
Spring 2022 UC Berkeley Data Discovery Project: Building a Speech to Text 
Model For People With Dementia 

Authors: Vinh Bui, Lilly Liu, Hazel Heo 

Introduction 
 
Speech is essential to humanity; without our primary form of communication and ability to express 
feelings and thoughts, society would fall apart. Speech differentiates humans from animals, and is one of 
the keys to self-expression and agency. For those affected by Dementia, it becomes difficult to find the 
right words, understand what others say, and put together sentences—thereby impacting how patients see 
themselves and communicate with others. “About 1 in 9 age 65 and older (10.7%) has Alzheimer's” and 
“more than 6 million Americans are living with Alzheimer's. By 2050, this number is projected to rise to 
nearly 13 million” as the number of older Americans rises [1]. With such a large and growing population 
being impacted by Dementia, it is imperative to develop technologies to aid them.  
 
Mentia's signature project DevaWorld is currently the leading technology of digital therapy for those with 
Dementia or who are Cognitively Impaired. DevaWorld is an interactive virtual world that is accessed 
through an app and played on an iPad with the assistance of a caregiver. Inside DevaWorld, the user is 
guided through different options such as playing the piano, watering plants, or eating virtual chocolates 
with the avatar Julie. 
 
One of the most frustrating parts of Dementia is losing one's sense of autonomy and accomplishment. 
DevaWorld is a source of therapeutic entertainment that restores these things. Currently, DevaWorld is 
always played with a caregiver; however, by implementing AI into Julie, DevaWorld will be playable 
without the assistance of a caregiver so they can focus on more important tasks. Our goal for this project 
was to create an accurate Speech-to-Text model for Dementia patients, accounting for discrepancies in 
speech proficiency. 

Methods 
 
(i) Accuracy testing: The crucial aspect of finding the most plausible Speech-to-Text mechanism was to 
assess the accuracy of each model that we utilized. The accuracy testing used in each model puts its 
background on string comparison, based on two different methods: Levenshtein distance and Cosine 
similarity. Levenshtein distance method was mainly used in order address typos, which in Speech-to-Text 
testing was used as a string metric to measure the difference between two sequences given. It essentially 
provided a minimum number of single-character edits—insertions, deletions, or substitutions—required to 
change the input into the labeled conversation. Cosine similarity using nltk cosine similarity function was 
used to print out percent proportion similarity to three decimal places. It functions to return a percent 
proportion of the input and the labeled data based on the cosine similarity; cosine similarity defines the 
angle between two vectors in n-dimensional space. It works based on a four step mechanism: 1) The 



function removes punctuations from a given string, fostulates the case difference, and removes stop 
words. 2) The CountVectorizer function transforms each word into a vectorized matrix form. 3) 
Calculates the cosine similarity and compresses the matrix by reshaping them based on similarity. 4) Take 
each index and calculate the percent similarity. We mainly implemented the nltk cosine similarity function 
in most of our trials since it printed out explicit proportional similarity sequences that allowed us to 
compile the accuracy data. 
 
(ii) Google Speech-to-Text: The first model we used was Google Speech Recognition using the 
SpeechRecognition Library. We did not create a machine learning model from scratch, this library 
provides us with convenient wrappers for various well-known public speech recognition APIs (such as 
Google Cloud Speech API). To build this speech recognition model, we created a function in order to 
conduct speech recognition of a long audio file. The function split the audio file into smaller chunks, 
transcribing each file by converting the speech into text using Google Speech Recognition. The final 
output of the function is a string representing the converted text. 
 
