
 

 

SUMMARY 

This document describes the issue of Dirty Region 
Management with respect to UI API design and 
implementation and how it relates to Flutter apps. 
 
Author: jimgraham@ (flar) 
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OBJECTIVE 

This document should serve both as a general introduction to the concept of Dirty 
Region Management and the history of such mechanisms, as well as how Flutter 
manages these issues and what changes can be made to make it more efficient at 
doing so. 
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BACKGROUND 

Dirty Region Management has been a staple of UI frameworks for decades, but the 
state of the art has changed quite a bit from the early days of CPU rendering on 
chips clocked in MHz to the modern age of GHz GPU rendering on pretty much any 
device. 
 
The basic concept is to reduce the amount of time and resources you spend 
updating the screen when only a small number of things are changing on it.  
Originally the need was critical as the time spent was visible to the human operator, 
impacted their productivity, and measured in how quickly they could get their work 
done. More recently the shift has been to measuring the work saved with regard to  
how much else the machine can be doing in the background while the user is 
working in a UI program, or whether animations can maintain a consistent frame 
rate (>60+ fps), and also how much energy is used for devices that run on battery 
power. 
 
Modern hardware is capable of maintaining a complicated 3D scene and updating it 
at 30-60fps even on a phone - mainly for games - so the need for this kind of 
mechanism isn’t as clear. The distinction, though, is that games tend to be written 
to the capabilities of the hardware with fairly custom engines that are driven by 
those capabilities and by developers who are experts in the constraints of those 
engines. Games also tend to be the only thing the user is doing on the device at the 
time so reserve compute time for background tasks can take a back seat. The 
content of games also tends to be more actively involving than a simple text cursor 
blinking on a composition screen while the user thinks. 
 
UI frameworks, on the other hand, are targeted at making it easy to present 
information to users with as much convenience as possible so that the developers 
can spend more time on their content ideas than on learning what the hardware 
does and being driven by those considerations. While the content of User Interfaces 
tend to be much less demanding than the content for games, modern graphical UIs 
are introducing concepts that bring 3D, antialiasing, and pixel effects to the 
simplest of apps at the conceptual cost of setting a flag or wrapping a widget with a 
boilerplate container. Mostly the latter feature of pixel effects tends to complicate 
the way you render a widget hierarchy and also cost quite a bit more rendering 
time than simple text, buttons, colors, gradients, and translucency. And the content 
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goal of a UI app is less to visually entertain than to use minimal processing and 
battery power to convey small concepts such as “this content is still loading” or 
“here is where you were typing once you decide what to say next”. 
 
Even if modern hardware can gloss over the expense of some of these rendering 
operations with respect to keeping a smoothly flowing 30 or 60 fps frame rate, the 
time spent feeding the GPU takes away from other tasks the device may be doing in 
the background and can cause mobile devices to use more battery just to 
accomplish simple things like a blinking text cursor or flashing a button. 

Glossary 

●​ Dirty Region - A portion of an app where widgets and components are 
different in one frame as compared to previous frames that have been 
displayed. 

●​ Render Root - An area of an app, typically associated with a single widget, 
that occludes all content behind it such that any changes in front of this area 
and bounded entirely within it can be repaired by starting the repaint at the 
Render Root. 

●​ Mahogany Staircase - The term that refers to the Flutter framework design 
where a tree of representative objects is used to construct a parallel tree that 
describes the original objects in a new way. There are several such tree 
conversions that happen as Flutter refines from a tree of Widget objects into 
a tree of renderable Layer objects as described in this Google TechTalk. 

 

OVERVIEW 

Flutter has a number of mechanisms designed to reduce the effort of computing a 
new frame based on changes to the Widget hierarchy as specified by the 
application. But these mechanisms are not yet used by the rendering system to 
minimize the area of the screen that is repainted on each frame. 

Non-goals 

This document is mostly a list of issues to consider and potential/general solution 
ideas but does not propose specific implementations for use in Flutter. 
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DETAILED DESIGN/DISCUSSION 

History 

Typical techniques used to manage dirty regions are broken down into 2 steps - 
accumulation and handling/repainting. 

Dirty region accumulation 

 
Sources of dirty regions (historically) include: 

●​ Changes to the state of items: color, shape 
●​ Changes to the hierarchy: widgets added or removed, scrolling 
●​ External factors: application life cycle, overlapping windows, GPU resources 
●​ Animations (which are mostly just a frequent source of one of the above) 

 
Some of these sources don’t tend to happen on embedded devices (typically there 
is only one app running so there doesn’t tend to be “damage repair”), and modern 
desktop systems often devote a backbuffer per window so even overlapping 
windows can be entirely handled by the system desktop compositing mechanism. 
The only remaining external factors tend to be life cycle issues like being mapped to 
the screen, minimized, maximized, and quit. 
 
Most of the programmatic sources can be managed by including code in the 
various widget (or RenderObject) setters such that when a property that impacts its 
visual representation changes, it informs the framework that it needs to be 
repainted. Some systems allow a rendered object to optionally specify a rectangle 
that needs to be repainted if the attribute that is changing only affects a small 
portion of its screen representation. 
 
Various bookkeeping strategies for tracking dirty regions include: 

●​ One big bounding box of all changes 
●​ List of N bounding boxes of consolidated changes 
●​ Pixel-level Region object 

 
Most systems start with the “one big bounding box” approach as that handles the 
needs of 99% of applications which may only be dealing with one widget changing 
on a screen at a time (blinking cursors or buttons/checkboxes changing state due to 
user input). The list of bounding boxes and region objects help with situations like 
spreadsheets, or dashboards where multiple isolated rectangular regions can 
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update on each frame, but not all of the content. 
 
If a system has a well-optimized Region implementation and the ability to render 
clipped to that Region, the last solution was historically chosen. But GPUs don’t 
tend to offer the ability to clip to a complicated list of rectangles so that option 
doesn’t get chosen much any more. Another consideration is that minimizing pixel 
operations is just one of the goals here, but minimizing the overhead of producing 
the rendering operations is also important. 
 
If a short list of N rectangles is accumulated, then the size of the list needs to be 
balanced between how expensive it is to process compared to how expensive it is 
to just rerender the entire scene. This decision takes a lot of factors into 
consideration including how easy it is to only perform the rendering operations for 
the list of renderable objects that intersect a rectangle.  If the data is kept to allow 
efficient drilling down to just the affected renderables and if the list of rectangles 
mostly involve disjoint renderables, then the list can be larger.  If the response to 
rendering a given rectangle boils down to setting a global clip rect and then 
executing the rendering operations for the entire scene, then this solution, 
repeated for each rectangle in the list, is usually not much better than just going 
with the “one big bounding box” approach. It might win if the cost of navigating the 
full scene and dispatching the operations is low and the savings of not rendering 
pixels that fall outside each of the component bounding boxes is huge, but with 
modern GPUs the savings on fill rate is fairly small so any overhead in processing 
each bounding box magnifies. 
 
In the end, many systems use the “list of N dirty rectangles” approach, but use 
heuristics to punt on the complexity to a single bounding box. Some systems may 
even track the total proportion of clipped content compared to the size of the scene 
and potentially also stop the accumulation process early and punt to just repainting 
the entire scene. The heuristics might also take into account whether there are well 
separated Rendering Roots (a concept I’ll explain soon), how fast the GPU is 
compared to the CPU, and how deep vs. wide the rendering tree is. 

Handling a dirty region 

 
The simplest way to repaint a dirty region is, as mentioned above, to set a global 
clip to the extent of the dirty region and then repaint the entire scene and let the 
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GPU or the rendering code elide whatever operations don’t matter. This can be 
quite effective if the culling of rendering operations is efficient, but there are a few 
techniques that can help make this better. 
 
