
Design Document: Refactor getUsers
Function / API

Status Submitted For Review

Issue Link https://github.com/Real-Dev-Squad/website-backend/issues/227
4

Date 22-01-2025

Document Owner Prakhar Kumar (prakhar.meerut@gmail.com)

PRD NA / Not Required

Overview:
To improve the code quality of the controllers/user.js getUsers api / method. Link

● Involves improving cognitive complexity - which tells how hard a unit of code is to read
and understand.

● Using smaller helper functions to (one for each of the 7 query parameters) for easier
debugging and management.

Goals:
● Improve readability.

Reviewer Date Action

Tejas 29-01-2025 Comments Added

Anuj Chhikara 11-02-2025 Approved

Suvidh Kaushik 11-02-2025 Approved

https://github.com/Real-Dev-Squad/website-backend/issues/2274
https://github.com/Real-Dev-Squad/website-backend/issues/2274
https://github.com/Prakhar-FF13/website-backend/blob/7552eb1cc794f2be228db52732149dd173013aab/controllers/users.js#L90

● Extracting query parameters at the top of the method to separate out the core logic and
improve maintainability and promote better separation of concerns.

● Decompose into smaller functions based on query parameters for easier management
and easier debugging.

● Reduce cognitive complexity.

Current Problems:
● Function is too big - it gets hard to read.
● Too many large if statements - cluttered code.

Solution Approach:
● Move nested code into separate helper functions, each helper function will handle a

single query parameter - (following helper functions will be created - update after
checking the code)

○ handleUserById - based on id in req.query.id
○ handleUserByProfileData - based on id in req.userData.id

■ Cannot use the same one as above because the response structure is the
same.

○ handleUsersByDiscordId - req.query.discordId
○ handleDepartedUsers - req.query.departed
○ handleUsersByUnmergedPrs - req.query.filterBy=unmerged_prs
○ handleOverDueTasks - req.query.days
○ handleAllUsers - default case if no query param is passed.

● Using global try catch for method instead of try catches for every block of core logic for
each query parameter. (Currently for each query parameter, we have a try-catch block
which increases cognitive complexity). Example Below:

try {
 if (req.query.id) {

 const id = req.query.id;

 let result, user;

 try {

 result = await dataAccess.retrieveUsers({ id: id });

 user = result.user;

 } catch (error) {

 logger.error(`Error while fetching user: ${error}`);

 return res.boom.serverUnavailable(SOMETHING_WENT_WRONG);

 }

 if (!result.userExists) {

 return res.boom.notFound("User doesn't exist");

 }

 return res.json({

 message: "User returned successfully!",

 user,

 });

 }
} catch () {
 return res.boom.serverUnabailable()
}

Cognitive Complexity:

What this basically tells is how hard a unit of code is to read and to understand. A unit of code
can be a function or a piece of code in question.

Basic rules for the task at hand:
Note: For more details about the rules, check this out - Link

1. Increment the count by 1 for any break in linear flow like if, else-if, else, loops etc.
2. Increment the count by additional +1 when nesting occurs.

if () { // +1 here
 if () { // +1 here and +1 due to nesting.
 }
}

3. Each catch clause increments the count by 1.
4. A switch statement with any number of cases only adds 1 to the count.

switch(true) { // complexity of 1, irrespective of multiple cases
 Case a:
 Case b:

 Case c:
}

https://www.sonarsource.com/docs/CognitiveComplexity.pdf

Example from the code before the proposed change:

if (req.query.id) { // +1
 const id = req.query.id;
 let result, user;
 try {
 result = await dataAccess.retrieveUsers({ id: id });
 user = result.user;
 } catch (error) { // +2, (+1 nesting, +1 catch block)
 logger.error(`Error while fetching user: ${error}`);
 return res.boom.serverUnavailable(SOMETHING_WENT_WRONG);
 }
 if (!result.userExists) { // +2, (+1 nesting +1 if block)
 return res.boom.notFound("User doesn't exist");
 }
 return res.json({
 message: "User returned successfully!",
 user,
 });
 } // Total = 5 (ignoring other if blocks similar to above)

Example from the code after change:
Controller Refactor:

// contoller/user.js file
try {
 const { q,

 dev: devParam,

 query,

 id,

 profile,

 discordId,

 departed

 } = req.query;
 const dev = devParam === "true";
 // Reject query usage if no dev flag set.
 if (q && !dev) return res.boom.notFound("Route not found");

 // Handle user retrieval by ID - helper function
 if (id) return handleUserById(res, id);
} catch (error) {
 logger.error(`Error while fetching users: ${error}`);
 return res.boom.serverUnavailable(SOMETHING_WENT_WRONG);
 }

Corresponding helper function:

async function handleUserById(res, userId) {
 try {
 const result = await dataAccess.retrieveUsers({ id: userId });
 if (!result.userExists) return res.boom.notFound("User doesn't

exist");
 return res.json({ message: "User returned successfully!", user:

result.user });
 } catch (error) {
 logger.error(`Error while fetching user: ${error}`);
 return res.boom.serverUnavailable(SOMETHING_WENT_WRONG);
 }
}

Cognitive Complexity Calculation of updated method before refactoring:
- Cognitive Complexity - 35.

- Try catch blocks - 5
- If-else conditions - 16
- Loops - 3
- Logical operators - 3
- Nesting adjustments - 8

Cognitive Complexity Calculation of updated method after refactoring:
- Cognitive Complexity - 18

- Try catch blocks - 1
- If-else conditions - 11
- Logical operators - 3
- Nesting adjustments - 3

	Design Document: Refactor getUsers Function / API
	Overview:
	Goals:
	Current Problems:
	Solution Approach:
	Cognitive Complexity:
	Basic rules for the task at hand:
	
	Example from the code before the proposed change:
	Example from the code after change:

	Cognitive Complexity Calculation of updated method before refactoring:
	Cognitive Complexity Calculation of updated method after refactoring:

