Design Document: Refactor getUsers
Function / API

Status Submitted For Review
Issue Link https://github.com/Real-Dev-Squad/website-backend/issues/227
4

Date 22-01-2025

Document Owner Prakhar Kumar (prakhar.meerut@gmail.com)

PRD NA / Not Required

Reviewer Date Action

Tejas 29-01-2025 Comments Added

Anuj Chhikara 11-02-2025 Approved

Suvidh Kaushik 11-02-2025 Approved
Overview:

To improve the code quality of the controllers/user.js getUsers api / method. Link
e Involves improving cognitive complexity - which tells how hard a unit of code is to read
and understand.
e Using smaller helper functions to (one for each of the 7 query parameters) for easier
debugging and management.

Goals:

e Improve readability.

https://github.com/Real-Dev-Squad/website-backend/issues/2274
https://github.com/Real-Dev-Squad/website-backend/issues/2274
https://github.com/Prakhar-FF13/website-backend/blob/7552eb1cc794f2be228db52732149dd173013aab/controllers/users.js#L90

e Extracting query parameters at the top of the method to separate out the core logic and
improve maintainability and promote better separation of concerns.

e Decompose into smaller functions based on query parameters for easier management
and easier debugging.

e Reduce cognitive complexity.

Current Problems:

e Function is too big - it gets hard to read.
e Too many large if statements - cluttered code.

Solution Approach:

e Move nested code into separate helper functions, each helper function will handle a
single query parameter - (following helper functions will be created - update after
checking the code)
o handleUserByld - based on id in req.query.id
o handleUserByProfileData - based on id in req.userData.id

m Cannot use the same one as above because the response structure is the
same.

handleUsersByDiscordld - req.query.discordld

handleDepartedUsers - req.query.departed

handleUsersByUnmergedPrs - req.query.filterBy=unmerged_prs

handleOverDueTasks - req.query.days

o handleAllUsers - default case if no query param is passed.

e Using global try catch for method instead of try catches for every block of core logic for

each query parameter. (Currently for each query parameter, we have a try-catch block

which increases cognitive complexity). Example Below:

O O O O

try {
if (reqg.query.id) {
const id = req.query.id;
let result, user;
try {
result = await dataAccess.retrieveUsers({ id: id });
user = result.user;
catch (error) {
logger.error(Error while fetching user: ${error}’);
return res.boom.serverUnavailable(SOMETHING WENT_ WRONG);

}

if (!result.userExists) {

return res.boom.notFound("User doesn't exist");

}

return res.json({
message: "User returned successfully!”,
user,
3
}
} catch () {

return res.boom.serverUnabailable()

}

Cognitive Complexity:

What this basically tells is how hard a unit of code is to read and to understand. A unit of code
can be a function or a piece of code in question.

Basic rules for the task at hand:

Note: For more details about the rules, check this out - Link

1. Increment the count by 1 for any break in linear flow like if, else-if, else, loops etc.
2. Increment the count by additional +1 when nesting occurs.

if () A
if () {
}

3. Each catch clause increments the count by 1.
4. A switch statement with any number of cases only adds 1 to the count.

switch(true) {
Case a:
Case b:

Case c:

https://www.sonarsource.com/docs/CognitiveComplexity.pdf

Example from the code before the proposed change:

if (req.query.id) {
const id = req.query.id;
let result, user;
try {
result = await dataAccess.retrieveUsers({ id: id });
user = result.user;
} catch (error) {
logger.error("Error while fetching user: ${error}’);
return res.boom.serverUnavailable(SOMETHING_WENT_WRONG);
}
if (Iresult.userExists) {
return res.boom.notFound("User doesn't exist");
}
return res.json({
message: "User returned successfully!”,
user,
s
}

Example from the code after change:
Controller Refactor:

// contoller/user.js file
try {
const { q,
dev: devParam,
query,
id,
profile,
discordId,
departed
= reqg.query;
const dev = devParam === "true";

if (q && !dev) return res.boom.notFound("Route not found");

if (id) return handleUserById(res, id);
} catch (error) {

logger.error(Error while fetching users: ${error}’);
return res.boom.serverUnavailable (SOMETHING_WENT_WRONG);
}

Corresponding helper function:

async function handleUserById(res, userId) {
try {
const result = await dataAccess.retrieveUsers({ id: userId });
if (!result.userExists) return res.boom.notFound("User doesn't
exist");
return res.json({ message: "User returned successfully!", user:

result.user });
} catch (error) {
logger.error(Error while fetching user: ${error});
return res.boom.serverUnavailable (SOMETHING_WENT_WRONG);

}
}

Cognitive Complexity Calculation of updated method before refactoring:

- Cognitive Complexity - 35.
- Try catch blocks - 5
- If-else conditions - 16
- Loops-3
- Logical operators - 3
- Nesting adjustments - 8

Cognitive Complexity Calculation of updated method after refactoring:

- nitiv mplexity - 1
- Try catch blocks - 1
- If-else conditions - 11
- Logical operators - 3
- Nesting adjustments - 3

	Design Document: Refactor getUsers Function / API
	Overview:
	Goals:
	Current Problems:
	Solution Approach:
	Cognitive Complexity:
	Basic rules for the task at hand:
	
	Example from the code before the proposed change:
	Example from the code after change:

	Cognitive Complexity Calculation of updated method before refactoring:
	Cognitive Complexity Calculation of updated method after refactoring:

