
PWAs as URL Handlers
This Document is Public

Authors: lu.huang@microsoft.com, mandy.chen@microsoft.com
Contributors/Reviewers: <your_email_here@>

Last Updated: March 2021

Status: In development, M91 Dev Trial

Explainer
WICG/pwa-url-handler

Platforms
Desktop platforms (Windows, MacOS, Linux)

Tracking Bug
1072058 - Ability for PWAs to be registered as URL Handlers

Implementation Status
See crbug for merged CLs. See tracking sheet for in progress and planned CLs. See Chrome
status page for dev trial, origin trial, and launch status.

Summary

Developers can create a more engaging experience if Progressive Web Apps (PWAs) are
able to register as handlers for https uniform resource locators (URLs). This explainer
proposes a scheme for a PWA to register as a URL handler with the browser during
installation, and launch when relevant URL links are activated. This document describes the
design for implementing the feature in Chromium.

Background

Today, native applications on many operating systems (Windows, Android, iOS, macOS) can
be associated with http(s) URLs. They can request to be launched as URL handlers when
associated URL links are activated. For example, a user could click on a web link to a news
story from their native email client. An associated native app for viewing news stories that
the user has installed could be launched directly to handle the activation of the web link.
PWAs would be more comparable to native apps if they also had the ability to declaratively
register as URL handlers from within their web app manifest.

mailto:lu.huang@microsoft.com
mailto:mandy.chen@microsoft.com
https://github.com/WICG/pwa-url-handler
https://bugs.chromium.org/p/chromium/issues/detail?id=1072058
https://bugs.chromium.org/p/chromium/issues/detail?id=1072058
https://docs.google.com/spreadsheets/d/1yfVM5e1GTyA2C_K_q-wiYTVWONmeaSuVcar8mbnPVOc/edit?usp=sharing
https://www.chromestatus.com/feature/5739732661174272
https://www.chromestatus.com/feature/5739732661174272
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/PwaUriHandler/explainer.md

There was a past experiment in Chromium that captured link navigations and launched
PWA windows if the link URL was in the PWA’s app scope. This work informed sw-launch, a
more recent proposal which gives PWA developers more control over how URLs in scope of
an installed PWA are launched by triggering an event in the service worker. Recently (May
2020), sw-launch added a declarative link capturing (DLC) design that makes use of the web
app manifest as well. A declarative approach allows for validation at installation time
instead of navigation time, thereby enabling integration with OS URL handling features.
URL handling at the OS level is an important goal for us and would further improve the
PWA experience with native UX.

While both declarative link capturing and this proposal would allow a PWA to launch in an
app window in response to a URL launch, DLC only targets in-scope URLs. URL Handling
would allow out-of-scope URLs to also be captured by PWAs. From discussion with DLC’s
authors, we decided that the two proposals can be developed independently, with one
focused on the launch behavior for in-scope URLs, and the other focused on enabling PWAs
to handle URLs from different origins.

Goals

Refer to the explainer for the latest set of goals. This document describes the dev. design
for browser level URL handling in Chromium. Components touched include the blink web
app manifest parser, web app database, OS integration manager, local state prefs, and
startup browser creator. We also describe components for web app to origin association
validation in this document.

Non-Goals

This document does not discuss custom URL protocol handling, which being designed as a
separate feature. There is a separate explainer and dev design spec for that feature.

This document does not discuss the registration of URL handlers with the OS. We will start
a separate design doc in the future for OS integration.

Synopsis

The “Functional Design” section serves as feature specification. Skip ahead to “Interfaces
and Interactions” and “Dev Design” for technical design.

1.​Functional Design
First, we describe the different usage scenarios of URL handling as well as expected behavior. Not all
details in the explainer are duplicated here.

1.1.​PWA developer

1

https://bugs.chromium.org/p/chromium/issues/detail?id=740783
https://www.w3.org/TR/appmanifest/#scope-member
https://wicg.github.io/sw-launch/explainer.html
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md
https://www.w3.org/TR/appmanifest/#scope-member
https://github.com/WICG/pwa-url-handler/issues/11
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/PwaUriHandler/explainer.md
https://github.com/WICG/pwa-url-handler/blob/master/explainer.md#web-app-to-origin-association
https://github.com/WICG/pwa-url-handler/blob/master/explainer.md#web-app-to-origin-association
https://docs.google.com/document/d/14-_u_DSUKCC0XT9rWgQz9SytDQpCet--KVROV_YTkGw/edit?usp=sharing
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/URLProtocolHandler/explainer.md
https://microsoft.sharepoint.com/:w:/r/teams/Edge/Specs/Developer%20Experiences/PWA/Dev%20Design%20Spec%20-%20URL%20Protocol%20Handler%20for%20PWAs.docx?d=waafe5d3a37654ee3a205c5c54dfc1a97&csf=1&e=Hve3Ad

PWA developers will be able to include a url_handlers member in the web app manifest. This
member contains web origin strings. The installed app can be launched by the browser to handle
incoming URL link activations if the URL matches any of those origins. PWAs can handle URLs that
are outside of their own app scope and even from other origins.

The out-of-scope content needs to participate in a handshake with each app they recognize. We
propose a web-app-origin-association file format that origins could use for the handshake. The
browser will validate this handshake.

Content owners are able to configure the allowed and disallowed paths on their origin for each web
app they recognize for this feature.

1.2.​PWA user
When a user installs a PWA with an url_handlers manifest member, the browser will silently process
its contents and register that PWA for URL handling. The user does not have to give consent at install
time.

When the user activates a link outside the browser and the browser is launched, all PWAs registered
for URL handling from all profiles will be matched against the launch URL.

●​ OSes commonly carry out a URL activation request from native applications by launching
the default http/https protocol handler app (usually a browser) with a URL parameter.
(This means that our current design must work through the default chrome.exe startup
process instead of a special-purpose executable, package, or shim.)

If no apps match the launch URL, browser startup will proceed normally and likely result in the URL
being rendered in a new window or tab.

When one or more matches are found, what the user experiences depends on these factors:

●​ Is there a previously saved user choice for the (app_id, profile, url_handler entry)
combination that matched?

●​ Are there more than one (app_id, profile, url_handler entry) combination that matches the
input URL? If so, has the user saved a preference for one of them in the past?

1.3.​User intent, User choice
Instead of displaying the url_handlers information to the user and asking if they give permission to
activate the registration (i.e. an install-time permission model), newly registered url_handlers will be
registered silently. Before a matching app is launched, the user needs to provide an explicit action to
indicate their permission. This is collected with an intent picker dialog.

2

https://tools.ietf.org/html/rfc6454#section-7
https://bugs.chromium.org/p/chromium/issues/detail?id=1105257

Figure 1: Intent Picker Dialog mockup.

This dialog is shown every time unless the user has previously launched an app and checked
“Remember my choice”.

1.3.1.​ Permission
Permission is the implied consent given by the user by performing the action of selecting an app and
clicking ok. Permission is recorded at the (app id, profile, url_handlers entry) granularity.

●​ The (app_id, profile, url_handlers entry) combination will receive permission if that app_id
and profile is launched from the intent picker.

●​ Permission granted to a (Profile A, App1, “https://app1.com/apple”) combination does not
carry over to (ProfileA, App1, “https://app1.com/orange”).

●​ Recording permission at (app_id, profile) granularity was considered but rejected.
Because an app can request to handle URLs with completely different origins, users
should grant permissions to individual url_handlers entries separately to avoid
confusion.

●​ If multiple url_handlers entries from the same app and profile matched, they all receive
permission. (The user picks an app, not a url_handlers entry.)

●​ If the dialog is closed or canceled without launching an app, no combination receives
permission. URL is opened in a tab.

The “Remember my choice” checkbox does not have to be checked to save permission values. The
app has to be selected and launched.

1.3.2.​ Choice
Because the intent picker is displayed whenever there are 1 or more apps that match the input URL,
we allow users to save their app choice with a checkbox. The intent picker dialog has a “Remember
my choice” checkbox to allow the user to save their selection of matching apps if a similar URL is
observed in the future.

3

In similar designs, the user is often allowed to save the user’s choice of app for handling a particular
URL protocol or URL origin, etc. The Apps For Websites feature in Windows 10 uses origin as the key
for saving the user’s choice of apps associated with a URL. Eg. If two separate apps FooApp and
BarApp both use a free host, apps.com, they could both register for AppsForWebsites URL handling.
If they are hosted at apps.com/foo-app and apps.com/bar-app respectively, they could register to
handle their own respective paths. An input URL will not match both apps unless both apps register
to handle “apps.com/*”. Otherwise they can each be saved as the default choice for apps.com
without being presented side by side. If they are hosted at foo-app.apps.com and bar-app.apps.com
respectively, they could also each independently be saved as the default app.

PWAs can also save the user’s app choice using the above-mentioned model. Even though PWAs are
naturally associated with a path instead of an entire origin, it is still possible to save the default
choice and key it by origin. PWAs could be organized under a sub-domain, e.g. [app name].host.com
to make them different origins.​
​
When a URL (e.g. not-a-pwa.com/some-content) is matched to one or more PWAs, we want to know
if there are any among them that have been saved as the default app for the origin: not-a-pwa.com.
It is possible we could find more than one: App1 registers for not-a-pwa.com/sub-path/* -> user
activates third-party-not-a-pwa.com/sub-path/some-content -> user selects App1 and checks
remember my choice. App2 registers for not-a-pwa.com/ * -> user activates
not-a-pwa.com/some-content -> App1 is not displayed as an option because it is more restrictive ->
user selects App2 and checks remember my choice. When the user activates
not-a-pwa.com/sub-path/some-content again, both App1 and App2 will be presented as options,
and both have been saved as the default handler for the origin not-a-pwa.com. Nested scopes could
also have the same problem. ​
​
Since there is a tie, we will present both options even if the options may not make sense to the user
as alternatives. Checking the checkbox during this selection would not have any effect so it will be
hidden instead. The user will always have to pick between these two apps for that URL. This
behavior is not ideal but we believe it will rarely be exposed to the user if apps are conscientious
about using sub-domains and writing good url_handlers.

Once saved, default choices will have to be changed by the user by visiting
chrome://settings/content/urlHandler. Because saved choices are keyed by origin, they can be
displayed in groups by origin. Saved choices can be removed with a button.

We want to launch a PWA as a default choice only if it matches a (app_id, profile, url_handlers entry)
combination and an origin : (app_id, profile) entry is found in the saved decisions. This means that
different url_handlers entries of the same app will share a saved decision if they have the same
origin, but will not otherwise. In the most common case where all of an app’s url_handlers entries
target in-scope URLs, saving it as a choice will always skip the intent picker for future matches. This
design allows the user to mentally associate apps with origins instead of having to understand PWA
scope.

1.4.​App Launch

4

https://docs.microsoft.com/en-us/windows/uwp/launch-resume/web-to-app-linking

When an (app_id, profile) has been found as the matching handler for an input URL, it can then be
launched without user input in some cases, or using the intent picker dialog with user input. What
URL is navigated to will depend on whether the input URL is within the app scope.

1.5.​App Launch With Out-of-Scope URLs
How out-of-scope URLs should best be presented within an app window if they cause an app launch
through URL handling is still being developed. Our current design is to forward information after a
matching app is selected to a document event handler and allow it to control the launch behavior.
This is similar to the existing_client_event option from declarative link capturing and is intended to
be forward compatible.

Other options for handling out-of-scope URLs:

●​ App launches to its start URL.
●​ Render the out-of-scope URL in the app window within CCT UI.
●​ Pass launch information to the start_url document using URL parameters.
●​ Launch information and control could be handled to a service worker event handler.

1.6.​App Installation Behavior
Other aspects of the app installation behavior are unaffected. In the future, url_handlers in the web
app manifest can registered with the OS using OS-specific URL handling APIs (eg.
Windows.appUriHandler).

1.7.​App Uninstallation Behavior
App uninstall behavior is unaffected. All app data associated with a particular app install will be
removed during app uninstall, including its URL handling registrations and preferences.

1.8.​ Manifest Update
When a PWA undergoes web app manifest update, it is possible for the url_handlers data to
change. A manifest update will cause origin associations to be revalidated. New or modified
url_handlers entries will update registrations. Saved app choices that are affected will also be
cleared.

1.9.​ Profile deletion behavior
If a profile is deleted, all installed app data from that profile, as well as their associated browser
preferences will be removed. Any URL handling registrations will also be removed.

1.10.​ Settings available in the settings page

5

https://github.com/WICG/pwa-url-handler/issues/8
https://github.com/WICG/pwa-url-handler/blob/master/explainer.md#browser-changes
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md#proposal
https://docs.microsoft.com/en-us/windows/uwp/launch-resume/web-to-app-linking
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/prefs/browser_prefs.h
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/prefs/browser_prefs.h

Similar to how there is a selection for protocol handler settings at chrome://settings/content, we will
add a selection for URL handler settings.​

Figure 3 We will place “URL Handlers” here and rename “Handlers” to “Protocol Handlers”.

Similar to the protocol handlers settings page at chrome://settings/handlers, we will add a settings
page at chrome://settings/urlHandlers to manage permissions and preferences for URL handlers.

Figure 4: Protocol Handlers settings page. We will create a similar page to control saved app choices for URL handlers.

1.11.​ Notifications
If necessary, URL handling actions can be explained to the user using notifications. We will show a
notification from the app window if URL handling successfully launches an app. This could be
implemented as an infobar, with a link to a “Learn more” page, and another link to
chrome://settings/content/urlHandlers.

​
“Chrome launched www.app.contoso.com/... in [app icon] [app name]. [Learn more]
[Manage]”

This infobar will keep showing for a user profile until the user interacts with it (by clicking on the
links or closing it).

6

https://www.chromium.org/user-experience/infobars
http://www.app.contoso.com/

2.​Interfaces and Interactions
2.1.​Public API Added/Changed

This design adds a new manifest member, url_handlers, to the web app manifest specification and
introduces a new web-app-origin-association file format.

●​ url_handlers allow PWAs to declaratively register as URL handlers for a set of URLs.

●​ The web-app-origin-association file allows origins to grant permission to be associated
with PWAs and for their URLs to be handled by those PWAs.

Refer to the explainer for examples of url_handlers and web-app-origin-association.

2.2.​API Consumption
The new web app manifest field url_handlers can be set by PWA developers to register a PWA as a
URL handler.

The new web-app-origin-association file is consumed by owners of origins specified in
url_handlers. The content owner must host a web-app-origin-association file to validate the
association with the PWA. The explainer specifies where the web-app-origin-association file must
be hosted.

2.3.​Breaking Changes
There are no breaking changes as a new web app manifest member is added. Changes in the web
app manifest as well as the web-app-origin-association file will be ignored by browsers that do not
implement this design (backwards compatible). All new features will be gated by a feature flag.
Activation of these features does not require any data migrations or conversions. The new feature
flag will be named enable-desktop-pwas-url-handling. We may also create a runtime feature flag
later to enable origin trial.

2.4.​Privacy and Security Considerations
Refer to the explainer for privacy and security considerations. Also see the privacy and security
self-review.

3.​Dev Design
3.1.​Overview

Add url_handlers member to the web app manifest

PWAs register for URL handling by adding the url_handlers member to their web app manifest. This
data is parsed from the manifest, transferred from the render process to the browser process,
converted to web_app::WebApp objects and serialized to a protobuf database. Manifest content is
accessible from web_app::WebAppRegistrar.

Validate web-app-origin-association

If url_handlers are present and contain origin strings, the browser needs to validate the
web-app-origin-association files of those origins to get their content

7

https://github.com/WICG/pwa-url-handler/blob/master/explainer.md#manifest-changes
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/PwaUriHandler/explainer.md
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/PwaUriHandler/explainer.md
https://github.com/WICG/pwa-url-handler/blob/master/PRIVACY_AND_SECURITY.md
https://github.com/WICG/pwa-url-handler/blob/master/PRIVACY_AND_SECURITY.md
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app.h
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_registrar.h?originalUrl=https:%2F%2Fcs.chromium.org%2F

Build an index of URLs and apps registered for URL handling

In addition to parsing and storing the url_handlers data, the browser will maintain an index that is
updated with new URL handling registrations for efficiently matching URLs with handlers. The index
will be backed by local state prefs, and it will be updated by installations, uninstallations, and
updates of PWAs from all profiles as well as relevant profile and web app registrar changes. This
enables any installed app from any profile to be launched at browser startup if there is a match.

Match input URL to one or more URL handlers. Launch app.

If the browser is started with a command line https URL argument, that URL will be matched against
registered URL handlers. Results will be displayed by an intent picker dialog.

Intent picker dialog, notification, settings page, DevTools

We will also implement user settings features and developer tools features:

●​ Show an intent picker dialog so users can control app launch with an explicit action.
●​ Show saved default URL handlers in chrome://settings/content/urlHandlers page.
●​ Show a notification when an app is launched.
●​ F12 DevTools Application panel shows information about URL handlers to aid development.

3.2.​Manifest parsing and storage
The new url_handlers member is parsed from the web app manifest in the renderer process, sent
to the browser process, stored in a WebApp object, and is then serialized in proto format for storage
to the web app database. We modify the manifest parser, the mojom IPC from renderer to browser
process, the web_app::WebApp class, and the web_app::WebAppDatabase class that
serializes/deserializes WebApp objects to disk.

3.2.1.​ Manifest Parser Changes

/third_party/blink/renderer/modules/manifest/manifest_parser.cc
We add new methods to parse the value of url_handlers. They will be called from within
ManifestParser::Parse().

The manifest parser enforces limits on the number of url_handler entries per web app manifest (10),
and limits on the lengths of each path and each exclude_path (2000 characters).​

3.2.2.​ Mojom Changes

/third_party/blink/public/mojom/manifest/manifest.mojom
We add a field to the mojom struct definition for Manifest.

struct Manifest {
 array<ManifestUriHandler> url_handlers;
 …
}
struct ManifestUrlHandler {
 mojo_base.mojom.String16 origin;

8

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/browser_process.h;l=134;drc=21772d373fa07f7827df77442411fdaef70ce6a4
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app.h;l=29?q=WebApp
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_database.h?q=web_app_database
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/modules/manifest/manifest_parser.h
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/mojom/manifest/manifest.mojom
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app.h?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_database.h;bpv=1;bpt=1;l=36?q=WebAppDatabase&ss=chromium%2Fchromium%2Fsrc&gsn=WebAppDatabase&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_database.h%23WebAppDatabase%253Aweb_app%2523c%2523bcjI%2524E5g8%2524i&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_migration_manager.h%23iD7xRD0aBj_UnykkNWNxPt16fiy9S-wK5TzKvpnu8XE
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/modules/manifest/manifest_parser.cc;l=55;bpv=0;bpt=1?originalUrl=https:%2F%2Fcs.chromium.org%2F

};

Similarly, we add equivalent manifest fields to:
/third_party/blink/public/common/manifest/manifest_mojom_traits.h
/third_party/blink/public/common/manifest/manifest.h
/third_party/blink/renderer/modules/manifest/manifest_type_converters.h/cc

/third_party/blink/common/manifest/manifest_mojom_traits.cc
Modify StructTraits::Read to account for url_handlers.

3.2.3.​ WebAppInfo, WebApp

/chrome/common/web_application_info.h
Add url_handlers to WebApplicationInfo.

 std::vector<blink::Manifest::UriHandler> url_handlers;

/chrome/browser/web_applications/web_app.h/cc
Add an apps::UrlHandlers member, getter and setter to web_app::WebApp. Expose this information
through the web app registrar.

3.2.4.​ Manifest Histogram

/third_party/blink/renderer/modules/manifest/manifest_uma_util.cc
There are existing histograms for each of the manifest fields. Add a new histogram for url_handlers.

3.2.5.​ Other Changes

/third_party/blink/common/manifest/manifest.cc
Edit Manifest::IsEmpty to check for url_handlers.

/chrome/browser/web_applications/components/web_app_install_utils.cc
Copy manifest.url_handlers in UpdateWebAppInfoFromManifest to WebApplicationInfo.

3.3.​URL handler Registration and Indexing
We want to avoid matching for apps by iterating all installed apps from all profiles. Therefore, during
installation, we also add to an index of active URL handlers during the web app installation. This
index is built using local state prefs. A new class UrlHandlerPrefs is added to manage these browser
prefs.

9

https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/common/manifest/manifest_mojom_traits.cc;drc=d4ca6e0c8531d8518611f8fc0b7eb648a995c20f;bpv=1;bpt=1;l=47?originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=Read&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fthird_party%2Fblink%2Fcommon%2Fmanifest%2Fmanifest_mojom_traits.cc%23aFSqBJ_02RaeKRlJ7AvmP4PUC-BMHnepOMXRVVfHxuY&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fthird_party%2Fblink%2Fpublic%2Fcommon%2Fmanifest%2Fmanifest_mojom_traits.h%23JDEvKBlGEHXd3tBOtXEXkUN2z0T7RlpyerOV5wHesqY
https://source.chromium.org/chromium/chromium/src/+/master:chrome/common/web_application_info.h;drc=d4ca6e0c8531d8518611f8fc0b7eb648a995c20f;bpv=1;bpt=1;l=77?originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=WebApplicationInfo&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fcommon%2Fweb_application_info.h%23G7sFe4hMPvdMGsHmEcJf-woZNTff_D_lUJSByp2JydY&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fcommon%2Fweb_application_info.h%23WebApplicationInfo%2523c%2523lC3M3PQ4JFi&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Finstall_manager.h%23Z36cbPzKwf-tmxU10aPcRy5sCInlEp-7V8-_SQN7TSY&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fweb_app_install_utils.h%23JPoQtRnNDShDdasVP6s2Nchy1zSiUcFZN0fi5pgiofY
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app.h;bpv=1;bpt=1;l=24?q=web_app::WebApp&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=WebApp&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app.h%23WebApp%253Aweb_app%2523c%2523ptmwI7q5DJd&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_registrar.h%23KHZDmLLYdPpCiivqYGidM7CalJKZdV7HzLWyTBXGIr4&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_sync_install_delegate.h%23DfnnbqAi_fEtZPOWtSOwpT7wqIY6Zz8PM1mLUrBrX90&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fapps%2Fapp_service%2Fweb_apps_base.h%230RrLsN0aoPyeh3_2RIPG7tEFcuIKJ9T_nMuAMqdR9HM&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_install_finalizer.h%23xUN6JY66gon9M1LJ8ww4pJPOVYbv_OAiP2ZLtNoA25E&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_registry_update.h%23nck1QEJE4rgAOJfaOTs1coIJ_AWeOs9Vw5IXZVUswGA
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_registrar.h
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/common/manifest/manifest.cc;bpv=1;bpt=1;l=45?q=third_party%2Fblink%2Fcommon%2Fmanifest%2Fmanifest.cc&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=IsEmpty&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fthird_party%2Fblink%2Fcommon%2Fmanifest%2Fmanifest.cc%23Y6VKe7vc-N8JlDmz2HPBSsSgpisB6ujkYQyM0iP1pNc&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fthird_party%2Fblink%2Fpublic%2Fcommon%2Fmanifest%2Fmanifest.h%23m_fZzP29cqYB1fs4gP58aD4MzxdUPbFZSvSTzdhXCeU
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/web_app_install_utils.cc;bpv=1;bpt=1;l=131?q=UpdateWebAppInfoFromManifest%20&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=UpdateWebAppInfoFromManifest&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fweb_app_install_utils.cc%23ypelCIIKTb8AymNEW532F1BOjTwvev7DT_NW05lOrgM&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fweb_app_install_utils.h%23BYPrm5SzY4aheEyqYEC970S-ACIkdcjg0TQNS5Nhsu4
https://source.chromium.org/chromium/chromium/src/+/master:chrome/common/web_application_info.h;drc=d4ca6e0c8531d8518611f8fc0b7eb648a995c20f;bpv=1;bpt=1;l=77?originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=WebApplicationInfo&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fcommon%2Fweb_application_info.h%23G7sFe4hMPvdMGsHmEcJf-woZNTff_D_lUJSByp2JydY&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fcommon%2Fweb_application_info.h%23WebApplicationInfo%2523c%2523lC3M3PQ4JFi&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Finstall_manager.h%23Z36cbPzKwf-tmxU10aPcRy5sCInlEp-7V8-_SQN7TSY&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fweb_app_install_utils.h%23JPoQtRnNDShDdasVP6s2Nchy1zSiUcFZN0fi5pgiofY

Figure 5: new classes added to manage an index of URL handlers

A new class WebAppUrlHandlerManager is added to handle web app life-cycle events.
WebAppUrlHandlerManager will update URL handler registrations by observing app installations,
un-installations, and updates. It does so by inheriting from and implementing
web_app::AppRegistrarObserver.

WebAppUrlHandlerManager also initiates web-app-origin-association validation during app installs
when it finds out-of-scope URLs in url_handlers.

3.3.1.​ UrlHandlerManager

/chrome/browser/web_applications/components/url_handler_manager.h/cc
UrlHandlerManager is a subsystem of WebAppProvider and it implements AppRegistrarObserver. It
will update URL handler information using UrlHandlerPrefs in its implementations of
OnWebAppInstalled, OnWebAppUninstalled, OnWebAppProfileWillBeDeleted, and
OnAppRegistrarDestroyed.

UrlHandlerMananger is pure virtual and will be implemented by the class
WebAppUrlHandlerManager. We will not implement this for bookmark apps.

3.3.2.​ Browser Preference
A new local state preference, kWebAppsUrlHandlerInfo, is added to store URL handler information.
It will be in the following format:

{
 origin: [

[app_id, profile_path, {handler_1}],
[app_id, profile_path, {handler_2}],
...

]
}

10

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/app_registrar_observer.h;bpv=1;bpt=1;l=17?q=web_app::AppRegistrarObserver&ss=chromium%2Fchromium%2Fsrc&gsn=AppRegistrarObserver&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fapp_registrar_observer.h%238Yl6Ws-0-C7dEoF2nqzPJLjPrvtjr5Nv9NjRZvIQr0g&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fapp_registrar_observer.h%23Ak2knteq4f67uwxgbkPJtFct31hIFvx3Wpfy5B7ssXY&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fapp_registrar.h%23i8KmVOsdiZ7-8OfIymyV3kxE8_flGzYS-1QXG52wlkM&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fapp_registrar_observer.h%23AppRegistrarObserver%253Aweb_app%2523c%2523gBLUQSNhCEv&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Fapp_registrar_observer.h%23ipgzzafYoNvwSZPVtpJ6HNLaX4b_CjkBJ8h9kucj8zk
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_provider.h;l=59;drc=fc2a7f58c6511f429fddb714b38e2cab6165c7b4?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/app_registrar_observer.h
https://source.chromium.org/chromium/chromium/src/+/master:chrome/common/pref_names.h;l=674?q=kWebAppsUrlHandlerInfo

The profile path is stored to support handling URLs by PWAs installed in any profile. An app installed
with different profiles has the same app id in all the installed profiles, which makes storing the
installed profile path required to distinguish apps installed in multiple profiles.

The handler dictionary structure mirrors the handler format in the manifest.

{
 "web_apps": {
 "url_handler_info": {
 "https://luhuangmsft.github.io": [{​ ​ ​ ​ ​ // origin key
 "app_id": "jncifgjpfigpfjphlanoeonmiedopibl",
 "exclude_paths": [],
 "has_origin_wildcard": false,
 "paths": [],
 "profile_path": "C:\\Users\\luhua\\AppData\\Local\\Google\\Chrome SxS\\User Data\\Default"
 }]
 }
 }
}

3.4.​URL matching
Given an input URL, UrlHandlerPrefs needs to be able to match it against the index of installed PWAs
and their corresponding profiles.

3.4.1.​ UrlHandlerPrefs
UrlHandlerPrefs has the following interface:

class UrlHandlerPrefs {

 // Register prefs associated with the URL handling in local state
 static void RegisterLocalStatePrefs(PrefRegistrySimple* registry);

 // Add the associated URL handlers along with the app id and installed profile path to browser
prefs.
 static void AddWebApp(const WebApp* web_app, const base::FilePath profile_path);

 // Remove the associated URL handlers from the browser prefs.
 static void RemoveWebApp(const WebApp* web_app, const base::FilePath profile_path);

 struct MatchingHandlersResult {​
 AppId app_id;
 std::string profile_path;​
 };
 // Find the apps and their installed profiles that can handle the url.
 static std::vector<MatchinghandlersResult> FindMatchingHandlers(const GURL& url);
};

11

AddWebApp is called in OnWebAppInstalled OsIntegrationManager::InstallOsHooks(...) to add the
handlers associated with the app installed to browser prefs. Likewise, RemoveApp is called in
OnWebAppUninstalled.

To find matching handlers given an input URL, we can search the browser prefs for the origin of the
URL. ​
​
“origin” values containing “*.” wildcard prefixes can also be indexed by excluding the prefix. This
allows for different subdomains to be matched using one string.

3.5.​web-app-origin-association file
Please refer to the Web App Origin Association design doc.

3.6.​Browser Startup
Where the main browser process is started, existing code in StartupBrowserCreator extracts URL
parameters from the command line. This is where we match the URL input against registered
handlers. By doing it here, we are able to find matches before any resources like Browser or
WebContents are created. Importantly, this happens before displaying any part of the browser UI.
This allows PWA launches to appear naturally without first blinking the browser window.​
​
All the information we need to do the URL-to-PWA matching is available from the browser process’s
local state prefs, which will be loaded and readable when we perform the search. We call static
functions in UrlHandlerPrefs to search for matching apps and profiles.

