

**Quiz: Graph of Function type 2****and Sketching Graph of Quadratic Functions****Section:Quadratic Function****Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions**

---

**Choose the correct answer.**

1. Which of the following equations has a vertex of (4, -2)?

(understand, MA 1.2 G.9/2)

- A.  $y = 3(x + 4)^2 - 2$
- B.  $y = -3(x + 4)^2 + 2$
- C.  $y = 3(x - 4)^2 - 2$
- D.  $y = -3(x - 4)^2 + 2$

Solution  $y = 3(x - 4)^2 - 2$

$y = 3(x - 4)^2 - 2$  because the quadratic equation is  $f(x) = y = a(x - h)^2 + k$ ,  
the vertex is  $(h, k)$ .

Consider  $y = 3(x + 4)^2 - 2$ , then the vertex is  $(-4, -2)$ .

Consider  $y = -3(x + 4)^2 + 2$ , then the vertex is  $(-4, 2)$ .

Consider  $y = 3(x - 4)^2 - 2$ , then the vertex is  $(4, -2)$ .

Consider  $y = -3(x - 4)^2 + 2$ , then the vertex is  $(4, 2)$ .

## Quiz: Graph of Function type 2

### and Sketching Graph of Quadratic Functions

#### Section:Quadratic Function

#### Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions

2. Which of the following equations has a vertex of (-5, 6) ?

(understand, MA 1.2 G.9/2)

A.  $y = 2(x + 5)^2 + 6$

B.  $y = -2(x + 5)^2 - 6$

C.  $y = 2(x - 5)^2 + 6$

D.  $y = -2(x - 5)^2 - 6$

Solution  $y = 2(x + 5)^2 + 6$

$y = 2(x + 5)^2 + 6$  because the quadratic equation is  $f(x) = y = a(x - h)^2 + k$ ,  
the vertex is  $(h, k)$ .

Consider  $y = 2(x + 5)^2 + 6$ , then the vertex is (-5, 6).

Consider  $y = -2(x + 5)^2 - 6$ , then the vertex is (-5, -6).

Consider  $y = 2(x - 5)^2 + 6$ , then the vertex is (5, 6).

Consider  $y = -2(x - 5)^2 - 6$ , then the vertex is (5, -6).

## Quiz: Graph of Function type 2

### and Sketching Graph of Quadratic Functions

#### Section:Quadratic Function

#### Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions

3. Find the  $x$ -intercepts of the parabola  $y = -4(x - 3)^2 + 5$

(understand, MA 1.2 G.9/2)

- A.  $(\frac{3-\sqrt{5}}{2}, 0)$  and  $(\frac{3+\sqrt{5}}{2}, 0)$
- B.  $(\frac{-3-\sqrt{5}}{2}, 0)$  and  $(\frac{-3+\sqrt{5}}{2}, 0)$
- C.  $(3 - \frac{\sqrt{5}}{2}, 0)$  and  $(3 + \frac{\sqrt{5}}{2}, 0)$
- D.  $(-3 - \frac{\sqrt{5}}{2}, 0)$  and  $(-3 + \frac{\sqrt{5}}{2}, 0)$

Solution  $(3 - \frac{\sqrt{5}}{2}, 0)$  and  $(3 + \frac{\sqrt{5}}{2}, 0)$

For  $x$ -intercepts  $0 = -4(x - 3)^2 + 5$

$$4(x - 3)^2 = 5$$

$$x - 3 = \pm \frac{\sqrt{5}}{2}$$

$$\text{So, } x = 3 \pm \frac{\sqrt{5}}{2}$$

Hence,  $x$ -intercepts are  $(3 - \frac{\sqrt{5}}{2}, 0)$  and  $(3 + \frac{\sqrt{5}}{2}, 0)$

## Quiz: Graph of Function type 2

### and Sketching Graph of Quadratic Functions

#### Section:Quadratic Function

#### Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions

4. Find the  $x$ -intercepts of the parabola  $y = 9(x + 2)^2 - 7$

(understand, MA 1.2 G.9/2)

