Notes

Idea

Weak recurrence in hidden states or in attention, the hidden state of the previous step is sitting
right above you. Meaning in parallel computation of the transformer the example predicting
token n is directly under the example predicting token n-1. Downshift matrix by 1. Hadamard,
Matmul, conv, what? Lstm research relevant here.

So the “Mary had a little _” example gets to incorporate the “Mary had a __” example.

In recurrence language we consider the prediction of token n as the current example / input, and
the prediction of token n-1 as the state of the previous time step.

Will take a look at LSTM architectures and try out some variations of gating / combining/
forgetting / concatenating current input with the representations of the previous time step.

This seems simplest to try incorporating between the transformer block and feedforward block.
So inside of the feedforward block before actual feedforward we’ll modify the input to
incorporate the previous time step.

Other:

OK some tempering: we already have this kind of weak recurrence in transformers. the attention
and hidden state of time t for a given token get shown to all the other tokens at time t+1. So
example 3 does get to see example 2's hidden state at the next layer's QKV. The griffin paper
calls multihead attention a "temporal mixing block", a function template where RNN can also be
put.

Cross attention but using Istm mechanisms

Other:

expand on cross-example:

like cross-example attention: maybe at the very end, after all layers, you just get to see a
weighted example of the representations of previous examples. So there's some masking to
prevent looking at future tokens, but you get to see the hidden representations of previous token
prediction computation. the cross-example attention idea is kind of like weakly recurrent version:
you see the intermediate hidden state of the computation for processing previous words.

EDIT: it's more like second order recurrence. so MHA is itself a kind of recurrence, or rather
relation to previous time steps. at layer t, information is mixed, and at layer t+1 when information

is mixed again each token gets to indirectly see how other tokens attended through this t+1
representation. if you do att@att it's like a second order example mixing
so it doesn't quite work doing att@att. but what about the intermediate representations in the ff?

Other:

There’s some other idea of projecting all past examples such that each example can see what
all others attended to. att@att does this in cross attention. You need to apply appropriate
masking and need to do a few projections - my problem trying to build this is it always looks a lot
like self attention again, maybe minus one or two projections. The only difference here would be
that we look at the hidden representation state of other examples instead of their token
representations (following e.g. QKV projections)

X=TD

W1=DD

P1 = X.masked@W1 =T D each row is each example + it peeks at past representation space
(not token) of examples

OUT = gate * X + 1-gate * P1

This is probably most straightforwardly viewed as a convolution

Design questions / variations for SSMs

There are a few dimensions along which we can create variations, and having now looked at
some recurrence and SSM literature after the initial experiments it seems like people are
basically trying out the different variations in this search space:

- Where in architecture is weak recurrence applied? In the attention block, feedforward
block? And where inside of it
- Starting with the beginning of feedforward block
- TODO review KV caching: am i building something which does not allow for KV
caching?

- Which previous states are used? One previous state, multiple, all?

- How are the previous state(s) aggregated? Convolution, addition, concatenation,
linear map, custom kernel, etc. How to effectively concentrate or represent the previous
state seems like a key area of research

- By what operation is the previous state combined with the current input?

- How are the previous state and current input gated/weighted under this combination
operation? Is the gating input-dependent?

Interestingly it feels (early now) that you can basically differentiate and describe each of these
new SSM/recurrence models by how they answer these questions.

For example, now that I've read the Griffin paper:
Where? In place of self attention

p—

MLP block =l=—-

GelU

I
[Linear]

[RMSNorm] [ircer]

Linear

Repeat —
N times

Temporal
mixing block
RMSNorm

(b) Gated MLP block

(a) Residual block (c) Recurrent block

Which states? It seems like they look at the previous 4

Recurrent block Our recurrent block (Figure 2(c)) is similar to the GSS block (Mehta et al., 2022)
and the block used by Mamba (Gu and Dao, 2023). We take the input of dimension D and apply two
linear layers with output dimension Dgyy in parallel, creating two branches. On the first branch, we
apply a small separable Conv1D layer, inspired by the Shift-SSM in H3 (Dao et al., 2022b), with a
temporal filter dimension of 4. Note that this Conv1D layer is very small, with just 4Dryy parameters.
We follow the Conv1D layer with our proposed RG-LRU layer (defined below.) On the second branch
we apply a GeLU nonlinearity and then merge the branches by element-wise multiplication. We then
apply a final linear layer with output dimension D.

Aggregated how? 1d convolution filter
Gated and combined with input how?

re = o(Wux+b,), recurrence gate
ir = o(Wyx:+by), inputgate

a = acrf’

ht = atOht_]_'l' 1—at2®(it0xt).

Related works

An incredible amount of work on adding recurrent components into transformer architectures
has come out in just the last two weeks (today is 4/16/24). It looks like Griffin and Megalodon
and a bunch of others have the same overarching idea of gating “previous time step” and
combining with the current time step.

The griffin paper diagram gives a slot to “temporal mixing block”, and says that self attention or
whatever their special block is goes there. That’s a good term, because these are all ways of
mixing information across examples / tokens / time steps, so self attention and recurrent and
state space methods work here

kkkkkkhkkkkkkkhkkhkhkkx

Ok, looked at the hazy research blogs on SSMs to get a brief overview on their genesis. (Didn’t
realize Chris Re and snorkel were in this space). The “convolution is recurrence is SSM” is a
really nice perspective.

The annotated S4 looks good but too deep for now. The Mamba paper also gives a very good
overview of what’s going on in the space. Albert Gu is a very good explainer, these posts and
the mamba paper are extremely clear and concise.

It seems the idea of just pulling in the previous example is a very low-tech version of the SSM
and recurrence ideas, but the mechanical questions | have of how to incorporate it are all in line
with a lot of the more recent papers.

Looking at the Griffin paper blocks confirms this more. Look at the previous 4 steps using
convolution and provide a kind of GRU-like gate to combine with input.

There’s a lot of reapplication of old LSTM mechanisms.

I’'m surprised there’s not more discussion or looking-inside of the mechanisms over training.
Like, what is the behavior of the learnable parameters, specifically gate parameters, over time?

Griffin
Mamba

S4

GRU
RetNet?
Megaladon

On further reading of Mamba, it looks like the main point is: S4 models are OK but they don’t
have selection criteria over the past state, so let's make incorporation of the past state input
dependent

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x : (B,L,D) Input: x : (B,L,D)
Output: y : (B,L,D) Output: y : (B,L,D)
1: A : (D,N) < Parameter 1: A : (D,N) < Parameter
> Represents structured N X N matrix > Represents structured N X N matrix

2: B : (D,N) « Parameter 2: B :(B,L,N) « s5(x)
3: C : (D,N) « Parameter 3: C : (B,L,N) « sq(x)
4: A : (D) « t(Parameter) 4: A : (B,L,D) « t (Parameter+s,(x))
5: A, B : (D,N) « discretize(A, A, B) 5: A,B : (B,L,D,N) « discretize(A, A, B)
6: y « SSM(A, B, C)(x) 6: y « SSM(A, B, C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: returny 7: returny

This comes with implementation problems that seem to be a focus of the paper.
[we create projections of input data, inevitably looking more and more like attention...]

https://arxiv.org/pdf/2404.08819.pdf

"The lllusion of State in State-Space Models"

No idea how relevant this paper is practically (how important the theoretical class of complexity
an algorithm handles is), but says that the diagonalized version of the selection gating / input
dependence is insufficient to perform certain tasks where a non-diagonalized version can. The
fix is making A non-diagonal:

https://twitter.com/lambdaviking/status/1780246366075171032

Q: “Wait isn't the discrete A input dependent in Mamba?”
A: “Yes but it's diagonal and only input-dependent through delta. Turns out this isn’t enough to
get greater expressive power”

*kkkkkhkkhkhkhkhkkkhhhkhkhhkhhkhx

H3 looks like something quite similar to the idea here: includes a shift matrix. I'm not sure of the
details and am not getting a concise explanation / implementation. Will look at later

Shift SSM Diagonal SSM
Q Aspecial shift matrix An S4D layer captures
encodes associations long-term dependencies.
with past elements.

X

|

A

|
G}deJ

<

Eementuise HS3 layer structure

From https://iclr-blogposts.qithub.io/stagina/bloa/2022/hippo-to-h3/

https://arxiv.org/pdf/2404.08819.pdf
https://twitter.com/lambdaviking/status/1780246366075171032
https://iclr-blogposts.github.io/staging/blog/2022/hippo-to-h3/

My diagrams:

Weak Recurrence

- e .
g ¥
(Geoi] [1-Biona]

[near | [comv |
- s

L Self-Attention J

(@)

012 o1s)
1.08 0.45
— Softmax >
-1.3 0.04 (C)

.89 0.37

to weighted sum (t-3:10)

l t1 weighted sum (t-2:t1)

0.14 t2 weighted sum (t-1:12)

0.45 t3 weighted sum (t0:t3)

0.04 t4 weighted sum (t1:t4)

0.37 | = Conv —> t5 —— weighted sum (t2:t5)

(b) t6 weighted sum (t3:t6)

t7 weighted sum (t4:t7)

class ExampleMixing(nn.Module):
def __init_ (self, args: ModelArgs):
super().__init__()
self.w_state = nn.Linear(args.dim, args.dim)
self.num_previous_time_steps = 4
self.weights = nn.Parameter(torch.ones(1, 1, self.num_previous_time_steps, 1) * (1.0 / self.num_previous_time_steps))

def forward(self, x) => torch.Tensor:
batch_size, seq_len = x,shapel®], x.shape[l]

Softmax

weights = self.weights.view(self.weights.size(B), -1) # Flatten the weights
softmax_weights = F.softmax(weights, dim=1) # Apply softmax

softmax_weights = softmax_weights.view_as(self.weights) # Reshape back to original

Convolution
conv_over_past_examples = torch.nn.functional.conv2d(x.unsqueeze(1),
softmax_weights,
bias=None,
stride=1,
padding=(self.num_previous_time_steps, @))

conv_over_past_examples = conv_over_past_examples.squeeze(1) # Remove dimension from output, (b 1 t d) —= (b t d)
conv_over_past_examples = torch.split(conv_over_past_examples, seq_len, dim=-2) (@] # Take the first seq_len examples

Sigmoid gating
gate = torch.sigmoid(self.w_state(x))
out = gate * x + (1 - gate) * conv_over_past_examples

return out

Example Mixing Block

How to create the previous example tensor?

1) We began with inplace operations but this breaks the graph

previous state = torch.zeros like (x)

previous state[:, 1:, :] = x[:, :-1, :]

2) Changed it to copy the input data to a tensor of zeros and then downshift the data

previous state = torch.cat((torch.zeros (batch size, 1, args.dim),
x[:,:=1,:]1), dim=1)
3) Lastly:

“Wait, instead of breaking the computation graph with inplace or copying the tensor which
breaks backprop, it’s like:

x@torch.eye(downshifted one)’

So that the previous_state tensor becomes a function of the input rather than a copy of it,
allowing backprop to flow through the previous_state tensor.

downshift matrix = torch.eye(seq len, seq len, device=device)

downshift matrix = torch.cat([torch.zeros(l, seq len,
device=device), downshift matrix[:-1]], dim=0)

downshift matrix = downshift matrix.repeat (batch size, 1, 1)

previous state = downshift matrix @ x

Toy example:

mailto:x@torch.eye

"[101] a = torch.randn(4,4)
a

tensor([[-0.2895, 0.4758, —-0.3058, 0.4475],
[-0.8944, -0.5693, 0.5128, -1.03161,
[0.8355, -0.2349, 0.7197, 0.6080],
[-0.1510, ©.1949, ©.2878, -0.94671])

"[102] b = torch.eye(4,4)

b = torch.cat([torch.zeros(1,4), b[:-1]]1, dim=-0)

b

tensor([[0., 0., 0., 0.1,
[1., 0., 0., 0.],
[@., 1., 0., 0.1,
[0., 0., 1., 0.11)

© bea

[3 tensor([[0.0000, 0.0000, 0.0000, ©.0000],
[-0.2895, 0.4758, -0.3058, 0.4475],
[-0.8944, -0.5693, 0.5128, -1.0316],
[0.0355, -0.2349, 0.7197, 0.60801])

So there’s three versions of creating the downshifted matrix of previous example
- In place ops to create previous example tensor (breaks graph)
- Copy input over to create previous example tensor (works but no backprop to data)
- Create downshift linear transformation (works and backprops back to data)

In practice 1 doesn’t work, 2 and 3 work about the same (testing at small scale)

*kkkkkhkkkhkkhkhkhkhkhhhkhkhhkhd

I've been calling th|s a “downshlft matrlx which of course turns out to exist and have the same
: rix. | would guess I'd heard this term long ago? But
| don’ t recall seeing the matrlx before, |ts just obvious that you can create a shift matrix.

Residual Notes

Important note
My terminology has been backwards:
Given something like x 2 =x_1 +f(x_1),

- X_1is the identity mapping
- f(x_1) is the computation

https://en.wikipedia.org/wiki/Shift_matrix

f(x_1) is referred to as the residual, not x_1. In the log I've been incorrectly referring to the
identity/skip connection as the “residual.”

So we should call it: the residual and the identity/skip. From here on (in the notes/sections
outside of experiment notes) we'll refer to it as residual and skip.

Inside of the experiment logs, whenever | am saying “residual”’ | mean “skip/identity.” In either
case the code is well-documented and referenced in the notes so the code is the ground truth.

Related works

This stanford talk by Hyung Won Chung
https://www.youtube.com/watch?v=3gb-ZkVRemQ&t=139s is a good explanation of my intuition
for this kind of thing. Residual connections were added to help stabilize training, but in the long
term it seems like quite restrictive to enforce that each layer sum one part identity with one part
residual. Yes, the model in theory can accommodate this and aprpxoimate this - the model is
equivalent ot one with learned skip weights - but it seems more general purpose to allow the
model to adjust this relationship directly.

So anything that kind of *looks* hardcoded is probably worth revisiting, like the scaling factor in
attention, or residuals. It’s not really changing the model in any deep way, it’s just allowing the
model more degrees of freedom to change itself. A good quote from the resnet paper is
“Although both forms should be able to asymptotically approximate the desired functions (as
hypothesized), the ease of learning might be different.”

The other piece of intuition is that learned scalable parameters lead to better efficiency. Model a
is multiplying two matrices A@B. If A has a single scalar weight (a*A)@B it allows for the
weights of A to focus on variance and expressitivity instead of scale. Factoring out a
multiplicative scalar means the numbers can become more easily fine-tuned, instead of the
case where values are blowing up in one matrix - you could test and see if all matrices take on
the same mean/variance while the multiplicative scalars handle the other part

https://arxiv.org/pdf/1512.03385 kaiming he, resnet
- The initial story is the degradation problem: accuracy of a deep model is saturated at

some middle layer and then actually becomes worse through the later layers. Surely the
later layers could just learn to become identity functions and pass the accurate
representation through, rather than degrading it; a model with performing at a certain
accuracy should in theory be no worse if we stack additional layers on top of it. And yet it
is.

- The whole idea is to facilitate training, not to change the architecture. Reformulate the
function to be learned as a residual function. “Although both forms should be able to
asymptotically approximate the desired functions (as hypothesized), the ease of learning
might be different.”

https://www.youtube.com/watch?v=3gb-ZkVRemQ&t=139s
https://arxiv.org/pdf/1512.03385

- The key theory: “if the added layers can be constructed as identity mappings, a deeper
model should have training error no greater than its shallower counterpart. The
degradation problem suggests that the solvers might have difficulties in approximating
identity mappings by multiple nonlinear layers. With the residual learning reformulation, if
identity mappings are optimal, the solvers may simply drive the weights of the multiple
nonlinear layers toward zero to approach identity mappings. In real cases, it is unlikely
that identity mappings are optimal, but our reformulation may help to precondition the
problem. If the optimal function is closer to an identity mapping than to a zero mapping, it
should be easier for the solver to find the perturbations with reference to an identity
mapping, than to learn the function as a new one.”

https://arxiv.org/pdf/1505.00387.pdf
Highway networks
- Gate = sigmoid(w_gate(x))
- Y =relu(w_transform(x)) * gate + x * (1-gate)
- Propose initializing the w_gate as negative, but note that it is sigmoid(w_gate) so this is
always positive “such that the network is initially biased towards carry [skip] behavior’
- Good analysis of what’s going on that | could try to replicate

Transform Gate Biases Mean Transform Gate Outputs Transform Gate Outputs Block Outputs

. 0.40
0.36
0.32

-0.28
-0.24

N
S
v

-0.20

MNIST
Depth

-0.16
-0.12

0.08
0.04
0.00
28 q . & 0.40
' i, 0.36

=2 L B
U | 032

!

40 -

108 36 I'.l' -
X a -0.28
- -4.0 5 1
8 _ 20- o -o024
o] - -44
z g i -0.20
<
£ 2 e R - -48
© 30 e o -0.16
- JHETE LN B LS | 012
L L l.I 1 ll.
a0 SRS, » M 01 56 0.08
]] i —6.0 0.04
b i oty Ty i
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Block Block Block

Figure 2. Visualization of certain internals of the blocks in the best 50 hidden layer highway networks trained on MNIST (top row) and
CIFAR-100 (bottom row). The first hidden layer is a plain layer which changes the dimensionality of the representation to 50. Each of
the 49 highway layers (y-axis) consists of 50 blocks (x-axis). The first column shows the transform gate biases, which were initialized
to -2 and -4 respectively. In the second column the mean output of the transform gate over 10,000 training examples is depicted. The
third and forth columns show the output of the transform gates and the block outputs for a single random training sample.

https://arxiv.org/pdf/1603.05027.pdf

https://arxiv.org/pdf/1505.00387.pdf
https://arxiv.org/pdf/1603.05027.pdf

Identity Mappings in Deep Residual Networks by He
- They actually test out a variety of gating mechanisms and scaling options and find that
original fixed 1 * skip is the best:

Table 1. Classification error on the CIFAR-10 test set using ResNet-110 [1], with
different types of shortcut connections applied to all Residual Units. We report “fail”
when the test error is higher than 20%.

case | Fig. | on shortcut ’ on F | error (%) | remark
original [1] Fig. 2(a) 1 1 6.61
0 1 fail This is a plain net
constant . .
Lealtng Fig. 2(b) 0.5 1 fail
0.5 0.5 12.35 frozen gating
i 1—g(x) g(x) fail init bg=0 to —5
exclusive .
gating Fig. 2(c) 1—g(x) g(x) 8.70 init by=-6
1—-g(x) g(x) 9.81 init bg=-7
shortcgt—only Fig. 2(d) 1—g(x) 1 12.86 init by=0
gating 1-g(x) 1 6.91 init by=-6
1x1 conv shortcut | Fig. 2(e) 1x1 conv 1 12.22
dropout shortcut | Fig. 2(f) | dropout 0.5 1 fail

- Tested out skip = .5 fixed and found it worse
- “...the shortcut connections are the most direct paths for the information to propagate.
Multiplicative manipulations (scaling, gating, 1x1 convolutions, and dropout) on the
shortcuts can hamper information propagation and lead to optimization problems.®
- Note that these are all fixed instead of parameterized scalars
If f is also an identity mapping: x;,1 = y;, we can put Eqn.(2) into Eqn.(1)
and obtain:

Xi+1 =X+ f(x;,Wl). (3)
Recursively (x£+2 =Xj4y1 + .F(Xl+1,WH_1) =x; + F(x;,W;) + -7:(X1+1,Wl+1), etc.) we
will have:
L—1
XL =X+ Z F(xi, Wi), (4)

1=l

Let’s consider a simple modification, h(x;) = \;x;, to break the identity shortcut:
Xi+1 = \ixy + F(x;, W), (6)

where); is a modulating scalar (for simplicity we still assume f is identity).
Recursively applying this formulation we obtain an equation similar to Eqn. (4):

xr = ([[;5" A%+ 05 (T1750 X)) F (xi, Wh), or simply:
L1 1
xp = (] A=+ > Flxi, W), (7)
i=l =l

where the notation F absorbs the scalars into the residual functions. Similar to
Eqn.(5), we have backpropagation of the following form:

0FE 9 | -) <
BM—%((HM)JF(?M;I(X@',W@) : (8)

Unlike Eqn.(5), in Eqn.(8) the first additive term is modulated by a factor
Hf‘z_ll A;. For an extremely deep network (L is large), if A; > 1 for all ¢, this
factor can be exponentially large; if A\; < 1 for all ¢, this factor can be expo-
nentially small and vanish, which blocks the backpropagated signal from the
shortcut and forces it to flow through the weight layers. This results in opti-
mization difficulties as we show by experiments.

- Where F is the layer residual and x_| is a layer input

- The point is that depending on lambda’s initialization the skip connection can
explode or vanish. The bad result is that models fail to train.

https://arxiv.org/pdf/2003.04887 rezero
- Add a learnable weight to the residual that is initialized at zero

- Mostly building on the theory of dynamical isometry: the singular values of the Jacobian
are close to one - that this is key for trainability.

https://arxiv.org/pdf/1605.08831.pdf

- Basically the same as ReZero but before it? Not cited in ReZero.
- Scalar weight, but not for the skip, for the residual.

networks. Formally in a weighted residual networks unit, the computation of the
signal is

Xit1 = X; + MAL; (x4, 0;), A € (—1,1), (2)
where 8; is the filter parameters and it is initialized by “msra” , A; is the weight
scalar for the residual and it is initialized by zero with a very small learning rate.

https://arxiv.org/pdf/2003.04887
https://arxiv.org/pdf/1605.08831.pdf

- Mostly interested in showing that it performs slightly better and that it allows the training
of much deeper (1000s of layers) networks

OK back to negative skip weights. Something bothering me is that the activation functions are
not symmetric around zero. So doesn’t the sign actually matter? And aren’t the outputs of a
layer almost always more positive, therefore a negative skip weight means we’re subtracting
representation? So it seems like it is significant that the skip weights go negative? However in a
FF and glu variants there is always one last matmul around the activation function, like
(W2(RELU(W1(x))).

- “...For aresidual unit, a central question is how to combine the residual signal and the
highway signal, where element-wise addition was proposed in [3]. A natural idea is to
perform addition after ReLU activation. However, this leads to a nonnegative output from
residual branch, which limits the representative ability of the residual unit meaning that it
can only enhance the highway signal....”

https://conferences.computer.org/iccst/pdfs/ICCST2020-2x2ntQfxuA3yvTHh2xbxHC/813800a19

2/813800a192.pdf
- Some discussion of weighted skip connections, but bounded between 0 and 1

- No analysis of what these skip connections do

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472970/
- Somewhat technical gateing function on the skip connection

w ¢ _ Output g
H(E w c Sigmoid C ;
> s > - D
% H 9 . w
[+
“r (Dt

vV
c

Figure 2

Structure of the gated skip-connection.

https://arxiv.org/pdf/2303.13563.pdf
- Spiking neural networks (intersting approach)

- Basically parameterize the position, type, and number of skip connections over a
network. This is a large permutation search space, so bayesian optimization to tune
them like hyperparameters.

- No analysis of the skip values

- Helps their network, they generalize to saying that more connections help. The work
seems confined to spiking neural networks

https://conferences.computer.org/iccst/pdfs/ICCST2020-2x2ntQfxuA3yvTHh2xbxHC/813800a192/813800a192.pdf
https://conferences.computer.org/iccst/pdfs/ICCST2020-2x2ntQfxuA3yvTHh2xbxHC/813800a192/813800a192.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472970/
https://arxiv.org/pdf/2303.13563.pdf

Finally some background:

https://aclanthology.ora/2020.coling-main.320.pdf

“...itis intuitive that the modulating factor A may not always be one, especially when F is
not well trained and not sufficient in representation ability. In addition, the intuition is
supported by Srivastava et al. (2015) who found that if using a gate mechanism to
determine the balance between the two components, the skip component wins in almost
all situations. However, in the study of He et al. (2016b)2 , which discussed the
combination of batch normalization, learned A, and convolutional neural networks, they
found empirically that the best performance is achieved when A is fixed as one,
suggesting the shortcut and the transformed input should be of equal importance.”

The work is reevaluating where and how to weight the skip connection given the
introduction of layernorm

They mostly focus on position, and set the weight of the skip connection fixed at 2 or 3,
actually finding that a higher weight is better?

At the end of 4.3, they discuss “what if we set the skip weight to be learnable” and try
scalar/vector learnable weight, but “However, the findings are not in favor of this
approach over the fixed scalar version”

On the connection problem Highway network (Srivastava et al., 2015) built a highway
connection from the input to the output, similar to the skip connection. However, a
transform gate was proposed to control the balance of the input x and the transformed
input F(x, W), instead of using identity mapping to combine the input and the
transformed input. He et al. (2016b) designed five types of skip connections and
discussed the possible skip connections in detail. Based on their theory and
experiments, they argued that it is likely for a model to perform the best when the skip
connection is directly combined into the output without any additional scaling such that
the skip and the transformed input have equal contribution to the output. The reason is
that with scaling, the gradient of the skip suffers from the gradient exploding or vanishing
problem, which hinders the deep neural network from efficient optimization.

...Following Srivastava et al. (2015), we mainly experiment with A > 1. (lambda is
identity/skip scalar)

https://aclanthology.org/C16-1020.pdf

Thorough look at skip connections with LSTMs
Nothing too relevant that | can see

https://aclanthology.org/2020.coling-main.320.pdf
https://aclanthology.org/C16-1020.pdf

https://arxiv.org/pdf/1605.06431
- Residual Networks Behave Like Ensembles of Relatively Shallow Networks

Building block

Skip
connection

0-4 Ji Mfz M.I‘é]Q)—»

Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)

- Residual networks behave like ensembles: if you delete or remove one or multiple
residual blocks but leave the skip intact, the model loss doesn’t explode (as it does for
non-residual networks (VGG)) but instead smoothly increases.

