
Apache Polaris Federation - Non-REST
Remotes, Credential Vending and
Table-Level RBAC Outline

Dennis Huo

 Jul 16, 2025

Background​ 1
Design Details​ 3

Credential Vending​ 3
Detailed Implementation Items​ 4

Non-REST Remote Catalogs​ 5
Detailed Implementation Items​ 6

Table/Namespace-Level RBAC​ 6
Detailed Implementation Items​ 7

Longer-Term​ 7

Background
This document serves as a lightweight design outline for adding credential vending and
table-level RBAC to the Polaris Catalog Federation feature originating in

, along with a prerequisite refactor that is Apache Polaris Catalog Federation Proposal
relevant for supporting federation non-Iceberg-REST remote catalogs in a secure way.

The key set of not-yet-built related features are highlighted in red:

https://docs.google.com/document/d/1Q6eEytxb0btpOPcL8RtkULskOlYUCo_3FLvFRnHkzBY/edit?tab=t.0

Three key pieces relate as follows, in order of their inter-dependencies:

●​ Credential Vending
○​ Today, a Federated Catalog contains a StorageConfig but it is unused; minting a

vended credential requires extracting machinery from the IcebergCatalog class to
use in a "decorator" pattern on top of the remote catalog client

●​ Non-REST Remote Catalogs
○​ Iceberg REST is unique in that the LoadTableResponse already contains the full

body of the TableMetadata; other catalogs like GlueCatalog/HiveCatalog only
provide the metadata filename, and "environment-based" configuration is used to
instantiate FileIOs to read TableMetadata in an insecure way

○​ Beyond "credential vending" to provide a credential back to a caller, we must also
standardize the instantiation of the internal FileIO to match the behavior of the
Polaris IcebergCatalog

●​ Table/Namespace-Level RBAC
○​ Instantiation of the Catalog "decorator" that will be used for storage-credential

management requires the creation of "synthetic" PolarisEntities backfilled into a
PolarisResolutionManifest

○​ A similar backfill of "synthetic" PolarisEntities is required during
Namespace/Table-level grant assignment to provide the securables attached to
GrantRecords

Design Details

Credential Vending
When a federated catalog client is used directly as the baseCatalog in the
IcebergCatalogHandler, the credential-vending logic which looks for "instanceof
SupportsCredentialDelegation" will fail, so no credentials will be vended:

 if (table instanceof BaseTable baseTable) {
 TableMetadata tableMetadata = baseTable.operations().current();
 return Optional.of(
 buildLoadTableResponseWithDelegationCredentials(
 tableIdentifier, tableMetadata, actionsRequested, snapshots)
 .build());
 } else if (table instanceof BaseMetadataTable) {
 // metadata tables are loaded on the client side, return NoSuchTableException for now
 throw new NoSuchTableException("Table does not exist: %s",
tableIdentifier.toString());
 }

 throw new IllegalStateException("Cannot wrap catalog that does not produce BaseTable");
 }

 private LoadTableResponse.Builder buildLoadTableResponseWithDelegationCredentials(
 TableIdentifier tableIdentifier,
 TableMetadata tableMetadata,
 Set<PolarisStorageActions> actions,
 String snapshots) {
 LoadTableResponse.Builder responseBuilder =
 LoadTableResponse.builder().withTableMetadata(tableMetadata);
 if (baseCatalog instanceof SupportsCredentialDelegation credentialDelegation) {
 LOGGER
 .atDebug()
 .addKeyValue("tableIdentifier", tableIdentifier)
 .addKeyValue("tableLocation", tableMetadata.location())
 .log("Fetching client credentials for table");
 AccessConfig accessConfig =
 credentialDelegation.getAccessConfig(tableIdentifier, tableMetadata, actions);

In general, the responsibilities of the Catalog Federation layer can be divided into
Pre-Passthrough Actions and Post-Passthrough Actions.

https://github.com/apache/polaris/blob/7ca49702694f0200752d9d7e41a2d7f319b23fea/service/common/src/main/java/org/apache/polaris/service/catalog/iceberg/IcebergCatalogHandler.java#L768

In the current MVP of Catalog Federation, since the remote-catalog client acts directly as the
baseCatalog to which the request handling is delegated, there is no way to reuse Polaris
shared logic for post-passthrough actions.

Detailed Implementation Items

To support credential vending in a way that aligns with the rest of Polaris, we must minimally:

●​ Add a decorating delegator implementation of Iceberg's Catalog (with
SupportsNamespaces, SupportsViews, etc) which wraps a remote Catalog client of
arbitrary type

●​ Make the decorating delegator class implement SupportsCredentialDelegation
●​ In IcebergCatalogHandler::initializeCatalog return the wrapped catalog

instead of the raw remote catalog client
●​ Extract shared helpers like getLocationsAllowedToBeAccessed for the decorating

delegator to use in its implementation of getAccessConfig

To better refactor shared logic and pave the way for other federation post-processing actions,
ideally we'll also:

●​ Add a helper method which can take the low-level result of a remote loadTable response
to "backfill" a PolarisResolutionManifest within the decorating delegator class

○​ In contrast to the IcebergCatalog which takes a
PolarisResolutionManifestCatalogView in its constructor, the decorating delegator
should be able to produce a synthetic version of such a view as a
Post-Passthrough Action

○​ This synthetic PolarisResolutionManifestCatalogView will serve as a precursor
for future JIT-Creation of Polaris Passthrough Facade entities

●​ Extract the full logic of getAccessConfig into a shared class (possibly an abstract base
class) to be shared by the decorating delegator and the existing IcebergCatalog

○​ Some refactoring may be required to allow helper methods like findStorageInfo,
etc., to operate on a caller-specified PolarisResolutionManifestCatalogView

Non-REST Remote Catalogs
Extending the credential-vending work whereby we prepare a decorating delegator to perform
credential-vending as a "post-passthrough action", the Non-REST Remote Catalog becomes
another special case of post-passthrough processing in that reading the TableMetadata from the
object store in itself becomes post-passthrough:

In the absence of this flow, we currently by-default allow non-REST Catalog client libraries to
exercise "custom" environment-based FileIO loading, which is insecure for many reasons:

https://github.com/apache/polaris/blob/7ca49702694f0200752d9d7e41a2d7f319b23fea/service/common/src/main/java/org/apache/polaris/service/catalog/iceberg/IcebergCatalog.java#L853

●​ Circumvents the core Polaris FileIOFactory centralization which is often used for things
like FileIO-layer throttling, metering, auditing, etc.

●​ May use ObjectStore SDK libraries to search the "default environment path" for
credentials:

○​ May look for environment variables like AWS_ACCESS_KEY_SECRET
○​ May try to contact the "local cloud VM metadata server" for short-lived credentials
○​ May search the local filesystem for credentials like ~/.awscredentials

Detailed Implementation Items
●​ Refactor IcebergCatalog to extract shared loadFileIOForTableLike logic
●​ Optional - Better centralize the interactions with

FileIOUtil.refreshAccessConfig - currently both
IcebergCatalog::getAccessConfig and
DefaultFileIOFactory::loadFileIO directly call
FileIOUtil.refreshAccessConfig but we may want to be able to change both
callsites just by wrapping the remote catalog in our decorating delegator class

Table/Namespace-Level RBAC
Once we've solidified the pattern of producing a BackfilledPolarisResolutionManifest based on
the initial PartialPolarisResolutionManifest + Contents of Remote Catalog response, we have
two options:

●​ Backfill only a dummy entity in persistence without ever performing a passthrough to the
remote catalog

○​ Pros
■​ Easy to implement
■​ Doesn't require additional requests to the remote catalog just to generate

grant records
■​ Also fixes in-passing an existing bug where attempts at

table-level/namespace-level grants on a federated catalog may just
incorrectly apply the grant to the base CatalogEntity instead

○​ Cons
■​ No validation of existence or state of entities
■​ No way to attach grants to a strict "version" of an entity; grants effectively

become "by-name"
■​ If authorization adds features like attribute-based access control, we won't

have the actual entity attributes available to support that
●​ Require actually fetching a successful response from the remote catalog before

producing the synthetic passthrough facade entity

○​ Pros
■​ Better aligned with future plans to have a strictly validated

passthrough-facade entity
○​ Cons

■​ Requires more substantial work to be able to initialize a remote Catalog
client within PolarisAdminService

It's feasible to begin with only backfilling a dummy entity in persistence and add remote-catalog
mediated backfill later.

Detailed Implementation Items

●​ Modify PolarisAdminService to support "partial" PolarisResolutionManifest results in the
"pre-passthrough action" phase prior to authorization

●​ TBD: Create a synthetic PolarisResolutionManifest with the full leaf path based naively
on the fully-qualified entity name, without contacting the remote catalog

●​ Continue to apply the same existing grant logic
●​ Phase-2: Mimic the catalog-resolution logic from IcebergCatalogHandler to allow

federated-catalog client creation in PolarisAdminService
●​ Phase-2: After authorizing the PartialPolarisResolutionManifest, issue the necessary

remote calls to validate existence/state of securables on which we will be adding grants
●​ Phase2: Commit the Backfilled entities into the persistence layer

Longer-Term
Beyond the immedate features of credential vending and Table RBAC, the formalization of
“Pre-Passthrough” and “Post-Passthrough” actions/transformations/decorations outlined here
are the building blocks for the longer-term features relating to Catalog Migration mentioned in
the “Future Directions and Catalog Migration” section of the original proposal.

The Catalog decorator pattern and “entity backfill” lead directly to features eventually serving the
migration use case, including:

●​ Freshness-aware table loading
●​ TableMetadata caching
●​ Snapshot shredding, “snapshots=refs” filtering

The details of these features are out of scope of this document, but will be discussed in further
Polaris Federation roadmap documents/designs.

https://docs.google.com/document/d/1Q6eEytxb0btpOPcL8RtkULskOlYUCo_3FLvFRnHkzBY/edit?tab=t.0#bookmark=id.dm0mcu9wuv09

	Apache Polaris Federation - Non-REST Remotes, Credential Vending and Table-Level RBAC Outline
	Background
	Design Details
	Credential Vending
	Detailed Implementation Items

	Non-REST Remote Catalogs
	Detailed Implementation Items

	Table/Namespace-Level RBAC
	Detailed Implementation Items

	Longer-Term