(iii) Amazon AWS: Another model we implemented as Amazon AWS that transcribes files from the S3 
storage cloud of the user bucket. We set up the S3 bucket storage and moved all the audio files to the list 
in order to use the hash function to automate the system. The model was structured for multiple speaker 
files, in order to build a reliable context model in a setting where a dementia patient's caregiver might be 
present. The model that we utilized detected up to 10 multiple speakers, which takes two arguments at the 
same time, which are the audio file name and the max speakers in order to enhance the accuracy of the 
function. It splits the audio input based on the pauses and returns the boolean value of the inputted 
transcribe job, which then results in the dictionary data type. Then the function gives you the raw 
transcription code without the speaker label, which is then outputted as a JSON speaker model file. We 
added an additional custom list of vocabularies in order to enhance the accuracy, based on the settings that 
the dementia patients will be experiencing through DevaWorld. Since AWS accepts specific types of 
vocabulary input through Python, we converted columns of custom vocabularies into a .txt file and 
uploaded them to the model. Here are the custom vocabularies we used (from DevaWorld prompts):  
["Julie", "Robin", "Livingroom", "Bedroom", "Bathroom", "Garden", "Barn", "tackroom", "drink", "tap", 
"follow", "books", "movies", "sport", "travel", "fire", "light", "records", "door", "records", "painting", 
"piano", "window", "music", "song", "tune", "chocolates", "fan", "outfit", "closet", "bed", "carpet", "TV", 
"television", "cat", "couch", "recliner", "seat", "lamp", "pillows", "blankets", "clothing", "hat", 
"sunglasses", "medication", "pill", "music", "teeth", "brush", "pajamas", "sleep", "freshen", "clean", 
"toothpaste", "gums", "heater", "bathrobe", "shower", "curtain", "toilet", "washcloth", "cream", "radio", 
"barn", "stall", "starr", "grooming", "groom", "horse", "work", "dixie", "pasture", "touch", "dirt", "fur", 
"curry", "comb", "coat", "mane", "shine", "body", "face", "halter", "rope", "strokes", "fred", "dog", 
"rosie", "goat", "gate"] 
(iv) Azure Speech-to-Text Data-Labeling: The dataset for the project is from a previous study. The data 
has not been labeled yet. So, we have to do the human label to fit the data into the model. The method that 
we choose is providing the “ground true” for the audio data, then fit a part of the dataset for training, the 
rest for testing. This is a good approach because the goal of the research is to build a model that can 
transcribe elderly person talk. There are several ways to improve accuracy of the model (ie vocabulary, 
human-labeled data), but for Azure we choose to use Audio + human-labeled transcript data for both 
training and testing. This method is time consuming. However, we still need labeled data to automatically 



validate the model, so we choose to test approach on. To validate the accuracy of the model, we use the 
WER (Word Error Rate) formula which is already integrated into Azure Speech Studio. WER is derived 
from Levenshtein distance, but working at word level instead of phoneme level. The word error rate can 
then be computed as:  

 
●​ S is the number of substitutions, 
●​ D is the number deletions,  
●​ I is the number of insertions,  
●​ C is the number of corrected words,  
●​ N is the number of words in the reference (N = S + D + C) 

(v) AssemblyAI: AssemblyAI was another ​​high accuracy speech-to-text web application programming 
interface that we used to transcribe. To do this, we created three files that work together:  
upload_audio_file.py, which uploads your audio file to a secure place on AssemblyAI's service so it can 
be access for processing; initiate_transcription.py, which tells the API which file to transcribe and to start 
immediately; and get_transcription.py, which prints the status of the transcription if it is still processing, 
or displays the results of the transcription when the process is complete. Within the upload_audio_file.py 
file, we check that the file passed in exists, then use Request's chunked transfer encoding to stream large 
files to the AssemblyAI API. The initiate_transcription function essentially just sets up a single HTTP 
request to the AssemblyAI API to start the transcription process on the audio file at the specific URL 
passed in. The get_transcription function uses the AssemblyAI API with our API key and the 
transcription identifier. We retrieve the JSON response and return it. 
 
Results 
 
Google Speech-to-Text was inaccurate, producing an accuracy of about 82% using cosine similarity 
comparison. There were no available ways to boost accuracy available for free to the public, so we 
decided to move on to other models. 
AssemblyAI’s base model was more accurate than Google Speech-to-Text, with 85% precision. Using 
custom vocabulary based on DevaWorld prompts, the model accuracy was improved to an average of 
89% on 10 files. 
Amazon AWS produced accuracy that is close up to 0.734 based on the nltk accuracy that we developed, 
before additional custom columns of vocabulary files were assessed. After inputting the additional 
accuracy mediations, the accuracy increased to 0.921. We inputted around 80-100 new custom variations 
in order to increase the accuracy of the dementia patient transcribe model. Below is the .html front-end 
design that was developed that runs the Amazon AWS model when user inputs the video into the S3 
bucket. This page allows the users to choose a specific video to transcribe, which is saved in the 
repository of the AWS server, which is saved as a code in the MongoDB AWS server. The ajax 
connection between the python and the front-end function allows the model to run, which directs the users 
to view the transcribe on the webpage.  



 
 
Using WER to assess the accuracy of the model, based on the limited dataset that we have at hand, the 
general model of Microsoft works well even without the training dataset. The error rate for the base 
model is 2.2% compared to 4.27% of the custom model. Generally, the base model works better across the 
board: insertion: 0.52% vs 0.91%, substitution: 1.55% vs 3.1%, deletion: 0.13% vs 0.26%. 

 
Accuracy comparison between models

 
A test case display for visual inspection. 

Discussion 
 
For the Azure model, according to Microsoft, they “recommend that you provide word-by-word 
transcriptions for 1 to 20 hours of audio.” However, we are only able to transcript around 10 mins of 
audio files due to the constraint of time. Therefore, we cannot justify the customized model until we have 
more labeled data. 
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Introduction 
 
In this project, we utilized different Deep Learning techniques including Generative Adversarial 
Networks (GANs), Convolutional Neural Networks, and Transfer Learning in order to classify the 
emotional state of Dementia patients, based on images of their faces. The purpose of classifying the 
emotional state of dementia patients based on images of their face, is to add another dimension of  
emotional intelligence into Devaworld’s in-game avatar named Julie. In fall 2022 Paul Fentress and Chi 
Hoang built a Speech Emotion Recognition Algorithm (S.E.R.) for Julie. Mentia plans to join the S.E.R. 
model with this semester's Facial Emotion Recognition model (F.E.R.) and Speech to Text Model, to 
create a more intelligent and therapeutic dialog between Julie and the user.  
 

 

Methods 
 

https://en.wikipedia.org/wiki/Word_error_rate


Context 
Before building the model, it was necessary to consider how our model would be used in production. The 
purpose of making this consideration before diving into the project is that if we train our model on data 
that does not represent how the model will actually be used, when the model is tested in the real world it 
will perform poorly. The plan for production is to utilize the front facing camera on a tablet/ipad to 
continuously record the faces of users, and collect data about their emotional state using our F.E.R. model. 
Then the emotional classification predictions are fed into Julie's Dialog model, which will influence what 
Julie says next.  
 
Bellow is a diagram of how our model would be used in production:  

 
 
Machine Learning Project Lifecycle 
After considering the context of how this F.E.R. model would be used, we structured our project with the 
Machine Learning Life Cycle, which includes: 

●​ Defining the Problem 
●​ Data Collection 
●​ Data Processing  
●​ Exploratory Data Analysis 
●​ Model Building 
●​ Model Evaluation 
●​ Model Deployment 

 
 
 
Defining the Problem 
 
The first step in the Machine Learning Lifecycle was to define the problem we are trying to solve. Our 
question was “Can we build a model to classify the emotional state of Dementia patients based on images 
of their faces?”  



 
Data Collection 
 
We tried multiple approaches when building our training dataset. We were initially given over 200 videos 
from Mentia to work with. These videos were recorded interviews with 8 different dementia patients, 
while they were using the Devaworld app. These video samples were very useful for training and testing 
the S.E.R. model however, they were not very representative of how the F.E.R. model would be used in 
production. The reason is that the recordings were of two people sitting at a table, talking to each other, 
with a camera set up across the room capturing the conversation. The videos recorded in this fashion do 
not represent the data that would be collected by the front facing camera of the tablet (shown in the 
diagram above), and also only included 8 different faces. It was for these reasons that we decided to use 
the Kaggle FER 2019 dataset, which included over 36,000 samples that were more representative of data 
which would be collected by the front facing camera on a tablet. There were originally 7 classes including 
disgust, fear, sad, angry, surprise, neutral, and happy. The graphs below show each class's respective 
number of samples. Due to the disgust class having a small number of samples and very similar 
expressions as the angry class, we joined those two classes together.  
 