One of the better “bang for the buck” techniques is to look for large areas filled with 
opaque pixels. Typically these are containers with an opaque background color, but 
any rectangle that appears in a system might provide some decent optimization. (In 
particular, by the time Flutter gets to rendering, the distinction between containers 
with background colors and random rectangles filled with colors is no longer 
tracked.) These areas can represent origins for repairing a dirty region in that there 
is no need to process any objects behind them when the dirty region falls entirely 
within their opaque bounds. One can refer to these areas as Rendering Roots 
because they can be noted and tagged while accumulating dirty rectangles. If an 
object needs to be repainted, then its bounds are recorded and compared against 
opaque rectangles registered by their parents for a Rendering Root that covers the 
dirty region and that parent would then be recorded with the rectangle. When it 
comes time to repair the region, only children of that Render Root and any of its 
siblings in front of it need to be visited. 
 
Another data point that can be useful to track when dealing with Render Roots is 
the case of containers with mutually non-overlapping children. If such a container is 
a Render Root, then only a subset of its children need to be visited when repainting 
a region that lists it as a root. In some cases, the parent might know enough about 
the layout of these children that it can even immediately know which children are in 
the dirty region without having to process them all (consider a spreadsheet with 
fixed cell sizes - the affected children can be quickly computed by a pair of simple 
divisions on the LTRB properties of the damage rectangle). 

More recent considerations 

“Back in the day”, UI rendering tended to be non-antialiased, opaque, flat (2D) and 
with no pixel effects. Dirty region management techniques were born in that day 
and the presence of large rectangles filled with a (presumably tautologically) 
opaque background color were plentiful and easy to find (basically, a widget’s 
parent except for occasional “no bg” containers). 
 
But, today’s GUIs have a number of attributes that complicate both the process of 
accumulating a damage rectangle, and the process of handling it. 

PUBLICLY SHARED 



PUBLICLY SHARED 
 

Opacity 

 
The simplest advancement, in terms of complicating dirty region management, is 
the inclusion of non-opaque colors. While these colors do affect the rendering of a 
scene, they basically disqualify a rendering operation from being considered a 
Rendering Root. This is not much different than containers with no background 
color set, or “input only” containers in classic dirty region management. 

Transforms 

 
The first coordinate issue to be dealt with when the GUI has 2D or 3D affine 
transforms is that the bounds of a widget that changed need to be transformed to 
a common space for tracking the dirty regions - and typically that is screen or pixel 
space. The transformation of bounds is not rocket science and the screen bounds 
of rendered objects is often tracked anyways so this isn’t a huge complication. 
 
Secondly we have to deal with rectangles that want to be Render Roots: “Hey, I’m a 
rectangle!  And I have an opaque background!  I’m a Render Root!” Well, not any 
more. If you are transformed by any affine operation other than a translate or a 
scale, then you don’t align well with the screen-space rectangles typically tracked 
for dirty regions. It is still possible to compute a sub-region of your bounds that is 
opaque and screen-aligned, but how often will that matter? And if you are 
transformed away from the Z=0 plane then it is probably much less likely you’ll 
work as a Render Root and it just became a lot more complicated to analyze that 
potential. 

Antialiasing 

 
It used to be simple to compute the opaque bounds of a widget - it was just its 
actual bounds. With appropriate choice of rounding operations, you would know 
the exact bounds even of a transformed widget. Antialiasing complicates these 
computations only a little in that you want to include any pixel affected by 
rendering something and usually that involves just doing a floor on the upper left of 
the bounds and a ceil operation on the lower right. 
 
It also comes up in computing the opaque area of a potential Render Root, but here 
you do the rounding in the opposite order - ceil the upper left coordinates and floor 
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the lower right. 

Pixel effects 

 
For the purposes of this section, I am only going to consider the issues raised by a 
pixel effect that is applied to descendents of the effect.  In particular, Flutter 
includes a mechanism to apply a pixel effect to the area behind a widget, but I will 
discuss that in a later Flutter-specific section. 
 
