o Aghion et al. (2017) find both a direct correlation and an interaction effect with
IQ of father income with the probability of becoming an inventor.

Career success of parents, see e.g. 80,000 Hours (2015).
Specific skills or abilities (rather than a general ability factor), see e.g. 80.000 Hours
(2017) and Grobelny (2018).

We didn’t try to be comprehensive and didn’t examine any of these studies in more detail.

In several cases, predictors remain valid in the tails

Several studies have specifically examined the tails of performance or the tails of measured
predictors. Examples include:

Wealth. Wai & Lincoln (2016) analyze a data set of n = 18,245 ultra-high net worth
individuals (wealth > $30 million). They find that “smarter (more educated) people
were wealthier, gave more, and had more powerful social networks (but when
controlling for multiple confounds the association between education/ability and
wealth was found to be quite small)” (p. 1).
Executive management. Adams et al. (2018, p. 392) find that in a large sample of
Swedish men “the median large-company CEO belongs to the top-17% of the
population in cognitive ability, and to the top-5% in the combination of cognitive,
non-cognitive ability, and height”.
GMA and educational attainment as predictors of wealth, income, and influence. Wai
(2014) analyzes N = 1,426 billionaires, N = 231 ‘powerful’ people (by Forbes
ranking), and N = 2,624 World Economic Forum attendees. In this highly ‘elite’
sample, he finds that, in the US, top-1%-ability individuals were overrepresented by a
factor of 45 to 85, and that “[e]ven within the top 0.0000001% of wealth, higher
education and ability were associated with higher net worth, even within self-made
and non-self-made billionaires, but not within China and Russia.”
GMA as a predictor of income. Gensowski et al. (2011) report a correlation of IQ and
lifetime earnings in a prospective cohort study of n = 617 high-1Q individuals (1Q >
135). They also find correlations of income with personality and education, and
confirm that significant correlations with 1Q and personality remain after controlling for
education.
GMA as a predictor of academic, creative, and scientific achievement.

o Park, Lubinski, & Benbow (2008), in a cohort of n = 1,586 individuals with

exceptional maths abilities assessed during adolescence (top 1% of
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performance in the maths portion of the SAT at age 13), find that adolescent
SAT scores correlate with the probability of having at least one patent or
scientific publication, even after controlling for the highest academic degree
obtained. See also Park, Lubinski, & Benbow (2008) and Robertson et al.
(2010).

o Makel et al. (2016), in two cohorts of n = 320 and n = 259 individuals
assessed to be in the top 0.01% of verbal or maths ability before age 13,
found markedly higher levels of achievement than in samples of
top-1%-ability individuals. In fact, on average their top-0.01% individuals by
age 40 had achieved at least as much as top-1% individuals by age 50 (p. 9).

IMO scores as a predictor of success in academic mathematics. Agarwal & Gaulé
(2018) find that performance in the International Maths Olympiad (IMO) correlates
with various measures of success in academic mathematics?®, e.g. completing a
PhD, citation counts, and getting a Fields medal (the most prestigious award in
mathematics, comparable to a Nobel Prize). These correlations hold across the
whole range of a sample that is in the extreme right tail of maths ability, and seem
strong e.g. “the conditional probability that an IMO gold medalist will become a Fields
medalist is two order of magnitudes larger than the corresponding probability for a
PhD graduate from a top 10 mathematics program.” (p. 4) The authors perform two
additional analyses to control for confounders. First, they look at the subsample of
IMO participants who later got a maths PhD; second, they compare individuals who
participated in the IMO in the same year and got their PhD from the same university.
In both analyses, the correlations remain positive and are almost as large as in the
full sample.

Height as a predictor of success in basketball. This Forbes article suggests that the
proportion of 20-40 year-old men who play in the NBA (the US’s top basketball
league), as well as the average earnings of basketball players, increases with height
up to heights greater than 7 feet, the top 0.000038% of height.

Again, we didn’t try to be comprehensive.

Note that even if a predictor remains valid in the tails, ex post the highest performers will
usually exhibit very high but not the absolute highest values of the predictor.

Measurable predictors of heavy-tailed ex-post performance
don’t imply that predicted performance is heavy-tailed

Recall that our best predictions generally model performance as depending on three
types of factors:

Measurable ‘person-internal’ characteristics such as intelligence or
conscientiousness;

Measurable ‘personal-external’ characteristics such as the size of a market or the
difficulty of a task;

% “Each additional point scored on the IMO (out of a total possible score of 42) is associated with a
2.6 percent increase in mathematics publications and a 4.5 percent increase in mathematics
citations.” (p. 3) (Correlation with log cites is still around 4% among subsample who got maths PhDs,
Table 4.)
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e ‘Luck’, i.e. unmeasured additional factors that appear as random variation of
performance.

Observing heavy-tailed ex-post performance doesn’t by itself tell us whether or not
any contributing factor of any type (person-internal, person-external, or luck) is
heavy-tailed. This is because this observation is consistent with any of the following
possibilities:

a) All three factors (internal, external, and luck) being heavy-tailed.

b) A single factor being heavy-tailed, and all other factors being light-tailed or even
constant. For instance, a lottery can have heavy-tailed ex-post results that are purely
due to luck. For another example, suppose that the amount of investor optimism
(measured in the amount of seed funding they’re providing for a given startup) was
heavy-tailed, and that startup success is the sum (or product) of investor optimism,
market size, founders’ intelligence, and how much founders work per week. Startup
success would then be heavy-tailed even if all these other factors were constant
across startups.

c) No individual factor being heavy-tailed, but performance depending on the product of
many factors. This is possible because of the mathematical fact that, under certain
conditions that often hold in practice, the product of an increasing number of
light-tailed factors will converge toward a heavy-tailed distribution.?”

Furthermore, knowing a measurable correlate of heavy-tailed ex-post performance
doesn’t by itself imply heavy-tailed ex-ante performance.

Here is why. Suppose we know that;
e Some metric of performance Y is heavy-tailed ex-post (say, scientific citations); and
e Some characteristic (person-internal or -external, say a scientist’s IQ or the ranking of
their university) X that is measurable ex-ante is positively correlated with Y.

The short version is that the predictor might only tell us about a factor that doesn’t drive the
heavy tail.

Formally, ex-ante performance then is the conditional expected value E[Y | X] (note that
unlike the unconditional expected value E[Y], the conditional expected value is a random
variable, i.e. something that has a probability distribution).

What is E[Y | X]? In practical terms, imagine that you measure X for a large number of
randomly selected people, thus obtaining a sample of measured values X=x 1, X=x 2, ...
, X=x_N (e.g., x_1 could be the first person’s 1Q, x_2 the second person’s 1Q, etc.). You can
then calculate these people’s expected performancey 1=E[Y|X=x_1],y 2=E[Y|X=
x_2],...,y_ N=E[Y| X=x_N]. Each y _iis a single number representing the predicted level

27 For example, if after taking the logarithm the conditions of the Central Limit Theorem are fulfilled,
then the product will converge to a log-normal distribution. We’ve sometimes encountered the
misconception that products of light-tailed factors always converge to a log-normal distribution.
However, in fact, depending on the details the limit can also be another type of heavy-tailed
distribution, such as a power law (see, e.g., Mitzenmacher 2004, sc. 5-7 for an accessible discussion
and examples). Relevant details include whether there is a strictly positive minimum value beyond
which products can’t fall (ibid., sc. 5.1), random variation in the number of factors (ibid., sc. 7), and
correlations between factors.
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of performance based on x_j; for example, y_i could be the predicted humber of publications
by a scientist with IQ x_i. The conditional expected value E[Y | X] simply is the distribution of
the numbers y_i that will emerge for large samples sizes N.