 
There was a significant drawback of using this Kaggle FER 2019 dataset, which was that this dataset was 
not the faces of people with Dementia. Building a dataset from scratch with 1000’s of labeled images of 
people with Dementia was not feasible in the time allotted for this project, so we made a compromise. We 
used a Generative Adversarial Network to “Age” the faces of the Kaggle dataset. This way we could 
transform all of the faces in our training and validation to appear older using Machine Learning, and 
better represent the demographics of people with Dementia.  
 
Data Processing 

In this project, we used HasnainRaz pre-trained Fast Aging GAN to “Age” the photos in our dataset. 

How the GAN works: 

A GAN stands for Generative Adversarial Network, and it is a method of Machine Learning that is often 
used to create never before seen images or transform existing images. Traditional neural networks can 

https://github.com/HasnainRaz


predict the underlying distribution of some data; however, they cannot generate similar but new 
distributions, and that is what GANs do. GANS use two different networks which are called the 
Discriminator (a classifier), and a Generator (another Neural Network) which generates random but 
similar distributions based on the discriminator. 

The Discriminator and Generator networks are playing a minimax game against each other where the 
discriminator wants to minimize loss, while the generator wants to maximize the loss. The discriminator 
is given an image from the real dataset or the newly generated image from the Generator, and it classifies 
whether or not it is a real or generated image. The Generator generates random distributions based on the 
underlying distribution learned from the discriminator, and the Discriminator will classify if the image is 
real or not. Then the Generator takes this information and learns that it was wrong, and tweaks its weights 
to try and trick the Discriminator. Eventually, the Discriminator network can no longer tell which images 
are fake vs. real and the Generator is now generating new random distributions that resemble the data 
distribution. 

For our project, we used a pre-trained Fast Aging GAN to “Age” images, which means the Discriminator 
was trained to classify faces as “Aged“ or “Not Aged”, then the Generator added random noise to our 
dataset of faces based on the underlying distribution learned from Discriminator. This back and forth 
process was repeated until the Generator “Aged” the images enough to trick the Discriminator into 
thinking that the person in the photo was indeed elderly. 

 



 

In order to use the Fast Aging GAN, we had to build custom functions and tweak the code from the 
original Github in order to fit our problem. This is the algorithm used in order to iteratively call the Fast 
Aging GAN: 

Data Processing Algorithm:  

1.​ Reshape input data from (48, 48) → (1, 512, 512) to fit into the GAN model. 
2.​ Pass the data into the GAN Model to “Age” the image. 
3.​ Crop the output image because it was yielding a 3x3 grid of duplicate images. So we cropped the 

image from the top corner of the grid. The output image shape was (170, 170, 3) with the aging 
effect applied. 

4.​ Iterate over every image within a class folder, and apply steps 1-3 above. Then route the new 
aged images into a new folder using OS. 

5.​ Apply step 4 to every class folder in the training and validation datasets. 

After we applied this algorithm to the Kaggle dataset, we now had an “Aged” dataset that was more 
representative for the problem of classifying the emotions of people with Dementia.  

 

Model Building (In Progress) 

Now that we had our data, we started building our image classification models. For the baseline model, 
we built a Convolution Neural Network using Keras. We chose to use this as a baseline model because it 
is a simple model that has worked well for image classification problems, due to the presence of the 
“Convolutional Layers.” We used the same CNN architecture that was used by the user “akmadan” 
Github Repository.  

 

https://github.com/akmadan/Emotion_Detection_CNN
https://github.com/akmadan/Emotion_Detection_CNN


 
This simple CNN architecture yielded a validation accuracy of 56%, so we decided to use Transfer 
Learning in order to build a better model.  

Applying Transfer Learning 

Transfer learning is one of the state-of-the-art techniques in machine learning that has been widely used in 
image classification. Since our task specifically targets the emotions of people with Dementia, without a 
huge set of relevant training data, applying transfer learning would enable us to utilize model weights that 
are previously trained on standard datasets such as ImageNet to improve the efficiency of our task at 
hand. 