- A.  $(\frac{2-\sqrt{7}}{3}, 0)$  and  $(\frac{2+\sqrt{7}}{3}, 0)$
- B.  $(\frac{-2-\sqrt{7}}{3}, 0)$  and  $(\frac{-2+\sqrt{7}}{3}, 0)$
- C.  $(2 - \frac{\sqrt{7}}{3}, 0)$  and  $(2 + \frac{\sqrt{7}}{3}, 0)$
- D.  $(-2 - \frac{\sqrt{7}}{3}, 0)$  and  $(-2 + \frac{\sqrt{7}}{3}, 0)$

Solution  $(-2 - \frac{\sqrt{7}}{3}, 0)$  and  $(-2 + \frac{\sqrt{7}}{3}, 0)$

For  $x$ -intercepts  $0 = 9(x + 2)^2 - 7$

$$9(x + 2)^2 = 7$$

$$x + 2 = \pm \frac{\sqrt{7}}{3}$$

$$\text{So, } x = -2 \pm \frac{\sqrt{7}}{3}$$

Hence,  $x$ -intercepts are  $(-2 - \frac{\sqrt{7}}{3}, 0)$  and  $(-2 + \frac{\sqrt{7}}{3}, 0)$

## Quiz: Graph of Function type 2

### and Sketching Graph of Quadratic Functions

#### Section:Quadratic Function

#### Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions

---

5. For the parabola  $y = 3x^2 - 12x + 17$ , find the vertex.

(understand, MA 1.2 G.9/2)

A. (5, 2)

**B. (2, 5)**

C. (-2, 5)

D. (-2, -5)

Solution (2, 5)

(2, 5) because  $y = 3x^2 - 12x + 17$

$$y = 3(x^2 - 4x) + 17$$

$$y = 3(x^2 - 2(2)x + 2^2) - 3(2)^2 + 17$$

$$y = 3(x - 2)^2 + 5$$

From the form of graph  $y = a(x - h)^2 + k$

Thus, the vertex is  $(h, k) = (2, 5)$

6. For the parabola  $y = 4x^2 + 8x + 1$ , find the vertex.

(understand, MA 1.2 G.9/2)

A. (3, 1)

B. (1, 3)

C. (-1, 3)

**D. (-1, -3)**

Solution (-1, -3)