As a sanity check, if we could predict performance perfectly, then ex-post and ex-ante
performance should coincide. And indeed, E[Y'| Y] = Y. Conversely, if all ex-ante information
X s irrelevant to ex-post performance Y then you can do no better than to predict the
unconditional expected value for everyone: and indeed, if X and Y are statistically
independent then E[Y | X] = E[Y].

The key point is that ex-ante performance E[Y | X] can be light-tailed even if ex-post
performance Y is heavy-tailed and X correlates with Y. For example, suppose that
ex-post performance is the product of two independent factors X and X’

Y=X*X

Then, by basic properties of conditional expected values, ex-ante performance is

E[Y|X] = E[X *X’| X] = X * E[X’| X] = X * E[X].

Thus, ex-ante performance is captured wholly by the measurable correlate X, up to a
constant factor that depends only on the unmeasured part X. In particular, ex-ante
performance E[Y | X] is heavy-tailed if and only if the measurable predictor X itself is
heavy-tailed.

This also makes sense intuitively. For example, consider a lottery in which every ticket has
the same small chance of winning a fixed price. Suppose we can measure how many lottery
tickets X each participant has bought. We then know that ex-post lottery winnings are
heavy-tailed and can measure a correlate X of these heavy-tailed winnings — but the shape
of our distribution of predicted lottery winnings will look exactly like the distribution of
observed ticket sales. Ex-ante lottery winnings will be normally distributed if and only if ticket
sales were normally distributed; ex-ante lottery winnings will follow a power law if and only if
ticket sales followed a power law; and so on.

How would this look like in more relevant toy models? Suppose that ‘performance =
intelligence * luck’, with intelligence being normally distributed and measurable, luck being
log-normally distributed and unmeasurable, and the two factors being independent. Then
performance would be heavy-tailed, intelligence would be a measurable predictor of
performance, but the ex-ante distribution of predicted performance based on intelligence
would be normally distributed (i.e. thin-tailed):

E[performance | intelligence] = intelligence * E[luck]

Our best guess is that heavy-tailed ex-ante distributions are widespread, at least for
expert performance on complex tasks, such as scientific research or organizational
leadership. However, this guess relies more on priors and broad gestalt impressions of
the world rather than the specific evidence we investigated here.
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Uncertainty should move us toward acting as if ex-ante
performance was heavy-tailed — but not all the way

At first glance there is an argument to act as if ex-ante performance was heavy-tailed even
in cases where we’re uncertain: Suppose, for instance, we’re uncertain whether the ex-ante
distribution has one of two forms, X _heavy or X_thin, the former being more heavy-tailed. If
we have credence p in X_heavy and we use expected value to account for our uncertainty,
then we should act as if ex-ante performance was distributed like p * X_heavy + (1-p) *
X_thin. And this sum becomes as heavy-tailed as X_heavy if we look sufficiently far down
the tail.

However, in practice we usually aren’t interested in the limit of infinitesimally unlikely tail
events but in a fixed quantile, say the top 1%, compared to the median. At any fixed quantile,
the sum p * X _heavy + (1-p) * X_thin will be more heavy-tailed than X _thin but not all the
way as heavy-tailed as X_heavy. Therefore, in practice, uncertainty about the tails of
ex-ante performance should move us some but not all the way toward the hypothesis
of heavy-tailed ex-ante performance, by an amount that depends on our credence in the
heavy-tailed hypothesis.

Causal models of performance would be useful, but we haven'’t
found one that would be ‘shovel-ready’ for making predictions
in EA contexts

Due to the limitations of observational research — e.g. distinguishing correlation from
causation, or distinquishing different heavy-tailed distributions from one another — it would be
very helpful to have a causal theory of performance: understanding how various resources,
traits, and behaviors interact to actually produce performance.

Of particular interest in our context is whether different factors used to explain performance —
whatever they are — combine additively or multiplicatively to yield performance. This is
because the sum of many light-tailed factors will usually again be light-tailed, while
their product will be heavy-tailed. (Of course, in general a sum can be heavy-tailed as
well, e.g. if one of the summands was heavy-tailed itself.)

There is a debate in industrial-organizational psychology on whether job performance
is better modeled as the sum or product of employee traits such as intelligence and
personality (e.g. Sackett, Gruys, & Ellingson 1998 analyze four data sets that support an
additive model, thus questioning three earlier papers that found support for a multiplicative
model; a recent meta-analysis by Van Iddekinge et al., 2017, also favors an additive model).
This debate is thus highly relevant: if traits multiply, then we should job performance to be
more heavy-tailed than if the same traits add. On the other hand, like most psychology work
on job performance, this debate seems largely based on data from ‘typical’ jobs rather than
high-complexity areas such as science or upper management. Since we were more
interested in the latter, we didn’t review this debate in more detail and didn’t try to form
our own view.



Beyond that, we found a number of claims about specific causal mechanisms — for example,
the ‘Matthew effect’ (e.g. Merton 1968) according to which the ‘rich get richer’, i.e. success
begets further success. Unfortunately, we found it hard to vet these claims or to synthesize
them into a comprehensive theory. So we just list them here:

e Schmidt & Hunter (2004, p. 170) review evidence for the causal hypothesis that
general mental ability predicts job performance because it helps with the acquisition
of job knowledge, which in turn causes better performance.

e Kremer’s (1993) famous “O-ring theory of economic development” posits that many
economic production processes consist of many steps, at each of which the whole
process can fail, resulting in a product of zero value. (Similar to how the whole Space
Shuttle Challenger exploded because a single part — an ‘O-ring’ — failed.) Kremer
proposes a multiplicative model to capture this property. He describes several
implications, for example that maximization of total output leads to ‘assortative
matching’, i.e., a division into consistently high-quality and consistently low-quality
production processes (e.g. the most able employees will flock to the same few ‘elite’
firms).

e Rosen (1981) presents potential causes for an increase in highly concentrated
markets (which have a heavy-tailed distribution of e.g. revenue across sellers) such
as imperfect substitution or zero marginal cost.

e Shockley (1957, pp. 284ff., sc. VI) presents two hypotheses that could explain the
heavy-tailed distributions of scientific citations: one is that there are small differences
(normally distributed) in how many ideas people can consider simultaneously, which
results in heavy-tailed performance differences because the total number of idea
combinations one can consider increases rapidly with this parameter; the second is
that publishing papers depends on the multiplicative interactions of many traits such
as “1) ability to think of a good problem, 2) ability to work on it, 3) ability to recognize
a worthwhile result, 4) ability to make a decision as to when to stop and write up the
results, 5) ability to write adequately, 6) ability to profit constructively from criticism, 7)
determination to submit the paper to a journal, 8) persistence in making changes”
(ibid., p. 286).

o Both of these explanations are speculative. Indeed, the relevant section is
titled “Speculations on the origin of the log-normal distribution” (ibid., p. 284).

e To explain career success, some psychology work (e.g. Turner 1960, Spilerman
1977, Rosenbaum 1984, Dreher & Ash 1990) distinguishes between a
“contest-mobility model” (an increasingly small number of positions is allocated to the
best applicants) and a “sponsored-mobility model” (career progression depends on
how much organizations ‘invest into’ their employees).

e Psychologist Angela Duckworth (who pioneered the study of ‘grit’) has suggested
that “Performance = Skill * Effort” and “Skill = Talent * Effort”, thus resulting in the
model that “Performance = Talent * Effort"2”.

e Gensowski (2018, p. 177) hypothesizes that, in a sample of high-1Q men,
conscientiousness and extraversion predict lifetime earnings because personalities
high on these two traits accumulate human capital in school at a higher rate, which in
turn allows people to perform higher-paid work.