- Looking at all paths through the network, gradient is concentrated on shorter paths. In
fact, deep paths provide no gradient “...Thus, residual networks do not resolve the
vanishing gradient problem by preserving gradient flow throughout the entire depth of
the network...”

https://arxiv.org/pdf/1710.04773
https://arxiv.ora/pdf/1612.07771

Hypothesis

My working hypothesis is that previous studies of this (how much to weigh the skip connection
vs the residual, whether to make it learnable, etc.) took place a while ago when training
networks was fundamentally more unstable, so all experiments basically led to optimization
problems. These questions were taken for granted or ignored because they’ve been tested, but
today with more stable networks, the question needs to be asked again. Today, giving the skip
connections learnable weights can have a positive effect.

[Follow up: I'm not sure how much new tech has been added since residual connections: in the
original paper they talk about norms. Not sure if Adam or LR scheduling was around?]

Setup

https://arxiv.org/pdf/1605.06431
https://arxiv.org/pdf/1710.04773
https://arxiv.org/pdf/1612.07771

“Standard” Transformer model where we swap out the FeedForward block for the FeedForward
variations below. These variations give each token/example some type of combination
(concatenation, linear transformation, convolution, etc.) with the n previous examples/tokens.
Following this, the data is fed through a normal SwiGLU MLP block.

Notebook:
<o weak recurrence.ipynb

Wandb:
https://wandb.ai/nickcdryan/weak-recurrent-ff

Experiments

Variation 1

VARIATION 1

Sigmoid gate the previous state

data = torch.randn(8,512,24)

chop off last row, downshift, add zeros as first row. Each row in data
is paired with its previous row

new = torch.cat((torch.zeros(8,1,24), datal[:,:-1,:]), dim=1)

original representation gated with previous time step representation

torch.sigmoid(gate) * data + (l-torch.sigmoid(gate)) * new

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()
self.wl = nn.Linear(args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)

self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

https://colab.research.google.com/drive/1Rc2RA7HTSzho-fVsHNNGLtKji9I55b5X?usp=sharing
https://wandb.ai/nickcdryan/weak-recurrent-ff

self.gate = nn.Parameter (torch.zeros (1))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

copied
previous state = torch.zeros like (x)
previous state[:, 1:, :] = x[:, :-1, :]

in-place
previous state = torch.cat((torch.zeros(batch size, 1, args.dim),

x[:,:=1,:]1), dim=1)

backprop

downshift matrix torch.eye(seq len, seq len, device=device)
downshift matrix = torch.cat([torch.zeros(l, seqg len,
device=device), downshift matrix[:-1]], dim=0)
downshift matrix = downshift matrix.repeat (batch size, 1, 1)

previous state = downshift matrix @ x

gate value = torch.sigmoid(self.gate)
x = gate value * x + (1 - gate value) * previous_ state

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Gate value (pre-sigmoid)

Gate value (pre-sigmoid)

Gate value strength per layer over 3000 iterations (initialized at 0)

1.50
1.25 A
1.00 A
0.75 1
'-‘
0.50 y
0.25 1
P
-
0.00 e —_—
—0.25
T T T T T T
o] 2 4 6 8 10
Layer number
Gate value over time (initialized at 0)
1.50
Layer
B Layerl
e ? Layer 2
1.25 - s g ayer
RS = e ® ° ® I Layer 3
uu:..... . Layer 4
| g5 o ® PR BN Layer5
1.00 e o g ° e ® y
2059 % L,0800000 Layer 6
o v..':'. B Layer7
0 @ . L]
0.75 1 anna~e ® [] Layer 8
;l.o.i N Layer 9
e e e, " Layer 10
0.50 280e0"° BN Layer 11
rnf oo e Layer 12
~ : L]
0.25 1 g
~
~
a8 B | ! ‘
004 ® ©
0.00 'l ...ll"0'......00....000...
® o0 o
b ® a0 o 90
—0.25 -
0 500 1000 1500 2000 2500 3000
teration

- The relevant code:

- x=gate_value * x + (1 - gate_value) * previous_state
- The lower layers actually more heavily weight the previous state
- The higher layers more heavily weight the original input

Variation 2

VARIATION 2

Concat and with previous state and project back to args.dim

data = torch.randn(8,512,24)

chop off last row, downshift, add zeros as first row. Each row in data
is paired with its previous row

new = torch.cat((torch.zeros(8,1,24), datal[:,:-1,:]), dim=1)

concat = torch.cat([data, new], dim=-1)

w = torch.randn (48, 24)

out = concat @ w

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super () . init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear (args.dim * 2, args.dim)

def forward(self, x) -> torch.Tensor:

need to shift matrix down one and add zeros in first row

previous state = torch.zeros like (x)

previous state[:, 1:, :] = x[:, :-1, :]

#previous state = torch.cat((torch.zeros (batch size, 1, args.dim),
X[:,:-1,:1), dim=1)

concat = torch.cat([x, previous state], dim=-1)

#fprint ("concat", concat.shape)

x = self.w state(concat)

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Variation 3

VARIATION 3

Concat, project, and gate with previous state

data = torch.randn(8,512,24)

chop off last row, downshift, add zeros as first row. Each row in data
is paired with its previous row

new = torch.cat((torch.zeros(8,1,24), datal[:,:-1,:]), dim=1)

concat = torch.cat([data, new], dim=-1)

w = torch.randn (48, 24)

out = concat Q@ w

#

torch.sigmoid(gate) * data + (l-torch.sigmoid(gate)) * out

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super () . init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w _state = nn.Linear (args.dim * 2, args.dim)

self.gate = nn.Parameter (torch.zeros (1))

def forward(self, x) -> torch.Tensor:

need to shift matrix down one and add zeros in first row

previous state = torch.zeros like (x)

previous statel[:, 1:, :] = x[:, :-1, :]

#previous state = torch.cat((torch.zeros(batch size, 1, args.dim),
x[:,:=1,:]1), dim=1)

concat = torch.cat([x, previous state], dim=-1)

x updated = self.w state(concat)
gate value = torch.sigmoid(self.gate)
x = gate value * x + (1 - gate value) * x updated

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Gate value

Gate value (pre-sigmoid)

Gate value strength per layer over 2000 iterations (initialized at 0)

0.8 1
0.6 1
0.4 -
0.2 A
0.0 A
T T T T T T
0 2 4 6 8 10
Layer number
Gate value over time (initialized at 0)
[] Layer
] e N |ayer 1
[Layer 2
0.8 . e e Layer 3
8 Layer 4
¢ BN Layer 5
. P Layer 6
0.6 [L B Layer 7
- ® o
c ™ Layer 8
_ ° L mm Layer 9
- ° ° Layer 10
. ® B Layer 11
0.4 1 ° °
-] ° e © mm Layer 12
] e ®
v ® ° []
® ° o *
® o b L]
0.2 e s ° o © °*
°
T ®* &+ ° e ® ° b4
! M g o a o ° M
o 9
M ! ’ ¢ . e o o @ = 8 ' g o ¢ @ e @ ' t
004 © e
0 250 500 750 1000 1250 1500 1750 2000
Iteration

Relevant line:
- x=gate_value * x + (1 - gate_value) * x_updated
All layers are learning to prefer the original input, though early layers much more so

Variation 3.1 (Mamba input-dependent gating)

VARIATION 3.1

Pass input through a matrix and use this matrix as the gate value
Basically from mamba 3.5.1, making the gating input/data dependent
https://arxiv.org/pdf/2312.00752.pdf

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear(args.dim, args.dim)

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

downshift matrix = torch.eye(seq len, seq len, device=device)

downshift matrix = torch.cat([torch.zeros(l, seq len,
device=device), downshift matrix[:-1]], dim=0)

downshift matrix = downshift matrix.repeat (batch size, 1, 1)

previous state = downshift matrix @ x

tensor gate

gate = torch.sigmoid(self.w state(x))

x = gate * x + (1 - gate) * previous state

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Variation 3.2 (Mamba over previous 2 examples)
VARIATION 3.2

Pass input through a matrix and use this matrix as the gate value

This gate value controls a sigmoid (scalar) gated combination of
previous and previous_ previous

Basically from mamba 3.5.1, making the gating input/data dependent
https://arxiv.org/pdf/2312.00752.pdf

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear(args.dim, args.dim)

self.gate = nn.Parameter (torch.zeros (1))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

downshift matrix = torch.eye(seq len, seq len, device=device)

downshift matrix torch.cat ([torch.zeros (1, seq len,
device=device), downshift matrix[:-1]], dim=0)
downshift matrix = downshift matrix.repeat (batch size, 1, 1)

previous state = downshift matrix @ x

downshift matrix 2 = torch.eye(seq len, seq len, device=device)

downshift matrix 2 = torch.cat([torch.zeros (2, seq len,
device=device), downshift matrix 2[:-2]], dim=0)

downshift matrix 2 = downshift matrix 2.repeat(batch size, 1, 1)

previous previous state = downshift matrix 2 @ x

gated combination of the states
gate value = torch.sigmoid(self.gate)
combined states = gate value * previous state + (l-gate value) *

previous previous state

tensor gate

gate tensor = torch.sigmoid(self.w state(x))

https://arxiv.org/pdf/2312.00752.pdf

Gate value {post-sigmoid)

Gate value (post-sigmoid)

X =

return self.w2(nn.functional.silu(self.wl (x))

gate tensor * x +

(1 - gate tensor)

* combined states
* self.w3(x))

Gate value strength per layer over 3000 iterations (initialized at 0)

0.75
0.70
0.65
0.60 A
0.55
0.50
T T T T T T
0 2 4 6 8 10
Layer number
Gate value over time (initialized at 0)
Layer
i B ayerl
0.75 . ® . y
° : ' - ’ Layer 2
s 8 [] e ® W Layer 3
..:' .o.. Layer 4
0.70 1 e ® ,° o ® B Layer5
$ %" o ® Layer 6
- o o ®
e . e} mm Layer 7
__A..o' [Layer 8
0.65 4 Y e 0':0....0. BN Layer 9
S EEEE LA Layer 10
g o° Y
o8t o s so" B Layer 11
J -.'.'.. .:.=:=.......'.'. mm Layer 12
0.60 - H e 0 ®
[B e ®
g Lo ™
e,
& : .
H i .
®
0.55 -;'...." ®% o000 g0 0000 ,,0000
g
S e o
9
o504 @
0 500 1000 1500 2000 2500 3000

Iteration

- Note that the gate here just controls the balance of previous and previous_previous
states. It does not affect the current input’s weight, which is controlled with a tensor of
gate values

Variation 4 (GRU)

VARIATION 4
Basically GRU

data = torch.randn(8,512,24)
chop off last row, downshift, add zeros as first row. Each row in data

is paired with its previous row

old = torch.cat((torch.zeros(8,1,24), datal[:,:-1,:]), dim=1)
concat = torch.cat([data, o0ld], dim=-1)

wr = torch.randn (48, 24)

wz = torch.randn (48, 24)

r = torch.sigmoid (concat @ wr)

z = torch.sigmoid (concat @ wz)

w = torch.randn (48, 24)

h = torch.cat([r * old, data], dim=-1) @ w
h = torch.nn.functional.silu (h)

h out = (1 - z) * old + z * h

h out.shape

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w _state = nn.Linear(args.dim * 2, args.dim)
self.wr = nn.Linear (args.dim * 2, args.dim)

self.wz = nn.Linear (args.dim * 2, args.dim)

def forward(self, x) -> torch.Tensor:
need to shift matrix down one and add zeros in first row

previous state = torch.zeros like (x)

previous state[:, 1:, :] = x[:, :-1, :]

#previous state = torch.cat((torch.zeros (batch size, 1, args.dim),
x[:,:=1,:]), dim=1)
concat = torch.cat([x, previous state], dim=-1)

r = torch.sigmoid(self.wr (concat))

z = torch.sigmoid(self.wz (concat))

h = self.w state(torch.cat([r * previous state, x], dim=-1))

h = torch.nn.functional.silu (h)

x = (l-z) * previous state + z * h

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))
Variation 5

Same as variation 1 but a learned weighted sum of the current example plus previous example
plus previous previous example

VARIATION 5

Gate the previous two states

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)
self.gatel = nn.Parameter (torch.zeros(1l))

self.gate?2 = nn.Parameter (torch.zeros (1))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

previous state

downshift matrix = torch.eye(seq len, seq len, device=device)

downshift matrix = torch.cat([torch.zeros(l, seq len,
device=device), downshift matrix[:-1]], dim=0)

downshift matrix = downshift matrix.repeat (batch size, 1, 1)

previous state = downshift matrix @ x

previous previous state

downshift matrix 2

torch.eye(seq len, seq len, device=device)
downshift matrix 2 = torch.cat([torch.zeros (2, seq len,
device=device), downshift matrix 2[:-2]], dim=0)
downshift matrix 2 = downshift matrix 2.repeat(batch size, 1, 1)

previous previous state = downshift matrix 2 @ x

gate values

gatel value torch.sigmoid(self.gatel)
gate2 value = torch.sigmoid(self.gate2)

gate x = gatel value

gate previous = (1 - gatel value) * gateZ value
gate previous previous = (1 - gatel value) * (1 - gate2 value)
x = (gate x * x) + (gate previous * previous state) +

(gate previous previous * previous previous state)

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Gatel value (favoring current example over previous example) per layer over 3000 iterations (initialized at 0)
0.8 -

0.7

0.6

0.5 A

Gate value (post-sigmoid)

0.4

0 2 4 6 8 10
Layer number

Gate?2 value (favoring previous example over previous previous example) per layer over 3000 iterations (initialized at 0)

0.75

0.70 A

0.65

0.60

Gate value (post-sigmoid)

0.55

0.50 4

0 2 4 6 8 10
Layer number

- To be clear these graphs are POST sigmoid where all previous graphs are pre sigmoid.
This is because with three values to distribute it's easier to just see the probabilities
- So gate1 is the weight given to the current example. Gate2 is the weight given to
the previous example * (1 - gate1), and the previous previous example gets
weight (1 - gate2) * (1 - gate1)’
- For early layers, the current example is weighed less than previous examples, and
between previous examples, the previous is weighed more heavily than the previous
previous example

- For later layers, the current example is weighed more heavily, and the remaining weight
favors the previous example over the previous previous example

- Strange dynamics at layer 5, 6 and 8, where we change how much we care about
previous example vs previous previous example

Variation 6

VARIATION 6

Combine the previous two states and gate with current input

class FeedForward(nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super () . init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)
self.gatel = nn.Parameter (torch.zeros(1l))

self.gate?2 = nn.Parameter (torch.zeros (1))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

previous state

downshift matrix torch.eye(seq len, seq len, device=device)
downshift matrix = torch.cat([torch.zeros(l, seq len,
device=device), downshift matrix[:-1]], dim=0)
downshift matrix = downshift matrix.repeat (batch size, 1, 1)

previous state = downshift matrix @ x

previous previous state

downshift matrix 2 = torch.eye(seq len, seq len, device=device)

downshift matrix 2 = torch.cat([torch.zeros (2, seq len,
device=device), downshift matrix 2[:-2]], dim=0)

downshift matrix 2 = downshift matrix 2.repeat (batch size, 1, 1)

previous previous state = downshift matrix 2 @ x

gated combination of the states
gate2 value = torch.sigmoid(self.gate2)
combined states = gate2 value * previous state + (l-gate2 value) *

previous previous state

gatel value = torch.sigmoid(self.gatel)
x = gatel value * x + (l-gatel value) * combined states

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Gatel value over time (initialized at 0)

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

1.0 ""

g é
§2

|'0000010000000000
]
' []

0.0 ...e

Gate value (pre-sigmoid)

—0.5 1 L]

T T T T T
4] 500 1000 1500 2000 2500 3000
lteration

Gatel value (favoring current example over previous example) per layer over 3000 iterations (initialized at 0)
0.8

0.7

0.6 1

0.5

Gate value (post-sigmoid)

0.4

0.3 1

0 2 4 6 8 10
Layer number

Gate?2 value (favoring previous example over previous previous example) per layer over 3000 iterations (initialized at 0)

0.75

0.70

0.65

0.60

Gate value (post-sigmoid)

0.55

0.50 4

T T T T T T
0 2 4 6 8 10
Layer number

- First gate looks the same as usual
- The second gate is strange. Why favor previous_state more in the early layers than in
the later layers? | have no obvious explanation, and would also like to train
longer/deeper to watch the gates evolve
- Just eyeballing the proportion for each t, t-1, t-2:
- LayerO
- T :.30
- T1:.42
- T-2:.28
- Layer2
- T :.50
- T1:.34
- T-2: .16
- Layer4
- T :.70
- T1:.22
- T-2:.08
- Layer8
- T :.8
- T-1:.13
- T-2:.07
- lLayer 11
- T :.75
- T-1:.16
- T-2:.09

Variation 6.1
VARIATION 6.1

Combine the previous two states naively and gate with current input

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)
self.gatel = nn.Parameter (torch.zeros(1l))

self.gate?2 = nn.Parameter (torch.zeros (1))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

previous state

downshift matrix torch.eye(seq len, seq len, device=device)
downshift matrix = torch.cat([torch.zeros(l, seq len,
device=device), downshift matrix[:-1]], dim=0)
downshift matrix = downshift matrix.repeat (batch size, 1, 1)

previous state = downshift matrix @ x

previous previous state

downshift matrix 2 torch.eye(seq len, seq len, device=device)
downshift matrix 2 = torch.cat([torch.zeros (2, seq len,
device=device), downshift matrix 2[:-2]], dim=0)
downshift matrix 2 = downshift matrix 2.repeat(batch size, 1, 1)

previous previous state = downshift matrix 2 @ x

just add the states

combined states = (previous state + previous previous state) / 2.0

gatel value = torch.sigmoid(self.gatel)
x = gatel value * x + (l-gatel value) * combined states

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Slightly worse performance than 6, suggesting gating rather than naive addition between the
previous_state and Previous_previous_state helps.

Variation 7 (Griffin-like)

Griffin style gating, but lambda is a single scalar.

Also, we're not caching previous state, but just injecting conv_over_past_examples as the
h_prev.

So essentially we're just trying out the LR-GRU gating mechanism

We can build out the full one but | just want to try the gating mechanism inside the current
framework. Only applies to 1 previous state.

Shows norms commented out

VARIATION 7
Griffin-like

We're not doing a tensor/diagonal lambda/a matrix

+H H= H=

Just a scalar

Lambda init:

#
https://github.com/google-deepmind/recurrentgemma/blob/e4939f9%7edf8baald5
12fb86bfc2e206044d66b/recurrentgemma/torch/layers.py#L193

"We initialize N such that a**c is uniformly distributed between 0.9 and

0.999 at the start of training, similar to Orvieto et al. (2023b)."

.99 mimicing if we sampled uniformly between .9 and .999
= torch.tensor (.99**2)

?