(-1, -3) because  $y = 4x^2 + 8x + 1$

$$y = 4(x^2 + 2x) + 1$$

$$y = 4(x^2 + 2(1)x + 1^2) - 4(1)^2 + 1$$

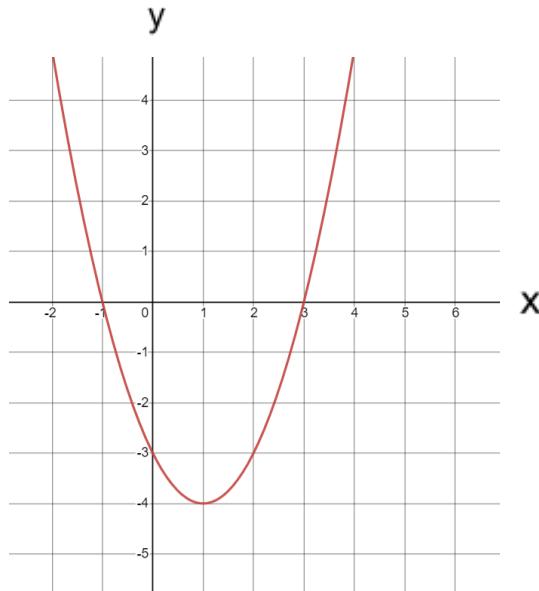
$$y = 4(x + 1)^2 - 3$$

From the form of graph  $y = a(x - h)^2 + k$

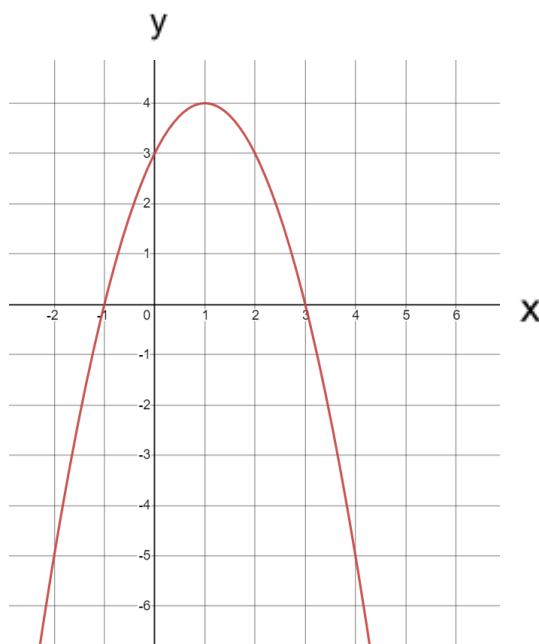
Thus, the vertex is  $(h, k) = (-1, -3)$

## Quiz: Graph of Function type 2

### and Sketching Graph of Quadratic Functions


#### Section:Quadratic Function

#### Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions


7. Which of the following could be the graph of  $y = -x^2 + 6x - 5$  ?

(apply, MA 1.2 G.9/2)

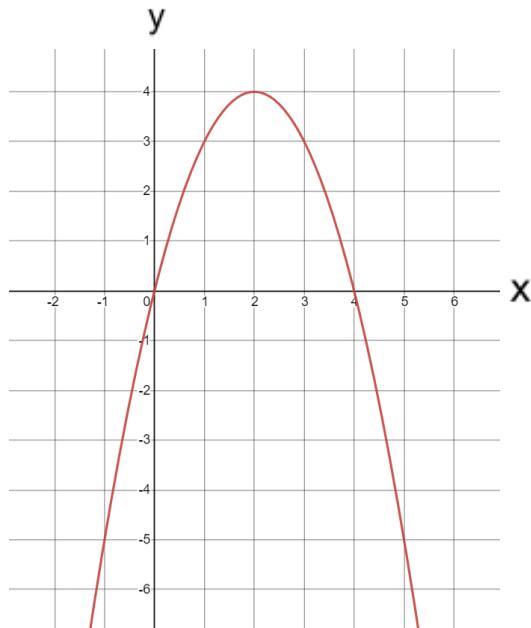
A.



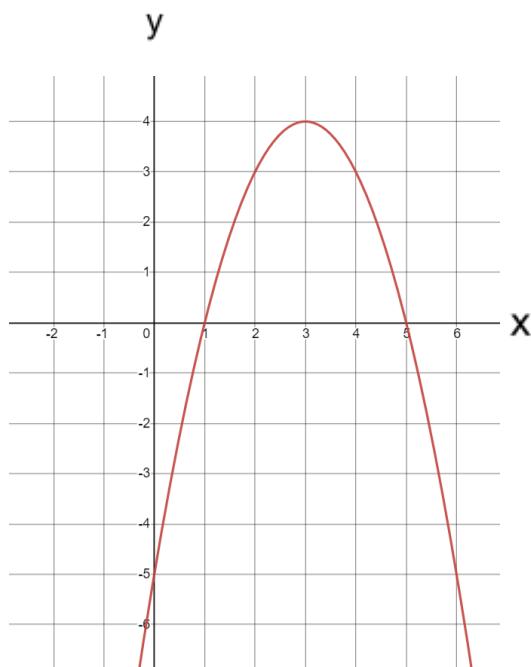
B.



**Quiz: Graph of Function type 2**


**and Sketching Graph of Quadratic Functions**

**Section:Quadratic Function**


**Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions**

---

C.



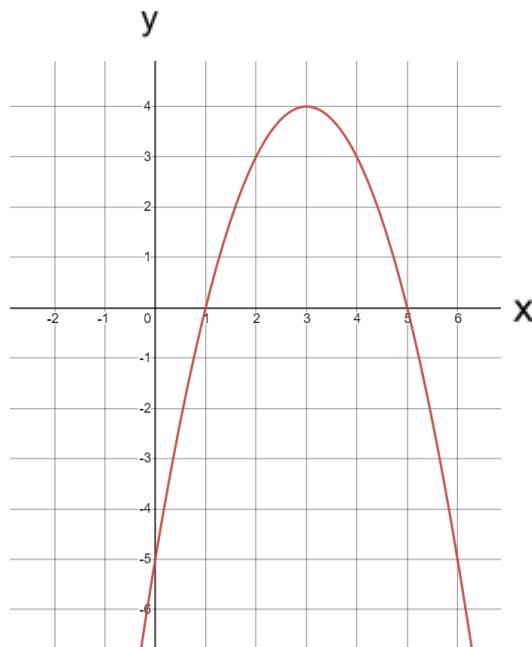
D.