More theoretically, for common types of distributions (normal, exponential, log-normal,
Pareto, etc.) we can ask which sort of mathematical processes will generate them. The
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earlier observation on additive vs. multiplicative processes is a special case of this.
Understanding the possible origins of different distributions could be useful because, in
addition to looking at ex-post performance data, we could then infer the type of the
performance distribution from empirical information on the origins of performance.

We didn’t pursue this line of investigation, but here are some examples:

e Two high-level insights are the principle of maximum entropy (e.g. Frank 2009) and
the fact that for certain kinds of processes the stable distributions are the only
possible attractors.

e On generating mechanisms for power laws, see Newman (2005).

Why we'd guess that ex-ante performance at complex tasks is
often heavy-tailed

If we look beyond the literature we’ve reviewed for this post and consider all relevant
evidence (including things like gut feelings), our best guess is that, for complex tasks, it will
often be possible to identify predictors relative to which ex-ante performance is heavy-tailed.

We only gesture at why we (tentatively) believe this, in a way that we expect won’t
necessarily be convincing to people who have different impressions.

First, recall that we’'ve found many examples of ex-post performance being heavy-tailed. We
think there are theoretical reasons to expect this property to be widespread for many tasks,
at least if performance is cashed out in terms of ‘impact on the world’ in some sense.
Specifically, it seems that for the effects of many ‘complex’ tasks there is a metric that can
range over many orders of magnitude and depends on a complicated combination of largely
independent factors. If such a model is correct, then there are mathematical reasons to
expect a heavy-tailed distribution.

As an example, consider the contribution a CEO makes to the profit of their company. This
seems to depend on many factors such as their cognitive skills, their personality, their health,
how well their personal life is going, the actions of various people in their company, the
actions of competitors, ‘exogenous’ events such as natural disasters, political developments,
etc. — many of these seem to be independent from others, e.g. whether San Francisco is hit
by an earthquake does not depend on the CEQ’s skills or personality. At the same time,
many of these factors seem to interact — e.g. the impact an earthquake would have on
company performance does seem to depend on the CEOQO'’s skills (have they put safeguards
in place? how quickly would they be able to resume production? etc.). This suggests that the
CEOQ’s contribution to profit depends on a complicated combination of largely independent
factors.

Similarly, many complex tasks can be broken down into successive steps of simpler tasks,
such that the task can fail at each step. This suggests a multiplicative model similar to
Kremer’s O-ring theory. E.g. it is often argued that heavy-tailed paper citations arise because
there are many steps involved in a scientific publication: having a good idea, finding
collaborators, running an experiment, analyzing the data, writing the paper, responding to
reviewer comments, etc.
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Second, why expect heavy-tailed ex-ante performance? Basically we would guess that in
many cases where performance depends on the combination of many factors we will be able
to measure (correlates of) a significant fraction of these factors — or variables that
themselves depend on a combination of many of the same factors. This means that we can
measure a predictor of performance which itself depends on a combination of many factors,
and thus is heavy-tailed.

Or, alternatively, we might be able to measure one predictor that correlates with many of the
performance-determining factors. This is particularly plausible when performance depends
on a combination of cognitive tasks since it is well established that performance on such
tasks is positively correlated (the “positive manifold” of cognitive abilities), and it’'s possible to
psychometrically measure a ‘general mental ability’ factor that is positively correlated with
performance on all these specific tasks.

As a toy example, suppose that performance Z depends on the product of 50 measurable
factors X i and 50 unmeasurable factors Y _j, all of which are mutually independent. Denote
the product of all X_j with X, and the product of all Y_j with Y. Then by the same calculation
as in an earlier subsection, E[Z | X_1, ..., X_50] = X * E[Y], and X is heavy-tailed because it
is the product of many factors. This is not literally what we’d encounter in practice, e.g.
because the things we can measure are rarely mutually independent. But the analog
argument still goes through for more complicated models, and so we think the toy model is a
good illustration for why we think heavy-tailed ex-ante performance is widespread.

(Similarly, if we can’t directly determine the value of any individual X i but can only measure
some variable X’ that correlates with all X_i, we believe it follows that E[Z | X7 is heavy-tailed
— though we haven’t checked this.)

This still seems true to at least some extent if we restrict ourselves to ‘person-internal’
predictors. For example, intelligence and motivation seem both relevant for performance at
many tasks, and do seem to interact: more intelligent people can make more use of their
motivation and vice versa — it's not like performance in the first half of the day depends only
on motivation and performance in the second half only on intelligence. In a more fine-grained
model of cognition, intelligence may in turn depend on several interacting factors such as
‘processing speed’, memory, ability to focus, etc.; task-specific motivation may depend on
factors such as sleep, nutrition, genetic contributions to personality traits, and which books
one read as a child.

Separately, ‘success begets success’ dynamics suggest that predictions of longer-term
outcomes may be heavy-tailed even if they’re based on only one thin-tailed predictor. If we
can measure some predictor X such that these dynamics tend to much more strongly?®
‘amplify’ success for people with higher values in X, then we should expect ex-ante that over

2 More precisely, it needs to be the case that the marginal amount of ‘amplification’ increases with X.
That is, a small increase in X ‘helps’ you more with success the larger your value of X already was.
This condition does not hold in the lottery counterexample from a previous section: each additional
lottery ticket ‘amplifies’ your expected winning by the same amount, no matter how many lottery
tickets you already had. But if the chance of winning the lottery depended on e.g. the square of tickets
purchased, then each additional ticket would be more valuable the more tickets you already have.
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time they might turn a thin-tailed X into a heavy-tailed distribution of success. For example,
someone with strong cognitive abilities from a privileged background is more likely to do well
in school, therefore is more likely to get into a good university, which in turn means they’re
more likely to land a first job in which they’ll get good mentorship and learn a lot, etc.

If we're looking at a notion of performance that requires high-performers to secure unusually
influential and competitive positions, there is some direct evidence that educational
attainment is a heavy-tailed ex-ante predictor. That is, some of these positions are
dominated by graduates from the very few top universities. For example, a UK government
study found that more than 72 of UK Cabinet members and more than % of Senior Judges
have a degree from Oxford or Cambridge. Similarly, Wai (2014, p. 54) found that:

“[Rloughly 34% of billionaires, 31% of self-made billionaires, 71% of powerful males
[by Forbes ranking], 58% of powerful females, and 55% of Davos participants
attended elite schools worldwide. [...] In the U.S., top 1% ability individuals were
highly overrepresented: 45 times (base rate expectations) among billionaires, 56
times among powerful females, 85 times among powerful males, and 64 times
among Davos patrticipants. [...] Even within the top 0.0000001% of wealth, higher
education and ability were associated with higher net worth, even within self-made
and non-self-made billionaires, but not within China and Russia. [...] These global
elites were largely drawn from the academically gifted, with many likely in the top 1%
of ability.”

Another data point is from the Canadian Inventors Assistance Program?® (IAP). Inventors
can pay the IAP to predict the success of their invention. Many then try to develop and
market their invention even if the IAP was pessimistic about commercial viability. This means
we have data on the accuracy of the IAP’s predictions, and we know that 55% of
highest-rated inventions achieve commercial success, compared to 0% for the lowest rating.

Finally, another argument is based on the_evidence showing that predicting future citations
based on past citations results in a heavy-tailed distribution. We think this is at least weak
evidence that the phenomenon of “predicted performance conditional on past performance is
heavy-tailed” is more widespread: put differently, we can’t think of a plausible reason why
this relationship would be highly specific to science.

