SPIP: Support Streaming SQL interface in Spark

Authors: Jacky Lee, Genmao Yu, Sujith Chacko

1. Background and Motivation

At present, KSQL (Kafka SQL), Flink SQL (which is actually based on Calcite), SQL Stream,
Storm SQL all provide an easy-to-use yet powerful interactive SQL interface, with which
users can easily develop a stream processing, without the need to write code in a
programming language such as Java or Scala. In Spark, we can also provide a streaming
SQL syntax based on Structured Streaming.

There are some benefits to supporting SQL interface for Structured Streaming:

e Users, who are unfamiliar with spark streaming, can easily use SQL interface to develop
a stream processing especially when migrating static query to stream query.

e Unified management for stream table and static table. We can store stream table
definition in unified metastore, like Hive metastore. Users can easily read/write data
from/to stream table. Besides, it is very helpful to do static-steam combination query.

2. Goals

e Introduce an extended SQL interface for stream processing.
e Stream query management SQL interface.

3. Design

3.1 Table and Query

Before introducing design, we should clarify two concepts:

1. Table:In the design of DataSource V2, we extended the capacity of TABLE. It can define
both static data source and stream data source. PS: in the following document, we use
“stream table’ in design description, but not introduce a new table concept.

2. Query:The table supports both batch and streaming. When define a table in spark, we
may be able to query it in batch or stream way. We should find a way to define how to
read a Table, especially how to define a stream query on table.

In this document, we try to extend current SQL interface to support expressing stream query.
Before we do a stream query, we should be able to define a stream table with table DDL.
And then we can do a query on stream table, like select or insert, i.e. stream query related
table DML. As we can do multiple queries on the same stream table, and all these query
jobs SHOULD be long-running, so we MUST be able to manage these jobs, including “get

status”, “restart job” (failover) and so on, i.e. Stream Query Management (let’s put it this
way). We will introduce these concepts in detail in following sections.



3.2 TABLE DDL PROPOSQL

In this section, we will introduce how to create stream table and start a stream query. We
introduced a new keyword “STREAM” which is the entity of stream query. This “STREAM”

entity contains properties, like “batch interval”, “output mode” and “checkpoint path”, which
can only be set on application/job level.

3.2.1 CREATE TABLE

This DDL is used to define a stream table. We can create a stream table like same way
spark supports data source table creation. Besides, there is no obvious difference between
static table definition and stream table definition.

Proposed DDL Equivalent in DataFrame

create table kafka_int_test SessionCatalog.create Table(tableDefinition)
using kafka

options (

subscribe="test_topic",
kafka.bootstrap.servers="localhost:9092"

);

3.2.2 CREATE SCAN

As mentioned above, "Table" in spark is just a definition of data source. For some specific
data source, like Kafka, we can do both batch and stream query on it. Besides, there are
some runtime configurations should be set when submit query, like ‘maxOffsetsPerTrigger’ in
kafka data source. So there SHOULD be a concept to express these settings. In this section,
we introduce the "'SCAN" syntax. We can use "SCAN' to identify which type of query, and set
some optional configurations.

Proposed DDL Equivalent in DataFrame

create scan kafka_stream_scan spark.readStream.format("kafka")

using stream .option("options in table definition", "option
on kafka_in_test value”)

options( .option("maxOffsetsPerTrigger ","10000")
"maxOffsetsPerTrigger" ="10000"); load()

Proposed DDL Equivalent in DataFrame




create scan kafka_batch_scan spark.read.format("kafka")

using batch .option("options in table definition", "option
on kafka_in_test value")

options( .option("startingoffsets ","10000")
"startingoffsets" ="10000", .option("endingoffsets ","10020")
"endingoffsets"="10020"); Jdoad()

We register these table scan as a temporary view in spark..

3.2.3 CRAETE STREAM

This DDL is used to start a stream query job. User can specify particular stream related
properties in OPTIONS. When this is DDL executed, spark will start a structured streaming
job in a separate thread to do the streaming ingestion, A stream job thread will be
added/stored in a in memory thread safe container, this will enable spark engine to display
all the stream jobs and to stop any stream job with specific DDL’s is been executed by the
user.

Proposed DDL Equivalent in DataFrame

create stream job_1 df.writeStream.format("kafka")

options( .option("kafka.bootstrap.servers","localhost:909

"outputMode" ="Append", 2")

"checkpointLocation"="/path/to/checkpoint", .option("topic","kafka_out_topic")

"trigger"="ProcessTime", .option("checkpointLocation”,

"interval"="1 seconds") "/path/to/checkpoint”)

insert into kaftka_out_test .outputMode("Append"”)

select * from kafka_stream_scan; .trigger(Trigger.ProcessingTime("1 seconds”))
.start()

This query will write result to “kafka_out_test” table. "job_1" is the name of STREAM as well
as streaming query. Here we use the “kafka_stream_scan’, which read kafka data in
streaming way.

3.2.4 Window support

Spark Structured Streaming has introduced a built-in window function to express windowed
aggregations. This window function accepts two duration arguments, “windowDuration” and
“slideDuration”. The “windowDuration” means the width of window, and “slideDuration”
means the sliding interval of the window. In this section, we will introduce three types of
window as alternatives based on existing streaming system, like Flink and Beam.

Group Window Function Description

TUMBLING(time_column, interval) (Fixed windows) Tumbling windows are a
series of fixed-sized, non-overlapping and
contiguous time intervals.




HOPPING(time_column, interval, interval)

(Sliding windows) Hopping windows model
scheduled overlapping windows.

SESSION(time_column, interval)

(unsupported) Session-based windowing, and
see details in

https://i . he.orgljir
565

row PARK-22

Proposed DDL

Equivalent in DataFrame

create stream job_1

options(

"outputMode" ="Append",
"checkpointLocation"="/path/to/checkpoint",
"trigger"="ProcessTime",

"interval"="1 seconds")

insert into kaftka_out_test

select avg(inv_quantity_on_hand) qoh

from kafka_stream_scan

group by tumbling (inv_data_time, interval 1
minute);

df.groupBy(

window($"inv_data_time", "1 minutes"”, "1
minutes”)
.agg(type.avg(_.inv_quantity_on_hand))
.writeStream.format("kafka")
.option("kafka.bootstrap.servers","localhost:909
2")
.option("topic","kafka_out_topic")
.option("checkpointLocation”,
"/path/to/checkpoint”)
.outputMode("Append"”)
.trigger(Trigger.ProcessingTime("1 seconds”))
.start()

Proposed DDL

Equivalent in DataFrame

create stream job_1

options(

"outputMode" ="Append",
"checkpointLocation"="/path/to/checkpoint”,
"trigger"="ProcessTime",

"interval"="1 seconds")

insert into kaftka_out_test

select avg(inv_quantity_on_hand) qoh
from kafka_stream_scan

group by hopping (inv_data_time, interval 1
minute, interval 30 second);

df.groupBy(

window($"inv_data_time", "1 minutes”, "30
seconds”)
.agg(type.avg(_.inv_quantity_on_hand))
.writeStream.format("kafka")
.option("kafka.bootstrap.servers”, "localhost:909
2")
.option("topic","kafka_out _topic")
.option("checkpointLocation”,
"/path/to/checkpoint")
.outputMode("Append"”)
.trigger(Trigger.ProcessingTime("1 seconds”))
.start()

PS: We can discuss whether keep using window function or introduce new keyword.

An optional alternative is the design in_https://arxiv.org/abs/1905.12133v1. Add (as a
starting point) built-in table-valued functions Tumble and Hop which take a relation
and event time column descriptor as input and return a relation with additional



https://arxiv.org/abs/1905.12133v1

event-time interval columns as output, and establish a convention for the eventtime
interval column names. GROUP BY is truly a grouping of rows according to a
column’s value. In Calcite, Beam, and Flink, GROUP BY HOP(...) violates relational
semantics by causing multiple input rows. A more uniform notation for all window
functions. The near-trivial Tumble has the same general form as the input-expanding
Hop, and using a table-valued functions allows adding a wide variety of more
complex functionality (such as calendar windows or sessionization) with a similar
look-and-feel.

3.2.5 Watermark support
As discussed, ‘watermark’ should be a per-query setting. It is inapposite to set it in stream
table definition. Instead, we can set watermark in table scan definition.

Configuraion Description

watermark.column the name of the column that contains the event
time of the row.

watermark.delayThreshold the minimum delay to wait to data to arrive late,
relative to the latest record that has been
processed in the form of an interval (e.g. "1
minute" or "5 hours").

Proposed DDL Equivalent in DataFrame

create scan kafka_stream_scan df.withWatermark("data_time", "2 minutes”)
on kafka_in_test

using stream

options(

"watermark.column" = "data_time",
"watermark.delayThreshold" = "2 minutes
"maxOffsetsPerTrigger" = "10000");

3.2.6 Aggregation support

Proposed DDL Equivalent in DataFrame




create stream job_1
options(
"outputMode"="Append",

"trigger"="ProcessTime",

"interval"="1 seconds")

insert into kaftka_out_test

select device_type, avg(signal) avg_signal
from kafka_stream_scan

group by device_type;

"checkpointLocation"="/path/to/checkpoint”,

df.groupBy($"device_type ")
.agg(type.avg(_.signal))
.writeStream.format("kafka")
.option("kafka.bootstrap.servers”,"localhost: 90
92")