Such a process will have two significant advantages over using a custom-made model: 

1.​ Speed: Using transfer learning will enable us to cut short the process of training normal CNNs for 
days or even weeks. 

2.​ Accuracy: These pre-trained models have already been tuned to detect important features in the 
images. Although we are specifically interested in the elder population, we believe that 
transferable knowledge from previous emotion recognition tasks can be applied to our scenario 
effectively. Generally, a transfer learning model will outperform a customized model by 20%.​
 

VGG Architecture 

The VGG net stands for Visual Geometry Group, a standard deep convolutional neural network 
architecture with multiple layers. From the two models available in VGG, we will be using VGG-16 to 
classify our dataset based on its good performance in past research. The VGG-16 network mainly 
contains three parts: convolution, pooling and fully-connected layers. 



 

The convolution layer has filters that can extract features from images; the pooling layer reduces the size 
of parameters and speeds up computation in the network. After pooling, the first 16 layers of the VGG-16 
can extract 25,088 features. Using pre-trained weights, we should be able to extract prominent features 
from the training data after convolution and pooling. The fully connected layer is a simple neural network 
that can be customized to give classification predictions for the number of classes, which is 6 in our case. 

To fit a pre-trained model in PyTorch, we will remove the last fully connected layers and add new layers 
that will output six classes of emotions that we’re interested in detecting. We would then freeze the 
parameters in the convolution and pooling layers and train the fully connected layers with our collected 
training data. 

Results 
 

Model Evaluation (In Progress) 

After training the model for 20 epochs, we were able to obtain a validation accuracy of 67%, which 
outperforms the baseline CNN by 8%. As the validation accuracy exhibits an increasing trend, we believe 
that the accuracy could continue to increase if we have more GPU capacity to train more epochs. We plan 
on running the model for more epochs and testing the models properly as future work.  

 



 

Model Deployment/Demo 

Although our model is still in the development phase, we wanted to create a demo version in order to 
show what the model would look like while being used in production. Creating a demo version of your 
Machine Learning projects is one of the best ways to convey the message of what you are trying to 
accomplish. We created a .h5 model object in order to use in the demo version of the model.  

We used the CV2 Cascade classifier to detect faces coming from video data. To train the face detection 
classifier, the algorithm needs a lot of positive images(images that have faces in them) and negative 
images(images that do not have faces in them). To find faces of a specific size, we run a window that is 
roughly the size of the face through the entire image in a raster scan fashion. At each pixel, we will 
extract features and classify them as face or non face. However, this is a largely time consuming process. 
Therefore, we used the concept of Cascade of classifiers. Instead of applying all 6000 features on a 
window, the features are grouped into different stages of classifiers and applied one-by-one. If a window 
fails the first stage, we discard it. We don't consider the remaining features on it. If it passes, apply the 
second stage of features and continue the process. The window which passes all stages is a face region. 

We used a simple algorithm in order to find faces, and then make predictions:  

Demo Algorithm:  

1.​ Open Video or Webcam 
2.​ Start a forever loop.  

a.​ Detect faces using pre trained CV2 Cascade face detector. 
b.​ Draw bounding box around detected face object. 
c.​ Collect data inside bounding box. 
d.​ Feed data from bounding box into the FER Model and make prediction.  
e.​ Write prediction to screen. 

Below is a screenshot of our demo in action. You can see we have created a bounding box around the 
face, then printed onto the screen the prediction from the FER model. On the right is the terminal where 
we are printing the predictions and their probabilities returned from the VGG Neural Network.  

 



Discussion 
 
After building a baseline model, and deploying the model as a demo version, we found that we can indeed 
build a F.E.R. model for Devaworld that detects faces and predicts emotions of people with Dementia. 
However, in order to measure the accuracy for specifically people with Dementia there is future work to 
be done. In order to truly understand how the model performs specifically for people with Dementia, we 
need to build and label a diverse dataset of faces from people with Dementia. By building a more 
representative data set, and improving our model based on this data, we will be able to better measure our 
performance of our model specifically for people with Dementia.  
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