Beyond these explicit arguments we’ve tried to gesture at, we also feel our take is supported
by our broad impression of recruiting practices in highly competitive fields, anecdotes from
our own experience, and other broad gestalt impressions of the world.

Further research

Here are some avenues for further research which we think might be promising, especially
for people whose background is a good fit for answering some of these questions.

29 H/T Ben West for making us aware of this data.
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They are in no particular order, and lightly held suggestions rather than carefully vetted and
strongly recommended research projects. Their value and tractability likely differs
substantially.

What can we say about the negative tails of performance or impact? In
particular, when is negative impact heavy-tailed? We know that harmful things can
have heavy-tailed distributions, e.g. earthquake intensity, forest fire size, or war
casualties (see e.g. Clauset et al. 2009). But data on negative impact by people is
scarce as most performance metrics are by definition restricted to positive values.
Can we learn anything from existing metrics that can take both positive and negative
values?

o See also Kokotajlo & Oprea (2020) for an argument for why this question is
important for EA. They also provide an argument for why we should expect
heavy tails of negative impact to be common.

o We do have data on this from some domains, e.g.:

m The negative tail of financial returns looks similar to the positive one
(e.g. Jondeau and Rockinger 2001).

m Ben found a negative tail in a cost-benefit analysis for about 370 US
social policies (archive), compiled by the Washington State Institute
for Public Policy benefit-costs results database.

m A negative dimension of job performance that has been extensively
studied in industrial-organizational psychology are “counterproductive
work behaviors” such as bullying, lateness, or theft (e.g. Dallal 2005).
At first glance, these seem less relevant in many EA contexts, but is
there anything useful we can infer from this literature?

Suppose that for some task the true ex-post distribution of performance is very
heavy-tailed across people but our ability to predict performance is very
limited. Which heuristics should we adopt in such a world? Should we e.g. rely
more or less on gut judgments, allocate resources by lottery, or try to learn from
analogs such as venture capital and science funding?

Do tasks differ in whether we get increasing or decreasing returns (in terms of
altruistic impact) to better performance? As an extreme possibility, is it the case
that one needs to exceed some performance threshold to have any impact through
work in early-stage research fields without established questions or methods (such
as perhaps some areas of Al safety)?

o Put differently, what can we say about ex-ante altruistic impact, i.e. the
conditional expected value E[altruistic impact | performance predictor]?
(Rather than just ex-ante performance, i.e. E[performance metric |
performance predictor].)

At a high level, we can distinguish different types of interventions aimed at
increasing the EA community’s total impact: better allocation of existing
resources, e.g. improving hiring processes helping people identify which job
they’re the best fit for; intensive growth, e.g. helping current EAs to improve
their skills; and extensive growth, which could be either untargeted or aimed at
particular audiences, e.g. promoting EA in mass media versus giving
EA-related material to IMO participants. What are the key parameters that
determine how cost-effective these different types of intervention are? For



https://www.wsipp.wa.gov/BenefitCost
https://www.wsipp.wa.gov/BenefitCost
https://web.archive.org/web/20190702022554/https://www.wsipp.wa.gov/BenefitCost
https://forum.effectivealtruism.org/posts/Q3TaTgFzZoYF9SX5W/when-should-eas-allocate-funding-randomly-an-inconclusive
https://forum.effectivealtruism.org/posts/CJJDwgyqT4gXktq6g/long-term-future-fund-april-2019-grant-recommendations#Mikhail_Yagudin___28_000__
https://forum.effectivealtruism.org/posts/CJJDwgyqT4gXktq6g/long-term-future-fund-april-2019-grant-recommendations#Mikhail_Yagudin___28_000__

instance, what’s a good way to operationalize how good current hiring and funding
processes are, and how costly it would be to improve them?

e Are there any sources of data that are more directly relevant to EA use cases,
thus ameliorating worries about external validity? For example, what do we know
about the distributions of donations to EA organizations, karma on various EA fora,
the number and value of behavior changes caused by EA conferences, or the
number and value of plan changes caused by 80,000 Hours?

o Partial answers:
m Donations: EA Survey [2019, 2018, 2017]
m Plan changes influenced by 80,000 Hours: Annual reviews [2019,
2018]

e Denrell & Liu (2012) show that, when using predictors of wildly different
reliability, then naive selection by best predicted performance can be
predictably suboptimal. (This is roughly because a very high level of predicted
performance is disproportionately likely due to a large prediction error for one of the
low-reliability predictors.) This is an extension of the familiar Optimizer’s Curse
(Smith & Winkler 2006). What are the implications of this finding? Are its
conditions ever plausible fulfilled in practice (perhaps when comparing
interventions or cause areas using very different types of evidence)?

e What should we conclude from the debate in industrial-organizational psychology on
whether job performance is better modeled as the sum or product of employee
traits such as intelligence and personality (e.g. Sackett, Gruys, & Ellingson 1998;
Van lddekinge et al., 2017)?

e Can we make the following statement more precise, and what does this imply in
practice? “If we can measure some predictor X such that ‘success-begets-success’
dynamics tend to much more strongly ‘amplify’ success for people with higher values
in X, then we should expect ex-ante that over time they might turn a thin-tailed X into
a heavy-tailed distribution of success.”

e Can we infer anything useful from theoretical statements on which kinds of
stochastic processes will result in which type of distribution? (See the end of
our section on Causal models of performance for a brief discussion.)

Appendix

High variance vs. heavy tails

Which properties of the performance distribution are particularly interesting? Both the
academic literature and previous discussions in EA have sometimes focused on variance
and sometimes on heavy tails.*

% E.g., CEA’s (deprecated) page on their current thinking has a section Talent is high variance, while
Owen Cotton-Barratt’s popular talk Prospecting for gold includes a section on Heavy-tailed
distributions. In the psychology literature on job performance, Hunter, Schmidt, & Judiesch (1990)
focus on variance, while Aguinis et al. (2016) focus on heavy tails.
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These are distinct concepts — a heavy-tailed distribution can have arbitrarily small
variance, and a light-tailed distribution can have arbitrarily high (finite) variance.?'*?

Depending on the purpose of your analysis, you might care about variance, heavy tails, or
both. Here we won’t make claims about which is more important when, but simply try to
explain how they differ.

(One caveat is that there are different definitions of “heavy-tailed” in the literature.
Throughout this post we take heavy-tailed to roughly mean having heavier tails than an
exponential distribution. For instance, we consider any log-normal distribution to be
heavy-tailed. There are other definitions that impose a tighter relationship between heavy
tails and variance, e.g. ones that require heavy-tailed distributions to have infinite variance.
For a more formal discussion, see here.)

Both high variance and heavy tails imply that an unusually good individual opportunity is
much better than an individual typical one. However, outliers — data points with much higher
values than anything you’ve seen so far — are more common and more extreme for
heavy-tailed distributions. We highlight two ways how this matters.*

First, the sum of large samples from a heavy-tailed distribution will depend
disproportionately on the contribution of outliers — they account for a disproportionate
share of the total.** For some heavy-tailed distributions, you should even expect that
sufficiently large sums will be due to just a single extremely large summand (‘catastrophe
principle’). This is not true of light-tailed distributions, no matter their variance. Clearly it
could matter for community building whether or not the total impact of the EA community will
largely be due to only very few people.®

¥ However, only heavy-tailed distributions can have infinite variance. Conversely, there are different
common definitions of ‘heavy-tailed’, and some of them imply infinite variance. For our purposes,
however, it's useful if log-normal distributions count as heavy-tailed, and for any such definition the
statement that heavy-tailed distributions can have arbitrarily small variance is true (since it’s true for
log-normal distributions).

%2 People also sometimes talk about distributions being skewed. This is yet another property
conceptually distinct from both variance and heavy tails. Skewness is a conspicuous difference
between some common heavy-tailed distributions — e.g., the log-normal and Pareto distributions —
and the normal distribution, a paradigmatic example of a light-tailed distribution. However,
heavy-tailed distributions need not be skewed: the Cauchy distribution is heavy-tailed but symmetric,
i.e. not skewed (more generally this is true of any Lévy alpha-stable distribution with alpha < 2).
Conversely, the exponential distribution is skewed but not heavy-tailed.

3 A third difference is that ‘heavy-tailed’ is a property that’s scale-invariant, while variance isn't. Thus
the practical relevance of the heavy-tailed property is internal to the distribution, while variance
matters only relative to a specified relationship between the distribution and the real world. For
example, if | told you that the distribution of skyscraper heights had variance 100 this wouldn’t mean
anything to you without specifying the units — if the variance was 100 centimeters you’d think it was
very low, if it was 100 kilometers you’d think it was very high. By contrast, saying that the distribution
of skyscraper heights is heavy-tailed would tell you a lot without specifying units. [We don’t know how
skyscraper heights are in fact distributed.] There are ways to specify variance that avoid this problem,
e.g. the ratio of the standard deviation to the mean (‘coefficient of variation’).

34 This also means that the mean of a heavy-tailed distribution is much larger than its median.
However, mean and median coming apart is not sufficient for heavy-tailedness, as shown e.g. by the
exponential distribution (which has a larger mean than median but is not heavy-tailed).

% For instance, if impact across people is heavy-tailed, then 80K’s metric for plan changes needs to
be designed in such a way that it can be dominated by outliers.
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Second (but relatedly), for heavy-tailed distributions the sample variance and sample
mean will severely understate the true mean and true variance — even for very large
samples. For heavy-tailed phenomena, naive extrapolation can thus be disastrous.*

To give a prominent and EA-relevant example, albeit one outside our focus: if battle deaths
from war were heavy-tailed, we’d need to be very cautious when using historic casualty data
to predict how deadly wars this century might be.®” Another example, this time within our
focus: when evaluating their recruitment efforts, local EA groups would like to know what
they can and cannot infer from past trends.

This difference in what we can infer from past experience is intuitive for properties we are
familiar with. For example, imagine you're in a room with perhaps a few dozen other people.
Consider on one hand their height (light-tailed), and on the other hand their wealth
(heavy-tailed). Additional people enter the room, one after the other. What happens to the
height of the tallest person in the room over time, and how does this differ from the wealth of
the wealthiest person?

At some point, a person that just entered will be taller than everyone else in the room.
However, you'd be very surprised if the height difference between the new person and the
previously tallest person was much larger than the height difference between the two
previously tallest people.

E.qg. if previously the two tallest people were 1.75m and 1.80m (which means there probably
aren’t that many people with you), you'd be quite surprised if the first person taller than that
is 2m: it's much more likely that someone, say, 1.83m tall enters the room first because such
people are much more common than 2m tall people. If previously the two tallest people were
2.11m and 2.12m (which probably means that the total number in the room is already much
larger), then you will expect a new tallest person to be just barely rather than several cm
taller, etc.

For wealth, it would be just the other way around: as new ‘wealthiest people’ enter the room,
their net worth will exceed the previously highest wealth by increasing margins. E.g., the first
millionaire may well enter the room when previously no-one in the room was worth more
than half a million, and the first billionaire may well enter the room before the first person
worth more than half a billion.

As a consequence, a single new person — e.g. the first billionaire — may well have a massive
impact on the average wealth in the room (the sample mean understates the true mean).
This will hardly happen for height. Similarly, by the time the first billionaire enters, she may
well have more wealth than all other people in the room combined (the sum is dominated by
an outlier), while this is basically impossible for height.

% Of course, a sample from a heavy-tailed distribution does contain some information, including on
the distribution’s mean and variance. The point is that we can only exploit this information with more
sophisticated statistical techniques, which is beyond the scope of this post.

37 For discussion of what data on past wars tells us about future wars, see Pinker (2011), Cirillo &

Taleb (2016), and Braumoeller (2019).
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It's hard to empirically distinguish different heavy-tailed
distributions from one another, e.g. log-normal vs. power law

Fundamental difficulties

It is often easy to see whether data is heavy-tailed or light-tailed. For example, if over a large
range the data appears as an approximately straight line in a plot with two logarithmic axes
(for example, a rank-frequency plot), then — at least over this range — the data is
heavy-tailed.

We can also see approximately how heavy-tailed the data is in the observed range, e.g. by
looking at the slope of the line in such a plot (the steeper the slope, the less heavy-tailed).

However, it’s hard to identify the particular type of heavy-tailed distribution from
observations alone. For example, it can be impossible to tell whether data was generated
by a log-normal or a Pareto distribution (a continuous power law). There are also other
contenders that are rarely even considered, e.g. the ‘double Pareto’ or ‘double
Pareto-lognormal’ distributions proposed by Reed (2003) and Reed & Jorgensen (2004), or
the stretched exponential/\Weibull distribution (e.g. Malevergne, Pisarenko, & Sornette 2005).

The basic reason for this is simply that different types of heavy-tailed distributions can
provide almost equally good fits to the observed data. For example, while a power law is the
only distribution that in expectation will generate a straight line in a log-log plot, data from a
log-normal distribution can also look very much like a straight line over a large range. Since
your observations will be noisy anyway, and your sample might not be big enough to cover
the range where a log-normal would visibly deviate from a power law, you cannot tell the
power law apart from the log-normal simply by seeing an approximately straight line over a
finite range in a log-log plot.

This is no problem if all you want to do is to describe the data you’ve seen. After all, by
design, if different distributions provide good fits to the data, they all do well at describing
that data. (Though there will be systematic differences in where the fit is better or worse, and
sometimes you might care about this.)

However, you should be very careful when extrapolating beyond the range of
observed data.® This is because different types of heavy-tailed distributions that fit the
observed data about equally well will differ dramatically in what they predict beyond the
range of observed data. For example, suppose you have observed 10,000 earthquakes and
based on this ask yourself how severe a “1 in a million” earthquake would be; a prediction

3 Cf. footnote 10 in Clauset et al. (2009, p. 680): “In cases where we are unable to distinguish
between two hypothesized distributions one could claim that there is really no difference between
them: if both are good fits to the data then it makes no difference which one we use. This may be true
in some cases but it is certainly not true in general. In particular, if we wish to extrapolate a fitted
distribution far into its tail, to predict, for example, the frequencies of large but rare events like
major earthquakes or meteor impacts, then conclusions based on different fitted forms can
differ enormously even if the forms are indistinguishable in the domain covered by the actual data.
Thus the ability to say whether the data clearly favor one hypothesis over another can have
substantial practical consequences.” (emphasis ours)
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based on a power law would then predict a much more severe earthquake than one based
on a log-normal that fits the observed data about equally well.

Similarly, because there are only about 1,000 to 10,000 EAs, we probably couldn’t say
very much about the performance or impact of a “1 in a million”-EA based just on
observing the performance or impact of existing EAs, even if we could measure those
with perfect reliability.