**Quiz: Graph of Function type 2**
**and Sketching Graph of Quadratic Functions**
**Section:Quadratic Function**
**Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions**
**Solution D**

Consider  $y = -x^2 + 6x - 5$

$$\text{Then } y = -(x^2 - 6x) - 5$$


$$y = -(x^2 - 2(3)x + 3^2) + 1(3)^2 - 5$$

$$y = -(x - 3)^2 + 4$$

From the form of graph  $y = a(x - h)^2 + k$

Thus, the vertex is  $(h, k) = (3, 4)$  and  $a = -1 < 0$  (open-down)

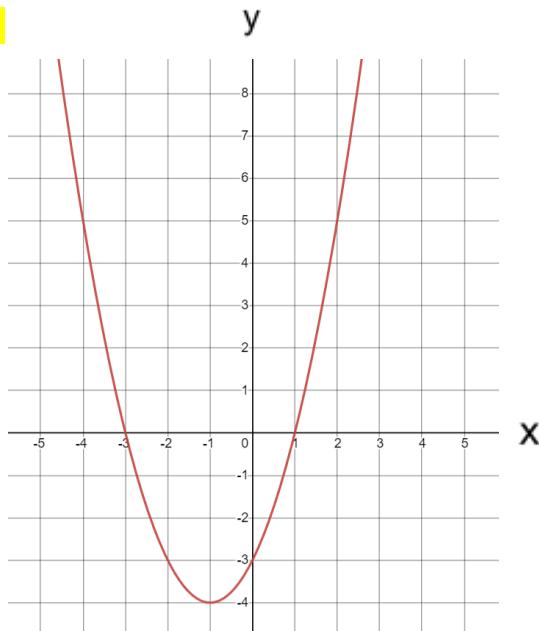
Sketch the graph from  $y = -x^2 + 6x - 5$



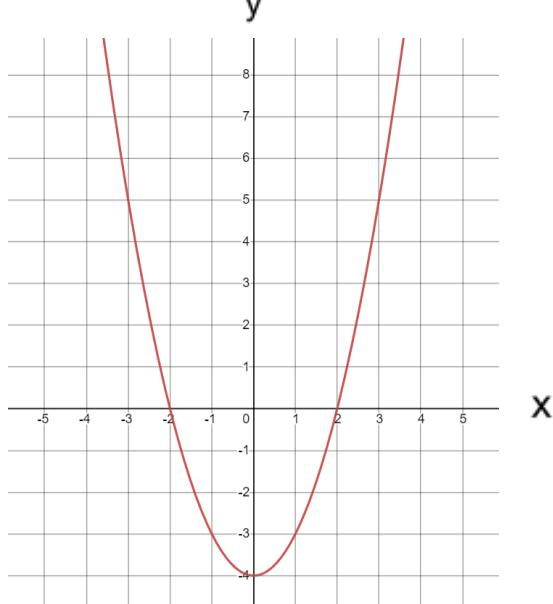
**Quiz: Graph of Function type 2**

**and Sketching Graph of Quadratic Functions**

**Section:Quadratic Function**


**Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions**

---


8. Which of the following could be the graph of  $y = x^2 + 2x - 3$  ?

(apply, MA 1.2 G.9/2)

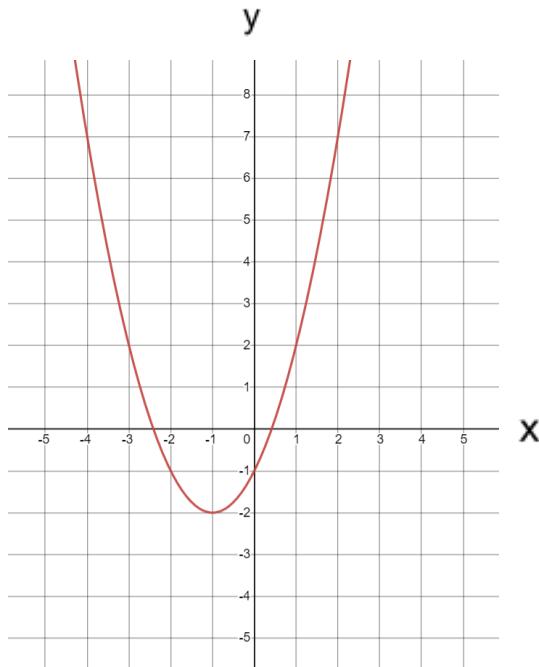
A.



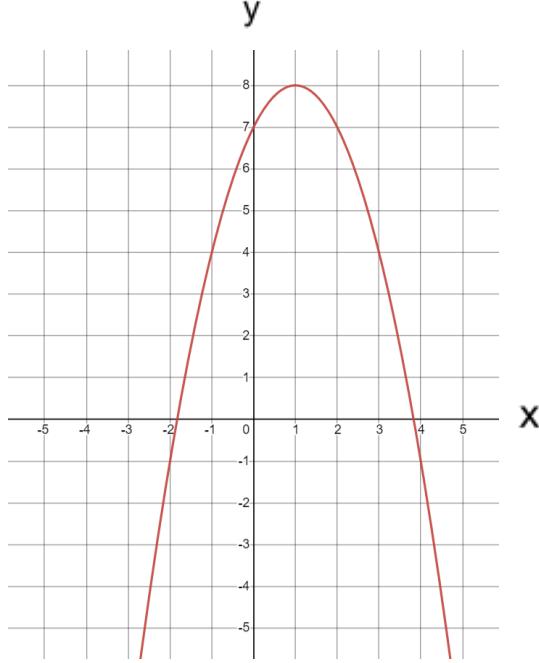
B.



**Quiz: Graph of Function type 2**


**and Sketching Graph of Quadratic Functions**

**Section:Quadratic Function**


**Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions**

---

C.



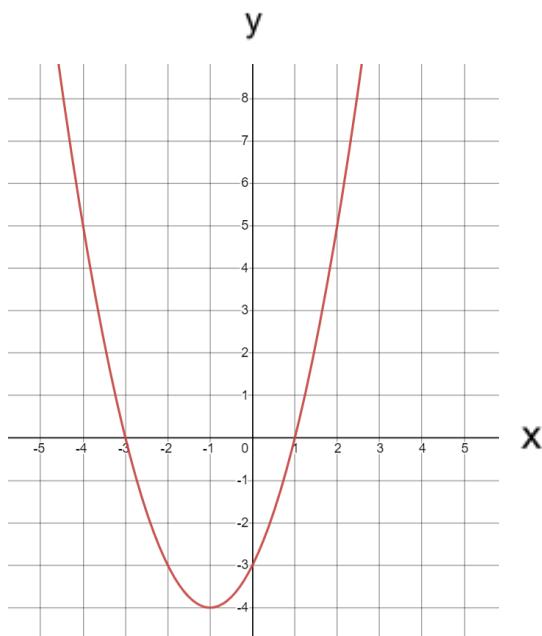
D.




**Quiz: Graph of Function type 2**
**and Sketching Graph of Quadratic Functions**
**Section:Quadratic Function**
**Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions**
**Solution A**

Consider  $y = x^2 + 2x - 3$

Then  $y = (x^2 + 2x) - 3$


$$y = (x^2 + 2(1)x + 1^2) - 1^2 - 3$$

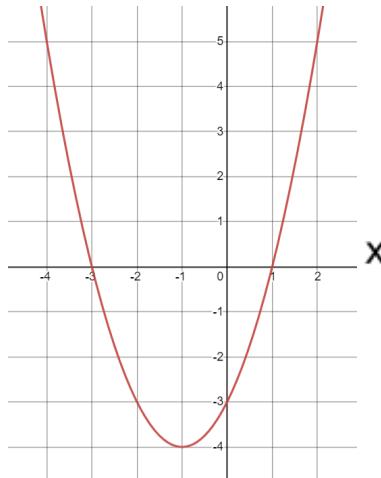
$$y = (x + 1)^2 - 4$$

From the form of graph  $y = a(x - h)^2 + k$

Thus, the vertex is  $(h, k) = (-1, -4)$  and  $a = 1 > 0$  (open-up)

Sketch the graph from  $y = x^2 + 2x - 3$




## Quiz: Graph of Function type 2

### and Sketching Graph of Quadratic Functions

#### Section:Quadratic Function

#### Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions

9.



In the figure above, the graph of  $y = f(x)$  is shown.

Which of the following could be the equation of  $y = f(x)$ ?

(apply, MA 1.2 G.9/2)

|                        |                        |
|------------------------|------------------------|
| A. $y = x^2 - 2x + 3$  | B. $y = x^2 + 2x - 3$  |
| C. $y = -x^2 - 2x + 3$ | D. $y = -x^2 + 2x + 3$ |

Solution  $y = x^2 + 2x - 3$

Consider the graph, we have a vertex of  $(-1, -4)$ ,

$x$ -intercepts are  $(-3, 0)$  and  $(1, 0)$ ,

$y$ -intercepts is  $(0, -3)$ ,

and the parabola is open-up.

From the form of graph  $y = a(x - h)^2 + k$

So, we have a vertex of  $(h, k) = (-1, -4)$  and  $a > 0$

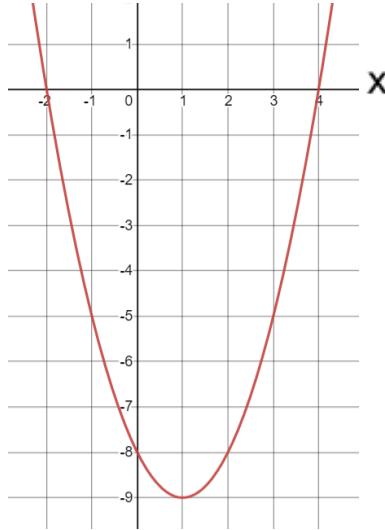
Then,  $y = a(x + 1)^2 - 4$

Since the graph passes  $(1, 0)$ , then  $0 = a(1 + 1)^2 - 4$

$$a(2)^2 = 4$$

So,  $a = 1$ , then  $y = (x + 1)^2 - 4 = (x^2 + 2x + 1) - 4 = x^2 + 2x - 3$

Thus, the equation could be  $y = x^2 + 2x - 3$ .


## Quiz: Graph of Function type 2

### and Sketching Graph of Quadratic Functions

#### Section:Quadratic Function

#### Sub-section: Graph of Function type 2 and Sketching Graph of Quadratic Functions

10.



In the figure above, the graph of  $y = f(x)$  is shown.

Which of the following could be the equation of  $y = f(x)$ ?

(apply, MA 1.2 G.9/2)

- A.  $y = -x^2 - 2x + 8$
- B.  $y = -x^2 - 2x - 8$
- C.  $y = x^2 - 2x - 8$
- D.  $y = x^2 - 2x + 8$

Solution  $y = x^2 - 2x - 8$

Consider the graph, we have a vertex of  $(1, -9)$ ,

$x$ -intercepts are  $(-2, 0)$  and  $(4, 0)$ ,  $y$ -intercept is  $(0, -8)$ ,

and the parabola is open-up.

From the form of graph  $y = a(x - h)^2 + k$

So, we have a vertex of  $(h, k) = (1, -9)$  and  $a > 0$

Then,  $y = a(x - 1)^2 - 9$

Since the graph passes  $(-2, 0)$ , then  $0 = a(-2 - 1)^2 - 9$

$$a(-3)^2 = 9$$

So,  $a = 1$ , then  $y = (x - 1)^2 - 9 = (x^2 - 2x + 1) - 9 = x^2 - 2x - 8$

Thus, the equation could be  $y = x^2 - 2x - 8$ .