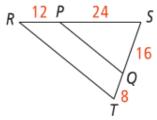
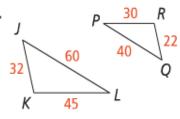
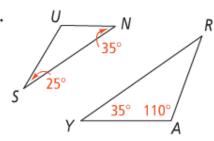
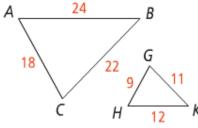
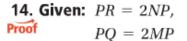

Determine whether the triangles are similar. If so, write a similarity statement and name the postulate or theorem you used. If not, explain.


7.


8.

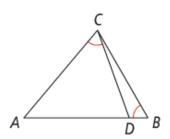

9.

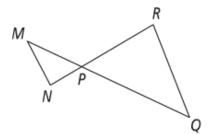

10.



11.

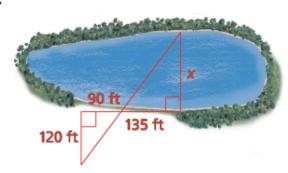
12. A



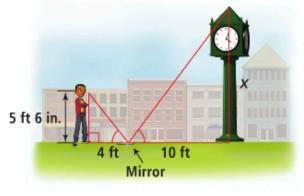


See Problem 3.

Prove: $\triangle MNP \sim \triangle QRP$

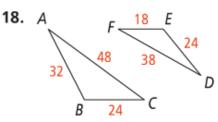


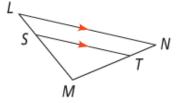
Indirect Measurement Explain why the triangles are similar. Then find the distance represented by x.

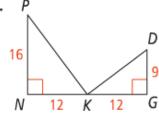


See Problem 4.

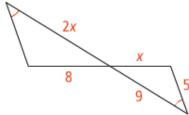
15.

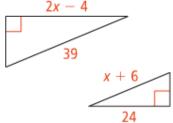



16.

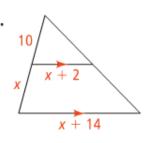

17. Washington Monument At a certain time of day, a 1.8-m-tall person standing next to the Washington Monument casts a 0.7-m shadow. At the same time, the Washington Monument casts a 65.8-m shadow. How tall is the Washington Monument?

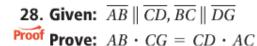
Can you conclude that the triangles are similar? If so, state the postulate or theorem you used and write a similarity statement. If not, explain.

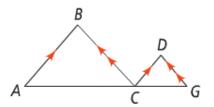

20.


- **21. a.** Are two isosceles triangles always similar? Explain.
 - b. Are two right isosceles triangles always similar? Explain.
- **22. Think About a Plan** On a sunny day, a classmate uses indirect measurement to find the height of a building. The building's shadow is 12 ft long and your classmate's shadow is 4 ft long. If your classmate is 5 ft tall, what is the height of the building?
 - · Can you draw and label a diagram to represent the situation?
 - · What proportion can you use to solve the problem?
- 23. Indirect Measurement A 2-ft vertical post casts a 16-in. shadow at the same time a nearby cell phone tower casts a 120-ft shadow. How tall is the cell phone tower?

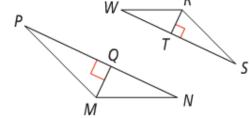
Algebra For each pair of similar triangles, find the value of x.



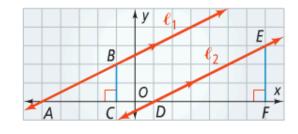

25.



26.



27. Given:
$$\overline{PQ} \perp \overline{QT}$$
, $\overline{ST} \perp \overline{TQ}$, $\frac{PQ}{ST} = \frac{QR}{TV}$ **Proof Prove:** $\triangle VKR$ is isosceles.


- 29. Reasoning Does any line that intersects two sides of a triangle and is parallel to the third side of the triangle form two similar triangles? Justify your reasoning.
- **30. Constructions** Draw any $\triangle ABC$ with $m \angle C = 30$. Use a straightedge and compass to construct $\triangle LKJ$ so that $\triangle LKJ \sim \triangle ABC$.
- **31. Reasoning** In the diagram at the right, $\triangle PMN \sim \triangle SRW$. \overline{MQ} and \overline{RT} are altitudes. The scale factor of $\triangle PMN$ to $\triangle SRW$ is 4 : 3. What is the ratio of \overline{MQ} to \overline{RT} ? Explain how you know.

- **32. Coordinate Geometry** $\triangle ABC$ has vertices A(0, 0), B(2, 4), and Proof C(4, 2). $\triangle RST$ has vertices R(0, 3), S(-1, 5), and T(-2, 4). Prove that $\triangle ABC \sim \triangle RST$. (Hint: Graph $\triangle ABC$ and $\triangle RST$ in the coordinate plane.)
- 33. Write a proof of the following: Any two nonvertical parallel Proof lines have equal slopes.

Given: Nonvertical lines ℓ_1 and ℓ_2 , $\ell_1 \parallel \ell_2$, \overline{EF} and \overline{BC} are \perp to the x-axis

Prove: $\frac{BC}{AC} = \frac{EF}{DF}$