Many pixel effects have no impact on bounds, but can change the opacity of pixels. 
The more interesting effects (from the perspective of dirty region management) are 
the ones that change the bounds. This isn’t a huge complication - one simply asks 
the effect to recommend new bounds based on the raw bounds of its content, or 
on the bounds of a “dirty region” within its content - and that becomes the dirty 
region you track.  This does mean that the parents of a widget that is changing 
need to be able to not only check if they provide a Render Root background of the 
dirty region, but also be able to recommend a different dirty region as well (in other 
words, the calling sequence that propagates a dirty region to an associated Render 
Root needs to include a way for the bounds to be updated as the search 
progresses). 
 
These effects have similar impact to the considerations mentioned in the 
Antialiasing section above, but with more complicated analysis. An effect that 
produces a result that is larger (as in a blur effect) or moved compared to the 
bounds of its content (such as a transform effect) would need to modify the dirty 
region of its content as it propagates to the common space that all dirty regions are 
managed. An effect that causes parts of the content to become less opaque (such 
as a blur effect) would also need to modify the area considered as a good opaque 
backdrop for a Render Root. Typically, though, for simplicity such an effect just 
records the fact that it can reduce the opacity of its content and then its bounds are 
ignored for the purposes of finding a Render Root. Computing the precise opaque 
region of a coordinate transformed blurred region is typically not computationally 
worthwhile to avoid using a more ancestral widget as the Rendering Root. 
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Flutter-specific issues 

BackdropFilter 

 
The primary complication here is that the BackdropFilter is a backwards-looking 
effect meaning that it changes the appearance of the things behind it. Most dirty 
region management is focused on every node in the tree constraining or tracking its 
children so that the results and interactions of the rendering of various nodes can 
be tracked forward via typical tree traversal techniques. 
 
But the BackdropFilter, by changing the rendering of objects behind it, violates this 
forward-acting approach in a couple of ways. 
 
First, by default, the BackdropFilter applies to the entire screen/app. A clip widget 
can be inserted to restrict its rendering, though, but in general its output is not 
associated with its children - its “content” so to speak - it is instead associated with 
an open-ended impact on its inherited ancestors. 
 
Primarily that means that it draws over everything, so its bounds in the default case 
are “the screen”. But, even if the programmer has installed a clip widget to restrict 
its output, its bounds are “bigger than I can tell from examining my children, but I 
don’t know how big because some parent might restrict me”.  This can be managed 
by simply having it process dirty regions from its children by changing the dirty 
rectangle to be “the screen” and then passing it along to its parent. If one of its 
parents is a clip, then that parent can restrict the dirty region to the bounds of the 
clip. The clip could also be accumulated as you descend the tree and presented to 
the children who are determining how their changes might contribute to the overall 
dirty region - they would first pass their own dirty region through the clip before 
recording it. 
 
OK, so the output side of the impact of the BackdropFilter is really only just a 
special case of what we’ve seen with other rendering tree operations, but there is a 
case where the input is also surprisingly non-tree-like in a way that is harder to 
handle naturally in a single pass tree traversal. 
 
Because the BackdropFilter takes the layers behind it as input, and because those 
layers are not restricted by any clip container surrounding the BackdropFilter, there 
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are cases where dirty regions that don’t intersect the clip container can still modify 
the way that the BackdropFilter renders.  Normally if you had two adjacent ClipRect 
containers that don’t overlap, and a dirty region is recorded inside one of them, 
then the dirty region would be clipped to the parent Clip container and then 
compared to the bounds of the other Clip container and discovered to be 
non-intersecting.  But, if one of the children of that second Clip container happens 
to be a BackdropFilter, then it might read the pixels from inside the other Clip 
container (the one that was dirty), perform a blur on them, and those pixels will 
now affect what appears in the clipped bounds of that BackdropFilter - even if the 
BackdropFilter and its part of the tree are stable. 
 
The net result of all of these considerations is that when a BackdropFilter is in a 
scene, we need to take special care that trees that contain them are repainted even 
when they don’t appear to intersect the dirty region. 
 
But, wait!  There’s more! 
 
Consider a simple case of a BackdropFilter that has no clip.  When any object in its 
background changes, we need to reapply the blur. Typically, we only repainted the 
object that changed, but because we need to reapply the blur, we have to also 
repaint everything under it that was inside the blur radius. In this case, the 
optimizations we’d perform when accumulating the dirty region of the object that 
changed are invalidated by the presence of a BackdropFilter above it. 
 