For more detail on this problem, | recommend the paper Power-law distributions in
empirical data by Clauset, Shalizi, & Newman (2009).*°

They look at 24 data sets based on which previous papers claimed to have identified a
power law. They rule out power laws in 7 cases. For the remaining 17, in all but one case
there is another heavy-tailed distribution (e.g. stretched exponential or log normal) that fits
the data about as well as a power law. (In 3 cases, even the exponential distribution —
usually considered to be just on the edge between light-tailed and heavy-tailed distributions
— could be a plausible fit.) In other words, in only 1 out of 24 cases can we be confident
that data was generated by a power law and not some other heavy-tailed distribution.

Practical difficulties

Of course, if you have enough data from sufficiently reliable measurements, you will
sometimes be able to rule out some heavy-tailed distributions.

However, even then you’ll have to use relatively sophisticated statistical techniques. In
particular, it is usually a bad idea to just fit a line to a log-log plot. Instead, use maximum
likelihood estimation or more complex tools such as a “uniformly most powerful unbiased
test”.4°

(In a polemical blog post, statistician Cosma Shalizi claims that if everyone used appropriate
methods when working with heavy-tailed data, this would “lead to a real change in the
literature” and that, e.g., “half or more each issue of Physica A would disappear”.)

% The difficulty of distinguishing different heavy-tailed distributions based on observations has been
acknowledged, either in general or for specific cases, in many other papers. For example, in a paper
published in Science with the telling title Critical Truths About Power Laws, Stumpf & Porter (2012)
conclude that “although power laws have been reported in areas ranging from finance and molecular
biology to geophysics and the Internet, the data are typically insufficient and the mechanistic insights
are almost always too limited for the identification of power-law behavior to be scientifically useful”;
Mitzenmacher (2004, p. 227) in a paper on computer file sizes remarks that “Very similar basic
generative models can lead to either power law or lognormal distributions, depending on seemingly
trivial variations. There is, therefore, a reason why this argument as to whether power law or
lognormal distributions are more accurate has arisen and repeated itself across a variety of fields.”
For instance, there are debates on the distribution of financial returns (e.g. Malevergne, Pisarenko, &
Sornette 2005), city sizes (e.g. Malevergne, Pisarenko, & Sornette 2011) or citations (e.g. Golosovsky
& Solomon 2012, Brzezinski 2015).

40 Again see Clauset et al. (2009) for some basics on how to do this well. A uniformly most powerful
unbiased (UMPU) test is used by Malevergne, Pisarenko, & Sornette (2011) to settle the ‘log-normal
vs. power law’ debate on city sizes in favor of the latter, and they “advocate the UMPU test as a
systematic tool to address similar controversies in the literature of many disciplines involving power
laws, scaling, ‘fat’ or ‘heavy’ tails.”
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Even the easier problem of identifying the ‘right’ power law — i.e. ignoring the question
whether a log-normal or other type of heavy-tailed distribution would fit the data just as well —
can be tricky, in part because the inferred exponent can be very sensitive to the ‘cutoff’, i.e.
the value above which the power law is supposed to apply.

As one cautionary tale, consider Michael Tauberg’s 2018 Medium post on Power Law in
Popular Media (from which we report data in our section on Ex-post performance). Tauberg
fitted power laws to media data, using “existing R libraries that are designed for this sort of
analysis”. In fact, he analyzed each data set using two different R libraries, saying that this
yields “similar results”.

However, even small differences in the inferred power law exponent can have a significant
impact on the tails.

For instance, for “weeks on the NYT bestseller list” R library igraph gives an exponent of
2.08, while library poweRlaw gives an exponent of 2.20 (perhaps because the former
concluded that the power law holds above a cutoff of 5 weeks on the list, while the latter
used 6 weeks as a cutoff). (These are the exponents of the probability density function, from
which you have to subtract 1 to get the exponent of the cumulative distribution function.) This
difference may look innocent at first glance; but in the distribution inferred by igraph the ‘top
1-in-a-million’ bestseller authors would account for 36% of all time on the bestseller list, while
in the distribution inferred by poweRlaw their share would be ‘only’ 10%. Even for the top
1%, a frequency that clearly matters in practice, the difference is sizable: the predicted
shares of the total are 71% and 46%, respectively.

Thus, if you wouldn’t appreciate the import of power law exponents that differ by about 0.1,
or if you wouldn’t be able to adjudicate conflicting results spat out by different standard
software, you might easily mislead yourself.

Worse, even if you're a maximally sophisticated statistician, your conclusions will still be
quite sensitive to a small number of outliers in your data. For one, you might simply not
be able to get enough data to observe, e.g., a “1-in-10,000” event. In addition, you’ll often
struggle with measurement error at the far end of the data you can get in principle — and this
measurement error matters. For instance, to accurately determine the distribution of income
you would need reliable information about top earners, which is hard to get (Anand & Segal
claim to provide “the first estimates of global inequality that take into account data on the
incomes of the top one percent within countries” — in a paper from 2014 [']; see also 80,000
Hours).

I/O psychology papers on whether job performance is
heavy-tailed don’t update us much

In the psychology literature, there’s a debate specifically on whether performance in typical
jobs is normally distributed or heavy-tailed.

For example, in an influential meta-analysis, Hunter, Schmidt, & Judiesch (1990) found that
performance in ‘high-complexity’ jobs (e.g. physician) and sales jobs is not normally
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distributed. More recently, business scholar Herman Aguinis and collaborators have attacked
the “long-held assumption in human resource management, organizational behavior, and
industrial and organizational psychology that individual performance follows a Gaussian
(normal) distribution” (O’Boyle & Aguinis 2012, p. 79; see also e.g. Aguinis & O'Boyle 2014,
Aguinis et al. 2016).

Others have explicitly defended the claim that job performance — at least when measured
appropriately — is usually normally distributed. For instance, Beck et al. (2014, p. 531)
conclude that “large departures from normality are in many cases an artifact of
measurement”.

In fact, as we said in our section on Ex-post performance, it seems clear that performance
data can be heavy-tailed or normal depending on the domain and performance measure
used.

At first glance, we were unsure whether the debate in the literature adds much to this basic
observation. We’ve encountered several qualitative claims on when to expect heavy-tailed
vs. normal performance distributions, and while these claims often seemed reasonable to us,
we weren’t sure about the quantitative analysis that was supposed to support them.

We have neither comprehensively reviewed this debate nor tried to adjudicate it ourselves.
A minor reason is that a lot of the debate is about a different question: the ‘correct’ definition
of performance rather than the empirical distribution of agreed-upon quantities (see e.g.
Aguinis et al., 2016, pp. 4f. on “behavior-based” vs. “results-based” definitions). We think
that the appropriate operationalization of performance depends on the question one asks,
and thus that we can simply use whatever data seems most relevant for a given question
rather than quarrel about the best general definition.

More seriously, from glancing at the papers, we have tentative doubts about some of the
statistical methods, and it would have taken more time to investigate whether these doubts
are warranted. For example:

e Within the literature some papers (e.g. Micceri, 1989; O’Boyle & Aguinis, 2012) point
out potentially severe flaws in others, including on distributions stipulated to be
normal without good reason.

e Beck et al. (2014) only test normal against exponential distributions, which we find
puzzling since the exponential distribution is not heavy-tailed, and the paper they
respond to (O’Boyle & Aguinis 2012) claims that performance often has a Pareto
distribution (rather than an exponential one). Beck et al. (2014, p. 539) explain that
this is “because using the exponential distribution the @Risk program was able to
converge for nearly all data sets, whereas the Paretian distributions failed to
converge in several cases”. They add that “in instances where more than one
skewed distribution converged (e.g., exponential and Paretian), the results regarding
the skewed distributions provided the same interpretation”, but we don't find this
sufficiently reassuring. If there are good theoretical reasons to use a particular type of
distribution, then the mere fact that this causes issues with a particular type of
software doesn’t seem like a sufficient reason to change one’s analytical approach —
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at the very least we would want to see how such a “quick hack” may affect the validity
of results, or an analysis of why the software didn’t work.

o They also make several statements that sound like they are merely checking
whether data looks symmetric or skewed, which seems like the wrong
question to ask since a symmetric distribution can still have a heavy tail, or
conversely a skewed distribution could have a thin tail.

O’Boyle & Aguinis (2012) and Beck et al. (2014, p. 539) “used the Decision Tools
Suite program @Risk which is an add-on to Microsoft Excel”. Our impression is that
this is an uncommon choice of software among statistically literate communities, and
that using Excel (or other spreadsheets) carries a high risk of ending up with
unnoticed implementation errors (e.g. typos in which cells are being referenced in a
formula).

Aguinis and colleagues’ (2016) essentially operationalize the question “does job
characteristics X (e.g. complexity, autonomy) predict more heavy-tailed
performance?” as “do values on an ordinal scale for X correlate with the
Kolmogorov-Smirnov (K-S) statistic of the best power law we can fit to performance
data”. We have several questions about this approach.

o Are these correlations meaningful at all, i.e. a good measure of whether or not
job characteristics predict the extent to which performance follows a power
law? We are neither sure whether it makes sense to look at a correlation with
a statistical quantity such as the K-S statistic, nor whether the K-S statistic of
the best fitted power law is a good measure for how heavy-tailed the data is.

o Isitjustified to simply fit a power law to all data, and ignore other heavy-tailed
distributions? If the best fitted power law has a high K-S statistic, this certainly
tells us that no power law is a good fit to the data — but does it tell us anything
whether the data is instead, say, normally or log-normally distributed?

m Indeed, some of their own graphs (ibid., Fig. 3AC) look conspicuously
like log-normal data.

o The p-values associated with their Kolmogorov-Smirnov tests vary wildly even
for at first glance similar data (e.g. p = 0.75 for ecology publications and p =
0.00 for environmental science publications). However, they seem to ignore
this in their further analysis. Is this justified?

o A power law often only applies to a certain range of data, but their analysis
seems to ignore this. Put differently, in their analysis a high K-S statistics
could either indicate that the data follows a power law nowhere or that it does
over some limited range.

Hunter, Schmidt, & Judiesch (1990) don’t seem to actually test whether the tails of
their performance data are thin or heavy. Instead, they seem to simply assume that
all distributions are normal by default. The reason why they reject normal
distributions for high-complexity and sales jobs is not that they observed heavy tails
but that their inferred normal distribution would have non-negligible probability mass
on negative values. This seems to us to be at best a weak reason to reject a normal
distribution (and if so, whether the actual distribution simply is a truncated normal
distribution where values cannot fall below a certain minimum, or a different type of
distribution altogether), but conversely we feel unsure whether the assumption of
normality was well-founded in the first place.
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Results from a meta-analysis of predictors of career success
These are Tables 1, 2, and 3 from Ng et al. (2005, pp. 384ff.).

TABLE 1
Meta-Analytic Resulis of the Predictors of Salary

Predictors N k r. SDc o

Human capital
Hours worked 15428 22 24010 209.61°
Work centrality 9,101 17 A28 12 75.74
Job tenure 17,094 20 07 14 361.66°
Organization tenure 39562 39 200 .13 T92.75°
Work experience 10,841 27 27 13 260.05
Willingness to transfer 3156 6 A1 09 21.58
International experience 4869 4 A1t .02 6.97
Education level 45203 45 200 14 1,126.93
Career planning 522 2 A1 10 4.24
Political knowledge & skills 1261 5 2905 4.60
Social capital 3481 9 AT 14 67.56°
Average correlation 21

Organizational sponsorship
Career sponsorship 3406 10 22 1 2046
Supervisor support 2322 5 05 13 2414
Training & skill development opportunities 9670 7 24° 15 278.01°
Organizational resources 8,204 18 070 .13 159.66°
Average correlation A3

Socio-demographics
Gender (male = 1, female =) 33211 51 A8 11 519.21*
Race (White = 1, non-White =0) 6443 13 A1 12 115100
Marital status (married = 1, unmarried =0) 23,303 29 A6 09 252.86"
Age 40,197 52 260 160 1,249.90°
Average correlation 20

Stable individual differences
Neuroticism 6433 7 —12° 03 12.38
Conscientiousness 6,286 6 07 10 55.05"
Extroversion 6610 7 A0 05 27.00¢
Agreeableness 6286 6 —100 .01 223
Openness to experience 6,800 7 04 04 0.04*
Proactivity 1,006 4 A10 13 11.69°
Locus of control 2,495 7 060 11 21.91
Cognitive ability 9560 B 27 69.49*
Average correlation A1

Notes. Average correlation is represented by the absolute value. N = cumulative sample
size; & = number of studies cumulated; r, = sample size weighted corrected correlation;
and () = {J statistics.

p =< 5.



TABLE 2
Meta-Analyiic Resulis of the Prediciors of Promotion

Predictors N k ¥ 5D o

Human capital
Hours worked 12,077 10 A3 05 36.22°
Work centrality 5258 5 040 04 11.84°
Job tenure 11,393 10 —02¢ .07 62.96°
Organization tenure 17,725 17 03 22 003.14*
Work experience 5400 10 D 26 402.62°
Willingness to transfer 3082 5 030 .14 56.51°
International experience 4768 3 2000 1.11
Education level 9.571 26 05+ 08 95.72
Political knowledge & skills 432 2 07 00 .04
Social capital 2605 7 A5 06 10.67
Average correlation 06

Organizational sponsorship
Career sponsorship 4828 10 A2 08 33.5%
Supervisor support 1,235 6 02 .00 2.68
Training & skill development opportunities 6503 6 23 .21 391.39"
Organizational resources 18,780 14 060 02 23.07
Average correlation A0

Socio-demographics
Gender (male = 1, female =) 19545 29 n8 .07 127.65*
Race (White = 1, non-White = 0) 11,148 11 010 .03 24.84
Marital status (married = 1, unmarried =0y 26,708 16 0909 22708
Age 28498 28 02021 1,334.28°
Average correlation 05

Stable individual differences
Neuroticism 4575 5 =11 .05 12.60¢
Conscientiousness 4428 4 060 .01 2.61
Extroversion 4428 4 A8 06 8.82°
Agreeableness 4428 4 05 .00 60
Openness to experience 4042 5 010 .02 7.23
Proactivity 676 2 A 1.93
Locus of control 5911 4 —-03 .03 6.44
Average correlation 08

Nores. Average correlation is represented by the absolute value. N = cumulative sample
size; & = number of studies cumulated; r. = sample size weighted corrected correlation;
and () = () statistics.

*p = 5.