.option("topic","kafka_out_topic")
.option("checkpointLocation”,
"/path/to/checkpoint”)

.outputMode("Append”)
.trigger(Trigger.ProcessingTime("1 seconds"))
.start()

3.2.7 Join support

Structured Streaming supports joining a streaming Dataset/DataFrame with a static
Dataset/DataFrame as well as another streaming Dataset/DataFrame.

e Stream-stream joins

Proposed DDL

Equivalent in DataFrame

create stream job_2
options (

“outputMode” = “complete”)

insert into kaftka_out_test

select t1.value from

(select cast(value as string), timestamp as
time1

from kafka_stream_scan_1) as t1

inner join

(select cast(value as string), timestamp as
time2

from kafka_stream_scan_2 ) as t2

on time1>=time2 and time1 <= time2 +
interval 10 seconds

where t1.value == t2.value

"checkpointLocation" ="/path/to/checkpoint”,

val df1 = spark.readStream...load()

val df2 = spark.readStream...load()

val df = df1.join(df2,expr(""

time1 >=time2 AND

time1 <= time2 + interval 10 seconds"""))

df.writeStream.format("kafka")
.option("kafka.bootstrap.servers","localhost:909
2")

.option("topic","kafka_out_topic")
.option("checkpointLocation”,
"/path/to/checkpoint”)

.outputMode("Complete”)

.Start()

e Stream-static joins

Proposed DDL

Equivalent in DataFrame




create stream job_2

options (

"checkpointLocation" ="/path/to/checkpoint”,
“outputMode” = “complete”)

insert into kafka_out_test

select t1.value from

(select cast(value as string) from
kafka_stream_scan) as t1

inner join static_table

on t1.value = static_table.value

val streamDF = spark.readStream...load()
val staticDF = spark.read....load()
val df = streamDF.join(staticDF)

df.writeStream.format("kafka")
.option("kafka.bootstrap.servers","localhost:90
92")

.option("topic","kafka_out _topic")
.option("checkpointLocation”,
"/path/to/checkpoint”)
.outputMode("Complete”)

.start()

3.3 Stream Query Management

As mentioned above, we may do multiple queries on stream tables, and all these stream

queries SHOULD be long running. When we do SQL query in Spark SQL CLI in interactive
way, the stream SQL query MUST NOT print any log into console, as it will block subsequent
SQL query. So, we can choose to submit these queries to SQL server, like Thrift Server or
Livy. Then, there should be a Stream Query Management to manage these stream queries,

providing:

1. LIST stream query

SHOW stream query status
DESC a stream query
STOP a stream query

(RE) START a stream query

orwnN

Proposed DDL

Equivalent in DataFrame

LIST STREAM

None

Proposed DDL

Equivalent in DataFrame

SHOW STREAM jobName

val query = df.writeStream.format(“kafka”).start
query.id()

query.runld()

query.status()

query.recentProgress()

Proposed DDL

Equivalent in DataFrame

DESC STREAM jobName

None

Proposed DDL

Equivalent in DataFrame




STOP STREAM jobName val query = df.writeStream.format(“kafka”).start
query.stop()

Proposed DDL Equivalent in DataFrame

START STREAM jobName query.start()

3.4 Unified management for stream and static table

Materialized the streaming table definition in some external catalog, like HiveMetastore or
others. Then the stream table can be reused in other session without creating them again.

4. Optional Implementation Sketch

Main works will happen at logical plan analysis phase. In this phase we will achieve:

1. Resolve “CREATE TABLE” DDL command to create stream table. By parsing USING
keyword, we can analyze the kind of stream data source. Save the stream table
definition into metastore.

2. Resolve “CSAS” (Create Stream As Select) DDL command to start a stream query. We
need to resolve UnresolvedCatalogRelation to either StreamRelation or Static Relation.
In this phase, we will create an either DataStreamReader to read streaming data

(unbound reading from stream data source) or DataFrameReader to read non-streaming

data (range reading from stream data source).
3. Resolve watermarks and windows. We need to transfer the Filter logical plan to

EventTimeWatermark logical plan. We will also need to do some validation check about

watermark, i.e. proximity declaration principle and one-on-one principle.

1. Resolve “GREATE TABLE® DDL command, save
stream table definition to metastore

2. Resolve "CSAS” DDL command, start stream query
3. Resolve UnresolvedCatalogRelation to
StreamRelation

4. Resolve watermarks and windows

Spark SQL Aﬁlalysis Optimize Physical

Optimized
LogicalPlan

Unrasolved
LogicalPlan

LogicalPlan —= ——=| PhysicalPlan

/V

-y
Catalog
DataFrame

5. Rejected alternatives

In the Streaming SQL design process, we have gone through several types of design:



6.

(KEEP discussing) Use flag to identify the type of table (static or stream) and query
(batch query or stream query). In the design of DataSource V2, the Table should only
contain the information about data source, there is no need to identify a table is static or
stream. Besides, there is no need to add flag for query, because we can achieve this by
checking the query properties. For example, we may be doing a stream query if given an
unbound offset of Kafka. Similarly, we may be doing a batch query if given a range offset
of Kafka.

Directly add streaming related syntax, when the semantic analysis can be converted into
an actual plan. The disadvantage is the system not only changes to much, but also
become less friendly to users.

Only modify the semantic layer. The problem is that we can't determine if the user uses
offline or real-time queries, because the offline queries for Kafka source are supported in
Spark.

Modify the syntax layer, identify Streaming SQL, the Table is defined as a special
UnresolvedRelation, the semantic layer directly to its analysis. The problem is that it is
impossible to determine whether Table should be changed to StreamingRelation,
especially when a query like Stream join Batch is executed.

Identify Streaming Query with the 'stream’ keyword. It supports pure-SQL very efficiently,

but does not support Table API well. Users cannot implement complex Streaming
through Table/SQL API + DataSet API.

Related Works

6.1 Apache Beam

Apache Beam is an open source, unified model for defining both batch and streaming
data-parallel processing pipelines.

External Table:Beam SQL's CREATE EXTERNAL TABLE statement registers a virtual

table that maps to an external storage system. For some storage systems, CREATE

EXTERNAL TABLE does not create a physical table until a write occurs. After the

physical table exists, you can access the table with the SELECT, JOIN, and INSERT

INTO statements.

SqlTransform: SQL query is translated to a PTransform, an encapsulated segment of a

Beam pipeline. You can freely mix SQL PTransforms and other PTransforms in your

pipeline. SqlTransform.query(queryString) method is the only API to create a

PTransform from a string representation of the SQL query.

Window and Watermark:

o Use Beam’s windowing semantics in two ways: (a) you can configure windowing on
your input PCollections before passing them to a BeamSq| transform. (b) you can use


https://beam.apache.org/documentation/io/built-in/
https://beam.apache.org/releases/javadoc/2.11.0/index.html?org/apache/beam/sdk/extensions/sql/SqlTransform.html

windowing extensions in your windowing query, which will override the windowing of
your input PCollections

o Triggers allow processing of late data by triggering after the event time watermark
passes the end of the window. Triggering can only be used by setting it on your input
PCollections; there are no SQL extensions for specifying triggering.

Join limit: only support INNER, LEFT OUTER, RIGHT OUTER.

Behaviour in shell: specify the LIMIT x clause at the end of the SELECT statement to

limit the output to x number of records. Otherwise, the pipeline can potentially run

forever if one of the tables represents an unbounded source.

related docs:
e https://beam.apache.ora/documentation/dsls/sqgl/windowing-and-triggerina/

e hitps://beam.apache.org/documentation/dsls/sql/create-external-table/

6.2 Apache Flink

Current Flink SQL API support only DML (e.g. SELECT and INSERT statements), and a new
Flink Table DDL design is under discussing, link. IIUC, the job specific parameters, like
“checkpoint’, should be set in job env. There is not a concept in Flink table DDL to define a
stream job.

7. FAQ

7.1 Multiple stream tables support?

Yes, we support one query on multiple stream tables.

7.2 Multiple streaming query support?

(KEEP discussing) Is it necessary to support multi streaming? Support multi streaming
means it will be difficult to check the log if one of these Streaming has errors. It also causes
different streams to compete for resources, making the computing environment more
complex.

7.3 Interactive programing support?

Yes, we support running streaming query interactively. As mentioned above, we run stream
query in a “detached” way. All stream queries are running in threads, and it SHOULD not
print any log into console to disturb interactive programming. We can use Stream Query
Management DDL to manage our stream queries.


https://beam.apache.org/documentation/dsls/sql/windowing-and-triggering/
https://beam.apache.org/documentation/dsls/sql/create-external-table/
https://docs.google.com/document/d/1TTP-GCC8wSsibJaSUyFZ_5NBAHYEB1FVmPpP7RgDGBA

	1. Background and Motivation 
	2. Goals 
	3. Design 
	3.1 Table and Query 
	3.2 TABLE DDL PROPOSQL 
	3.2.1 CREATE TABLE 
	3.2.2 CREATE SCAN 
	3.2.3 CRAETE STREAM 
	3.2.4 Window support 
	3.2.5 Watermark support 
	3.2.6 Aggregation support 
	3.2.7 Join support 

	3.3 Stream Query Management 
	3.4 Unified management for stream and static table 



	4. Optional Implementation Sketch 
	5. Rejected alternatives 
	6. Related Works 
	6.1 Apache Beam 
	7. FAQ 

	7.1 Multiple stream tables support? 
	7.3 Interactive programing support? 