​
There is already a Profile loaded at this point. If no matches are found, browser startup continues
normally. If an app is matched and chosen for launch, we will load and launch it with the installing
profile. Note that two different profiles that each have the same app id installed may have different
app manifests and contents stored due to factors like manifest update.

12

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/os_integration_manager.h;l=77;drc=ee9e7e404e5a3f75a3ca0489aaf80490f625ca27
https://docs.google.com/document/d/14-_u_DSUKCC0XT9rWgQz9SytDQpCet--KVROV_YTkGw/edit?usp=sharing
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/ui/startup/startup_browser_creator.h;bpv=1;bpt=1;l=27?q=StartupBrowserCreator&gsn=StartupBrowserCreator&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fchrome_browser_main.h%2330dEDW4YX7nCMkRzrL8dU4kN0q-cJ14L0b8ikSbYwIQ&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fstartup%2Fstartup_browser_creator.h%23StartupBrowserCreator%2523c%2523bHn6%2524eSVapg&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fstartup%2Fstartup_browser_creator_impl.h%23ayVQey_5d1ojdts10HPhG-gL7GsYqO9MiROF6Yr_M-Q

Figure 7 sequence diagram to search and launch app

3.6.1.​ Startup Location

/chrome/browser/ui/startup/startup_browser_creator_impl.cc
We modify StartupBrowserCreatorImpl::Launch to find matching URL handlers through
UrlHandlerPrefs if the browser is launched with a URL param. StartupBrowserCreatorImpl::Launch is
executed at browser startup, before any UI is created. If there are no matches, the browser startup
process will continue as usual.

If there are matches, we will display an intent picker dialog for the user to choose which app should
handle the URL. If the chosen app is installed in the currently loaded profile, we will proceed to
launch the app. If it is installed in a different profile, we will load the target profile through
ProfileManager::LoadProfileByPath and launch the app once the profile is loaded.

3.6.2.​ Startup Performance

13

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/ui/startup/startup_browser_creator_impl.cc;bpv=1;bpt=1;l=368?q=StartupBrowserCreatorImpl::Launch%20&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=Launch&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fstartup%2Fstartup_browser_creator_impl.cc%23-C_oYgjUEbrR3IdDIG4lWa9DR0uIK8KPl7rGuRqHOHk&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fstartup%2Fstartup_browser_creator_impl.h%23ZJ7B_q-w0jHkENaReic70SD4-E9C1udluHdx8AQ8BTE
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/url_handler_prefs.h?q=url_handler_prefs
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/profiles/profile_manager.cc;bpv=1;bpt=1;l=536?q=ProfileManager::LoadProfileByPath%20&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=LoadProfileByPath&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fprofiles%2Fprofile_manager.cc%23r8SA8pcjjLxR6qC97U_NO_jmx0QdiLUTFHxRTD4NM8s&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fprofiles%2Fprofile_manager.h%23SS9tm02VhfDlvKuj6P3nq5v2rSNeSC321cjZRyfuRxs

If the feature flag is disabled, no computation or resource allocation is added to startup.

If the feature flag is enabled but there are no URL handlers registered (there are no PWAs installed
for any profile or no installed PWAs have url_handlers declared in their manifests), there will be no
data in the index in local state prefs and no further computation.

We expect that most PWAs available in the world will be associated with a single origin: their own.
(eg. unique-app.com, or app-one-of-many.apphost.com). Searching for matches is efficient because
most probably the origin of the URL will key to the url_handlers entries from a single app and from a
single profile.​
​
It is possible for apps that share an origin to be organized by path instead of sub-domain. Eg.
host.com/app1 instead of app1.host.com. It is possible for many apps to be keyed by the same
origin. It is unlikely that sites like this will have a large number of apps with url_handlers and that
users will install many of them at the same time.

3.6.3.​ Protecting Startup Performance
To ensure reasonable worst-case performance:

●​ We will limit the maximum number of url_handlers entries each web app manifest can
register to 10.

●​ The paths and exclude_paths in each url_handlers entry will also be limited to 10.

●​ We will limit the length of each “origin” or “paths” entry, or “exclude_paths” entry to 2000
characters.

Using the dictionary type browser prefs to storage handler information should ensure the “origin”
portion to be matched in linear time. Because of the possible wildcard prefix in “origin”, the URL
input might have to be trimmed and searched for more than once. Once a matching “origin” is
found, matching the “paths” and “exclude_paths” strings should be in O(m.n) time, where m is the
number of “paths” and “exclude_paths” strings and n is the length of the URL path substring. We will
test URL matching with pathological input.

3.6.4.​ Intent Picker Dialog (disambiguation dialog)

14

http://www.host.com/app1

If more than one registered URL handler is found for a URL query, present an intent picker dialog to
the user so they are able to choose which handler to launch. This dialog is similar in appearance to
the “Open with” dialog shown when the “To open this link, choose an app” icon in the omnibox is
clicked.

The design and development of this dialog is shared with other features teams, as the dialog will be
also used by features such as PWA protocol handling.

Figure 8: Intent Picker dialog for web app URL handling

Each matching app option would be displayed. Closing or cancelling the dialog would open the URL
in a new tab page.

See the UX Review doc for more discussions.

See the PWA URL Handlers Saved Choice Design for details on how “Remember my choice” is
implemented.

3.7.​Other User and Developer Experiences
URL handling information should be displayed appropriately for both users and developers.

3.7.1.​ Pop-up notification in app window after launch
Implement a dialog or pop-up UI that is displayed after a PWA is launched by the URL Handling
feature. This UI would present a message that explains that the PWA was launched because it was
registered as a URL handler. This UI should present the user with the option to dismiss the message
(or dismiss itself after n seconds), or go to the settings page for URL handling.