TABLE 3
Meta-Analytic Resulis of the Predictors of Career Satisfaction

Predictors N k re SDe o

Human capital
Hours worked 023 17 13 08 646"
Work centrality 14944 19 a2 20 33soe
Job tenure 6,491 9 -—02 1] 18.02*
Organization tenure 9,246 17 A2 4 21.72
Work experience 7318 16 00 10 6893+
Willingness to transfer 1,060 4 -6 41 102.02*
International experience 5,068 4 03 03 13.62*
Education level 11,890 24 03+ 7 6538
Career planning 2,367 7 33 23 41.24*
Political knowledge & skills 6,112 2 05 04 7.21
Social capital 3,051 b 28 .13 36.26
Average correlation A0

Drganizational sponsorship
Career sponsorship 6,255 18 4421 16675
Supervisor support 1,653 6 46 26 57.02¢
Training & skill development opportunities 5048 1H P AN [ 22844
Organizational resources 1096 15 —02 A2 106.00
Average corvelation 31

Socio-demographics
Gender (male = 1, female = ) 10,246 22 01 08 f5.58*
Race (Whire = 1, non-Whire = ) 2,561 5 03 11 27.92%
Marital status (married = 1, unmarried = 0) haa8 14 06t . 9.67
Age 11913 26 00 09 114.62°
Average corvelation 02

Stable individual differences
Meuroticism 10,566 6 =38 .05 67.71*
Conscientiousness 10,566 6 14 06 16.04*
Extroversion 10,566 ] ar o7 .68
Agreeableness 4,634 5 A1t 05 4.65
Openness to experience 10,962 7 A2 03 26.74*
Proactivity 1,072 3 8 02 0.50
Locus of control 668 3 4T 29 22.57
Average corvelation 24

Notes. Average correlation is represented by the absolute value. N = cumulative sample
size; k = number of studies cumulated; ., = sample size weighted corrected correlation;
and (J = ( statistics.

“p = J05.

How do our metrics of heavy-tailedness depend on the value at
which the tail starts?

Suppose we're interested in the distribution of wealth among millionaires. This is the tail of
the wealth distribution among all people. We might then ask: does that tail look like a Pareto
distribution (power law), like the tail of a log-normal distribution, like an exponential
distribution, or like the tail of a normal distribution? (And so on for other candidate
distributions.) And what difference would this make for the top-shares and top-quantiles
among millionaires — the metrics of heavy-tailedness we have reported in our tables?

For a Pareto distribution, these metrics depend on the ‘shape’ parameter alpha — the
exponent appearing in the pdf, which controls how fast the density converges to zero. They



do not, however, depend on the ‘cutoff’ — the minimal value above which the Pareto
distribution applies.

So if we knew that the tail of wealth is described by a Pareto distribution with alpha = 2, then
we would know the wealth share of the top 1% (etc.) in that tail, no matter where the tail
starts. If the distribution describes the wealth of millionaires, we know how wealthy the top
1% richest millionaires are compared to the total wealth owned by all millionaires. If the
same distribution describes the wealth of billionaires, then the same number would describe
the wealth of the top 1% richest billionaires compared to total billionaire wealth.

For an exponential distribution, our metrics of heavy-tailedness do not depend on its single
‘rate’ parameter lambda. Similarly, if we start with a normal distribution with mean 0, and
then consider its right (positive) half as a probability distribution, by our metrics the
heaviness of this ‘Gaussian tail’ does not depend on the variance sigma”2 of the normal
distribution we started with. Hence we have included data for exponential and the right half
of a mean-0 normal distribution in our tables.

However, this observation is misleading: once we allow positive ‘cutoffs’ for the tail, the
parameters lambda and sigma”2 do matter for heavy-tailedness. The apparent
independence of parameters is an ‘artefact’ of the convention that exponential distributions
are usually parametrized to ‘start’ at zero. But in this use case we’re actually looking at an
exponential distribution starting at, for instance, one million (if we’re looking at the wealth of
millionaires).

More precisely, the ‘benchmark’ values we report in our tables for exponential and
right-half-of-normal distributions are good approximations if and only if lambda is sufficiently
small — or sigma”2 is sufficiently large, respectively. Here, “large” and “small” are in relation
to the ‘cutoff point’ at which the tail starts, with the requirement becoming more demanding
the larger the cutoff. So e.g. the ‘exponential distribution’ values from our tables (which are
for any exponential distribution starting at 0) may be a good approximation for the
exponential tail of ‘millionaire wealth’ for some fixed lambda (if it is ‘small enough’); but if we
were using the same lambda to describe ‘billionaire wealth’, the values from our tables might
no longer be a good approximation (namely if lambda is ‘small enough’ relative to one million
but not ‘small enough’ relative to one billion).

Here is the precise technical result from which this follows.

Let X be a random variable and ¢ be a constant real number; set Y =X + c. (Think e.g. of X
having an exponential distribution starting at 0, ¢ = 1046; then Y might be the distribution
describing the wealth of millionaires.) Let 0 <p < 7 and set g = 1 - p (representing
probabilities). Denote the top-g-share of X with £ X(q) — so e.g. if ¢ = 0.1 then t_X(q) would
be the share of the top 10%.

A routine calculation then shows that

t Y(Q) =t X(q)(1+c)+ql(1+1/c),



where ¢’ = ¢/E[X], i.e. the size of the translation ‘in relation to’ the expected value of the
original distribution. We see that if ¢’ is very close to zero, then t_Y(q) approximately equals
t_X(q). As ¢’ becomes larger, the first summand becomes smaller and the second one larger,
and for ¢’ going towards infinity the top-share t_Y(q) converges toward q.

An easier calculation shows that if r_Xis some quantile of X as multiple of the median, then
rY=r X/(1+c”)+1/(1+1/c”),

this time with ¢” = ¢ / median(X). Thus translations of X have a very similar effect on this
metric, this time with 1 rather than q as the limit for large translations.

(The above claims now follow since the expected value of an exponential distribution is
1/lambda, and the expected value of a right-half-of-normal distribution increases with the
sigma”2 of the original normal distribution. Similar remarks apply for the median.)

Key concepts and terminology

e Task = type of deliberate activity or set of activities, described at a level of specificity
such that instances of the activity are regularly carried out by different people and by
the same person at different times.

o E.g. driving a car, assembling a chair, writing physics papers.

e Performance = how well someone does at a task or set of tasks (e.g. all tasks
relevant to a certain job, then called job performance). Usually operationalized with a
specific metric or proxy.

o Example performance metrics could be:

m Fordriving a car: frequency of accidents per kilometer; average
speed; satisfaction rating on a 1-10 scale by other people in the car.

m For assembling a chair: required time; how much weight the
assembled chair can endure without collapsing; amount of waste
produced while assembling.

m For writing physics papers: number of publications; citations to
publications; ratings by academic peers.

o We deliberately use performance in a very broad and loose sense. On our
definition, “performance” can incorporate things one would usually call
outcome or impact and that are beyond the performer’s control. We also
include both performance at a single instance of a task and aggregate
performance over potentially long periods of time (e.g. a whole career).

e Heavy-tailed = having a heavier tail than an exponential distribution. Loosely this
means that the tail of the probability density function approaches zero more slowly
than the tail of an exponential distribution. Formally, it means that above some
threshold x > x_0 the conditional mean exceedance (also known as mean residual
lifetime) E[X - x | X > x] is a strictly increasing function of x (where E denotes
expected value and X is a random variable with the distribution we’re talking about).*'

o E.g. log-normal, Pareto distribution

#! This definition follows Bryson (1974). There are different definitions of ‘heavy tailed’ in the literature,
see e.g. here.


https://forum.effectivealtruism.org/posts/2XfiQuHrNFCyKsmuZ/max_daniel-s-shortform?commentId=t9td3tRgGsoNn5aCx

e Light-tailed = having a lighter tail than an exponential distribution. Loosely this means
that the tail of the probability density function approaches zero faster than the tail of
an exponential distribution. Formally, it means that above some threshold x > x_0 the
conditional mean exceedance E[X - x | X > x] is a strictly decreasing function of x.

o E.g. normal distribution

e (Note that any exponential distribution has constant conditional mean exceedance.
Thus on this definition, the exponential distribution is neither heavy-tailed nor
light-tailed — it is right on the edge between these two properties.)
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