So, generally, we then need to track any regions of the screen on which a 
BackdropFilter applies its filter, and repaint the entire “blurred area” when any part 
of that area is repainted. 
 
As an exception to this. If a child of a BackdropFilter is modified and its (blurred) 
dirty region is encapsulated by a Render Root before it gets to the BackdropFilter 
parent, that optimization can remain valid. Also, any sibling of the BackdropFilter 
that paints above it can capture a repaint region as a Render Root without having to 
invoke the “repaint everything in the blur” area. This optimization would require us 
to track not only the regions of the screen that are blurred by a BackdropFilter, but 
also the parts of the tree that live underneath the BackdropFilter. 

 

PUBLICLY SHARED 



PUBLICLY SHARED 
 

Layers 

 
The Flutter framework combines all of the output of describing a widget tree in 
rendering terms into a series of layer objects which it then passes to the rendering 
engine to process and express as calls to various platform rendering APIs such as 
OpenGL or Metal or Vulkan. On most platforms it uses the Skia rendering library as 
an intermediary to handle the specifics of these various graphics APIs for it. 
 
Typically these layers represent a fundamental break in the rendering of the 
various pieces of the widget tree - places where an opacity, transform, clip, etc. is 
applied to a number of widgets. Layers for those particular operations are pushed 
and then a number of children are added to them. These layers are hierarchical and 
form a tree, but it is not a 1:1 translation of the widgets. Widgets may combine to 
render their output in a single layer or a single widget may produce more than one 
layer (less common). Some common rendering layers would be: 
 

●​ OpacityLayer 
●​ TransformLayer 
●​ ClipLayer 
●​ PictureLayer 
●​ ColorFilterLayer 
●​ ImageFilterLayer 
●​ BackdropFilterLayer 

 
These layers might modify the graphics context with some additional information 
(such as a modification to the current transform) and then pass to their children for 
more rendering to occur. But many of them require their children to render 
separately to an offscreen texture and then composite that result into the existing 
scene with some possible modifications. For example, the OpacityLayer renders its 
children into a texture and then paints that texture into the scene with an 
additional opacity modulation attribute on the drawTexture call. A ClipLayer might 
just install a clip on the rendering context if the clip type requests hard edges, but it 
may use an intervening temporary texture for its children if the clip type requires 
soft/antialiased edges or is not a simple rectangle. 
 
A BackdropFilterLayer is a special case and not only uses a separate texture for 
rendering its children, but also requests that the graphics machinery fills this 
texture with a filtered copy of the existing scene before it renders the children. 
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With respect to managing dirty regions, though, these layers represent just about 
any rendering technique that might require special casing of the output regions of 
other parts of the scene. More importantly, the layers sometimes attempt to reuse 
these layers from scene to scene if their attributes did not change, so their reuse in 
more than one scene can be used to measure the stability or dirtiness of the 
output. 

Pictures 

 
Much of the regular rendering of a scene (filled background shapes, text, 
checkboxes, icons, lines) is combined into a recorded list of basic rendering 
operations called a Picture. The advantage of a Picture is that it can tightly 
represent a large number of rendering calls in a small number of objects. One of 
the disadvantages of the Picture is that it can represent the rendering calls of a 
large number of widgets including a mix of widgets that are stable from frame to 
frame and some which are animating on every frame. 
 
A further complication of these Picture objects is that they are currently opaque 
objects both at the framework level and at the engine level. The Dart object at the 
framework level holds a reference to a Skia SkPicture object at the native engine 
level. Neither the Skia API, nor (consequently) the Dart API for these objects 
provides any methods for determining what kinds of rendering operations are 
inside them. The Skia API does provide some minimal information such as the 
number of operations so that the engine can analyze the complexity of a picture in 
loose terms as it makes decisions about caching the output. 
 
The only mechanism provided with regards to dirty region management and 
stability is that if the Picture is not reconstructed by the framework then its 
persistence will be noticed by the engine level as each object is associated with a 
unique ID (a fingerprint so to speak) for caching purposes, but only if the rendering 
commands are not recomputed by the framework. Unfortunately, that is the only 
opportunity to detect their stability. If but a single widget that contributed to a 
Picture object changed its rendering commands then the Picture will be 
reconstructed for the new frame and its identity will not match. Furthermore there 
are occasions when these Picture objects are not directly associated with any 
widget that changed but are nearby some other widgets that changed and so their 
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painting must be repeated, only to produce a new Picture object that contains the 
same rendering as the previous object. Techniques such as comparing the 
serialized forms of 2 Picture objects have been used to discover that such cases 
exist, but a deeper analysis of what causes them has not been performed yet. 
 
To help ameliorate this issue, the framework does provide a RepaintBoundary 
widget which will isolate its children from sharing a Picture object with any of their 
ancestors or siblings and if such an object is used judiciously by an app then 
animating widgets will not disrupt the recorded output of static widgets in the tree 
around them. This mechanism requires manual intervention by the app developer, 
though, and their use of these widgets requires some understanding of the various 
layers of the Flutter framework, which can be an obstacle for new developers and 
sometimes even seasoned developers.  
 
Another Picture-based issue to consider is that Render Roots cannot be computed 
if the actual rendering that signals them is hidden inside these opaque objects. 

Mahogany Staircase 

 
There are multiple tree-based levels in Flutter and each has similar, but not 
identical, rules in tracking state changes. These levels include: 
 

●​ The Widget tree, maintained by the app developer 
●​ The Element tree, reconstructed from the Widget tree when it changes 
●​ The RenderObject tree, managed by the Element tree 
●​ The Layer tree, constructed by the RenderObject tree 
●​ The EngineLayer tree, mostly 1:1 native counterparts to the Layer objects, 

but they do have representative “Handle” objects seen in the Layer tree. The 
Dart handle class is called “EngineLayer” and the native C++ class is called 
flutter::Layer. 

 
It is important to note that each of these layers can be bypassed by an application 
to achieve custom results. The final determination of stability must lie in the lowest 
level in order to take into account the possibility that external sources have directly 
manipulated the eventual EngineLayers. With proper documentation developers 
who create their own RenderObjects can preserve good information on stability as 
can the code in the Flutter framework, and as long as the stability is an optional 
optimization for the engine layers, their non-compliance will not produce incorrect 
results - it just might not be as efficient as it could be. 
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But much of the work for detecting tree stability can be done at higher levels where 
we have more information and, in fact, it already does so in order to reduce 
allocations and computations in each of those staircase steps. Every time one level 
decides to keep the same object in the next tree to represent the state in the 
previous tree, vital information about the stability of the tree is preserved for the 
next level to use. If that reuse makes it all the way down to the EngineLayer tree 
then the bottom level has the best chance to minimize repaints. How well each level 
achieves these goals will become much more noticeable once we instrument the 
engine level to start reducing the repaint areas. 
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OPEN QUESTIONS 

●​ The issues described here are represented by an open GitHub issue listed in 
the Flutter repository: Track damage rect and only draw inside it 

MIGRATION PLAN 

●​ Work has started on a possible solution that could be entered into the Flutter 
engine repo in a number of opt-in stages. The various PRs for these efforts 
should be linked to the Issue mentioned above under OPEN QUESTIONS: 

○​ Stage 1 will be a mechanism to compute the differences between 
engine layer trees. It will not be plumbed into the existing rendering 
pipeline at this point, but will include tests to verify its function and to 
increase confidence as the work progresses through the stages. 

○​ Stage 2 will be to use the difference mechanism created in Stage 1 to 
restrict the rendering of frames depending on the double buffering 
strategies and mechanisms of the various supported platforms. The 
new rendering modifications will be gated behind an opt-in flag. 

○​ Stage 3 will be to change the enabling flag from opt-in to opt-out after 
an appropriate period of debugging and feedback from developers. 
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