3.7.2.​ chrome://settings

15

https://bugs.chromium.org/p/chromium/issues/detail?id=1019239
https://docs.google.com/document/d/1pL9VexY86o3YW-iP1iN_O2fzj9QBqvBQm7CWMl5Djf0/edit?usp=sharing
https://docs.google.com/document/d/1H0E8rvD_7fWWhB5RBzNY5LOt3Vz1OT0RCKbV63Uvsfk/edit?usp=sharing

We will implement a settings page at chrome://settings/content/urlHandlers to allow the user to
control URL handling saved defaults for installed apps.

3.7.3.​ chrome://apps
We could extend the chrome://apps page’s app context menu to show a link to the
chrome://settings/content/urlHandlers page.

3.7.4.​ DevTools
We could extend the Application pane in the F12 DevTools to display URL handling information for
PWAs and allow PWA developers to debug and troubleshoot their manifest configuration and
web-app-origin-association configuration..

●​ Display any url_handlers parsing errors
●​ Display web-app-origin-association validation errors.

4.​Implementation plan
We will implement this design in the following steps:

1.​ Add feature flag enable-desktop-pwas-external-url-handling ✔️

2.​ Add manifest parsing and web app database changes (CL link) ✔️

3.​ Add WebAppProvider components and utilities ✔️

4.​ Add StartBrowserCreator components and utilities ✔️

5.​ Add browser tests for cases that do not require association validation

6.​ Add association file fetching, parsing, and processing components and utilities ✔️

7.​ Add association validation logic to url_handler_manager ✔️

8.​ Add web-app-origin-association validation ✔️

9.​ Add Browser tests for cases that require association validation ✔️

10.​ Add implementation for handling out-of-scope URLs ✔️

11.​ Add telemetry

12.​ Add usage of the intent picker dialog

13.​ Add chrome://settings/content/urlHandlers

14.​ Add runtime feature flag for origin trial

5.​Rollout Plan
Experiment-controlled rollout. Experiment name: TBD.
Milestones:

●​ M91 Dev Trial

16

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_database.h;bpv=1;bpt=1;l=36?q=webappdatabase&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=WebAppDatabase&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_database.h%23WebAppDatabase%253Aweb_app%2523c%2523bcjI%2524E5g8%2524i&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_sync_bridge.h%23ii8PBh3RslBR0Vjq5HELCZXrpfgAL-UKI0NJQJ2isFk
https://chromium-review.googlesource.com/c/chromium/src/+/2405696
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_provider.h;bpv=1;bpt=1;l=60?q=webappprovider&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=WebAppProvider&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fweb_app_provider.h%23WebAppProvider%253Aweb_app%2523c%2523hdLx8g8NNRL&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fweb_applications%2Fweb_app_launch_manager.h%23gVjIO99WT_ZGSXq8JhyV-avF6GGYmooljvtaKef1dC8
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/ui/startup/startup_browser_creator.h;bpv=1;bpt=1;l=27?q=startupbrowsercreator&ss=chromium%2Fchromium%2Fsrc&originalUrl=https:%2F%2Fcs.chromium.org%2F&gsn=StartupBrowserCreator&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fchrome_browser_main.h%2330dEDW4YX7nCMkRzrL8dU4kN0q-cJ14L0b8ikSbYwIQ&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fstartup%2Fstartup_browser_creator.h%23StartupBrowserCreator%2523c%2523bHn6%2524eSVapg&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fstartup%2Fstartup_browser_creator_impl.h%23ayVQey_5d1ojdts10HPhG-gL7GsYqO9MiROF6Yr_M-Q

○​ Able to parse new manifest member
○​ Able to fetch, parse, and validate web_app_origin_association file
○​ Able to launch new PWA instance and navigate to launch URL

●​ M92 Origin Trial
○​ Able to display matching PWAs in dialog and prompt user for action
○​ Able to save user app choices
○​ chrome://settings/content/urlHandlers available

●​ M9x Ship
○​ Enable feature flag by default

6.​Adapt to standardisation requirements
As the web standard incubation progresses, we will update this document to reflect
necessary changes. We do not expect any significant design changes.

Currently proposing URL handling as a web standard here:
https://github.com/WICG/pwa-url-handler/blob/master/explainer.md.

At the same time, Declarative Link Capturing for in-scope URLs is proposed here:
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md​

We are also trying to keep the include/exclude pattern syntax compatible with that
proposed for scope matching here:
https://github.com/wanderview/service-worker-scope-pattern-matching/blob/master/expla
iner.md

Current differences between the explainer and design doc:

●​ The explainer used to propose that the association file’s URL is declared in the web
app manifest. It now proposes that where the association file must be found will not
be part of the spec and will be determined by the implementation. This doc is being
updated to reflect this. We are experimenting with two different options: 1. A link rel
in the PWA document, similar to how the web app manifest is found. 2. A fixed
location relative to the origin being associated, similar to how native formats make
use of the .well-known path.

●​ “url_handlers” as the name of the manifest member is changing. Currently the
explainer uses the name “url_handlers”.

●​ Some concepts in the explainer such as permissions and saved app choices in site
settings are based on “site”, “origin”, “host”, etc. These choices are still being
discussed. This doc may at times be out of sync with the explainer on those issues.

17

https://github.com/WICG/pwa-url-handler/blob/master/explainer.md
https://github.com/WICG/sw-launch/blob/master/declarative_link_capturing.md
https://github.com/wanderview/service-worker-scope-pattern-matching/blob/master/explainer.md
https://github.com/wanderview/service-worker-scope-pattern-matching/blob/master/explainer.md

7.​Telemetry and Flighting
7.1.​Telemetry

New telemetry may be needed for the following:

●​ url_handlers parsing failures

●​ web-app-origin-association download and parsing failures

●​ Usage of url_handlers and web-app-origin-association in PWAs

●​ In intent picker dialog, whether users choose a PWA or close or cancel dialog

●​ In intent picker dialog, whether users choose to set default choice (checkbox checked)

●​ When intent picker dialog presents two or more app choices

●​ New settings page usage: chrome://settings/urlHandlers

8.​Functional and Unit Testing
8.1.​Approach
Library components will be tested with unit tests. Larger components with dependencies will be
tested with mocks/fakes or using browser tests.

8.2.​Test Cases
●​ Test that the url_handlers manifest property member is parsed correctly and values are

correctly plumbed through to WebApp structs and to proto storage.

●​ Test that the URL and UrlHandlerInfo matching library works correctly.

●​ Test that the Indexed storage of URL handler registrations works identically to the reference
implementation.

●​ Test that the web-app-origin-association download and validation library works correctly.

●​ Test that the permissions and confirmation UI work correctly using browser tests

●​ Tests for any additions/modifications to DevTools

●​ Tests for any chrome://settings pages modified

8.2.1.​ Automated Test Cases
Individual components will have unit tests. We will try to use webdriver to create end-to-end tests of
PWA URL handling scenarios.

8.2.2.​ Manual Test Cases
We will manually test these scenario:

●​ Install a PWA that has url_handlers, both in and out of app scope

●​ Activating URLs that match the PWA’s url_handlers from the run dialog

●​ Activating URLs that do not match the PWA’s url_handlers from the run dialog

18

●​ Activating the same URLs from links in a native app like Outlook/OneNote.

9.​Performance Investigation
See performance investigation doc here.

10.​ Metrics
Success Metrics

Regression Metrics

Experiments

11.​ Open Questions
●​

12.​ Links

Public explainer (archived)
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/Pwa

UriHandler/explainer.md

WICG explainer github https://github.com/WICG/pwa-url-handler

WICG Discourse page https://discourse.wicg.io/t/proposal-pwas-as-uri-handlers/

Intent picker UX design
1105257 - Browsers need a way to disambiguate between multiple registered

PWAs at launch time for a specific URL/Protocol handler" - chromium

Privacy and security

self-review

https://github.com/WICG/pwa-url-handler/blob/master/PRIVACY_AND_SECURITY

.md

Chrome status
Progressive Web Apps as URL Handlers - Chrome Platform Status

(chromestatus.com)

TAG review https://github.com/w3ctag/design-reviews/issues/552

crbug 1072058 - Ability for PWAs to be registered as URL Handlers (chromium.org)

Performance impact

evaluation
 PWA URL Handling Performance Investigation

Saved choice design PWA URL Handlers Saved Choice Design

19

https://docs.google.com/document/d/1dKwZ803C4YILEE7nfnWNpjhwBlQLtRn1vy1vdf7hiwM/edit
https://docs.google.com/document/d/1H0E8rvD_7fWWhB5RBzNY5LOt3Vz1OT0RCKbV63Uvsfk/edit
https://docs.google.com/document/d/1dKwZ803C4YILEE7nfnWNpjhwBlQLtRn1vy1vdf7hiwM/edit?usp=sharing
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/PwaUriHandler/explainer.md
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/master/PwaUriHandler/explainer.md
https://github.com/WICG/pwa-url-handler
https://discourse.wicg.io/t/proposal-pwas-as-uri-handlers/
https://bugs.chromium.org/p/chromium/issues/detail?id=1105257
https://bugs.chromium.org/p/chromium/issues/detail?id=1105257
https://github.com/WICG/pwa-url-handler/blob/master/PRIVACY_AND_SECURITY.md
https://github.com/WICG/pwa-url-handler/blob/master/PRIVACY_AND_SECURITY.md
https://www.chromestatus.com/feature/5739732661174272
https://www.chromestatus.com/feature/5739732661174272
https://github.com/w3ctag/design-reviews/issues/552
https://bugs.chromium.org/p/chromium/issues/detail?id=1072058

Web app association design Web App Origin Association Design - Google Docs

20

https://docs.google.com/document/d/14-_u_DSUKCC0XT9rWgQz9SytDQpCet--KVROV_YTkGw/edit

	PWAs as URL Handlers
	Explainer
	Platforms
	Tracking Bug
	Implementation Status
	Summary
	Background
	Goals
	Non-Goals
	Synopsis

	1.​Functional Design
	1.1.​PWA developer
	1.2.​PWA user
	1.3.​User intent, User choice
	1.3.1.​Permission
	1.3.2.​Choice

	1.4.​App Launch
	1.5.​App Launch With Out-of-Scope URLs
	1.6.​App Installation Behavior
	1.7.​App Uninstallation Behavior
	1.8.​ Manifest Update
	1.9.​ Profile deletion behavior
	1.10.​Settings available in the settings page
	1.11.​Notifications

	2.​Interfaces and Interactions
	2.1.​Public API Added/Changed
	2.2.​API Consumption
	2.3.​Breaking Changes
	2.4.​Privacy and Security Considerations

	3.​Dev Design
	3.1.​Overview
	3.2.​Manifest parsing and storage
	3.2.1.​Manifest Parser Changes
	3.2.2.​Mojom Changes
	3.2.3.​WebAppInfo, WebApp
	3.2.4.​Manifest Histogram
	3.2.5.​Other Changes

	3.3.​URL handler Registration and Indexing
	3.3.1.​UrlHandlerManager
	3.3.2.​Browser Preference

	3.4.​URL matching
	3.4.1.​UrlHandlerPrefs

	3.5.​web-app-origin-association file
	3.6.​Browser Startup
	3.6.1.​Startup Location
	3.6.2.​Startup Performance
	3.6.3.​Protecting Startup Performance
	3.6.4.​Intent Picker Dialog (disambiguation dialog)

	3.7.​Other User and Developer Experiences
	3.7.1.​Pop-up notification in app window after launch
	3.7.2.​chrome://settings
	3.7.3.​chrome://apps
	3.7.4.​DevTools

	4.​Implementation plan
	5.​Rollout Plan
	6.​Adapt to standardisation requirements
	7.​Telemetry and Flighting
	7.1.​Telemetry

	8.​Functional and Unit Testing
	8.1.​Approach
	8.2.​Test Cases
	8.2.1.​Automated Test Cases
	8.2.2.​Manual Test Cases

	9.​Performance Investigation
	10.​Metrics
	11.​Open Questions
	12.​Links