.log () .mul_ (0.5)

inverse softplus (inplace operations work left to right)
.neg_ ().exp ().sub_ (1.0).log ()

= -4.59

H H= H FH FH H H
0 o = o = o =

class FeedForward(nn.Module) :

def init (s

super ().

self.wl =
self.w2 =
self.w3 =
self.wr =

self.wi =

elf, args: ModelArgs):

init_ ()

nn.Linear (args.dim, args.hidden dim, bias=False)
nn.Linear (args.hidden dim, args.dim, bias=False)
nn.Linear (args.dim, args.hidden dim, bias=False)
nn.Linear (args.dim, args.dim, bias=True)

nn.Linear (args.dim, args.dim, bias=True)

self.lambda p = nn.Parameter (torch.tensor (-4.59))

#self.grif

def forward(se

batch size

downshift matrix

fin norm = RMSNorm(args.dim, eps=args.norm eps) ######

1f, x) -> torch.Tensor:

, seq len = x.shape[0], x.shape[l]

torch.eye(seq len, seq len, device=device)

downshift matrix = torch.cat([torch.zeros(l, seq len,

device=device), downshift matrix[:-1]], dim=0)

downshift matrix = downshift matrix.repeat(batch size, 1, 1)

previous s

tate = downshift matrix @ x

r = self.wr(x)

self.w

'_l.
Il

i(x)

stable impelmentation, Appendix A

log a = -8
a = torch.
a_squared
X = a * pr

#x = self.

return sel

.0 * torch.nn.functional.softplus(self.lambda p) * r
exp (log a)

= torch.exp(log a * 2.)

evious state + ((1 - a squared) * 1 * x)

griffin norm(x) ######

f.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

First run is actually better than all variation up to now, but

step O :training loss: 11.042474746704102

step 100 :training loss
step 200 :training loss
step 300 :training loss
step 400 :training loss
step 500 :training loss

: 2.3072938919067383
1 2.256641387939453
: 1.8106539249420166
: 1.640507459640503
: 1.6591455936431885

step 600 :training loss: nan
step 700 :training loss: nan
step 800 :training loss: nan

Debugging

1) Let’s check the parameter weights specific to griffin to see if anything’s amiss

2) Also maybe need to apply a norm post griffin and pre ffn. My first thought is there’s a lot
of computation in the griffin block, the output of which goes straight into FF. usually
there’s a norm direclty before attention and directly before FF, but here we take the
output of attention, norm it, then do a bunch of griffin computation before sending it
straight to FF, so a third norm might be needed post griffin.

foriin range(12):
print (model.layers][i].feed_forward.lambda_p)

Parameter containing:

tensor(-4.5145, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.4586, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.4302, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.3845, device="cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.3741, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.3588, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.3288, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.3174, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.2991, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.2954, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.2991, device='cuda:0', requires_grad=True)
Parameter containing:

tensor(-4.2924, device='cuda:0', requires_grad=True)

- Doesn’t seem to be the lambda

WR:

foriin range(12):
mean = torch.mean(model.layers][i].feed_forward.wr.weight.detach().cpu())
var = torch.var(model.layers][i].feed_forward.wr.weight.detach().cpu())
print (i, "mean", mean)
print (i, "var", var, "\n")

0 mean tensor(8.8023e-05)
0 var tensor(0.0008)

1 mean tensor(0.0002)
1 var tensor(0.0009)

2 mean tensor(0.0002)
2 var tensor(0.0009)

3 mean tensor(0.0001)
3 var tensor(0.0009)

4 mean tensor(0.0001)
4 var tensor(0.0010)

5 mean tensor(0.0001)
5 var tensor(0.0010)

6 mean tensor(-7.1553e-05)
6 var tensor(0.0010)

7 mean tensor(-5.3694e-05)
7 var tensor(0.0010)

8 mean tensor(-4.3079e-05)
8 var tensor(0.0010)

9 mean tensor(-1.8247e-05)
9 var tensor(0.0010)

10 mean tensor(-7.0893e-05)
10 var tensor(0.0009)

11 mean tensor(-3.0589¢e-05)
11 var tensor(0.0007)

wi
0 mean tensor(-4.7073e-05)
0 var tensor(0.0007)

1 mean tensor(-1.2726e-05)
1 var tensor(0.0009)

2 mean tensor(-8.9185e-05)
2 var tensor(0.0009)

3 mean tensor(-1.5085e-05)
3 var tensor(0.0009)

4 mean tensor(-9.1646e-05)
4 var tensor(0.0009)

5 mean tensor(4.6323e-05)
5 var tensor(0.0010)

6 mean tensor(7.1575e-05)
6 var tensor(0.0010)

7 mean tensor(6.9633e-05)
7 var tensor(0.0010)

8 mean tensor(3.5336e-05)
8 var tensor(0.0010)

9 mean tensor(6.6895e-05)
9 var tensor(0.0010)

10 mean tensor(9.9952e-05)
10 var tensor(0.0009)

11 mean tensor(4.7659e-05)
11 var tensor(0.0007)

-l don’t see anything obviously wrong with griffin parameters, no order of magnitude blow
ups

Let’s just try adding a norm:

Ok, adding a norm stabilizes training. The result (light blue, var7) is a bit worse than something
like 3.2 but it’s still good. 3.1 is probably a fair comparison, both look at the previous time step,
though 3.1 has slightly fewer parameters. Over the course of the run it's about on par with 3.1.

nwp_loss

val 66Me = baseline-1-var3.2-grad-159M e = baseline-1-var3.1-grad-159M = baseline-1-standard-152M
4 ne-1-standard-152M
35 E 15;{7\ 1‘ M;; 1‘ eli : 1 : : 59M
3
2.5
2
1.5
1 Step
0 500 1k 1.5k 2k 2.5k 3k
However, the verison without norm (before it NaN’d) was slightly better than the version with
norm, so it's possible the norm degrades performance, although the difference is slight and
could just be noise.
Let’s try another round without norm to see the numbers, at least before it NaNs.
OK, this lasted 1000 iters before NaN
nwp_loss
= baseline-1-var7-166M e baseline-1-var7-166\
2.6
2.4
\
2.2
\
2
i M
\ "
1.6 \
1.4 Step
200 400 600 800 1k

Yellow = first run (no norm)
Blue = second run (norm
Green = third run (no norm)

- No norm versions do well in the first few iterations, but the norm version starts to pull
away quickly.
- BUT: the pull away in performance may just be because the green run is about to
diverge and Nan
- Overall, the margin between these runs isn’t enormous, so I’'m going to hold off
trying to fix the no-norm version, at least until we finish experiments at this small
scale and make a selection of what to run at larger scale

Variation 7.1

Added the 8.2 style softmax convolution in

Works very well, but without norm it Nans

Variation 7.2

Decided to add in the more elements of Griffin:

- Still no caching (requires a lot of reworking and introduces actual recurrence, which I'm
trying to avoid)

- Putin the branches in the recurrent block: two branches of linear projection (rnn_width,
width, variable names like that: always larger than the argos.dim) of input, 1 branch just
gets Gelu, the other branch gets 1d convolution then undergoes the LR-GRU gating with
previous state, at the end they’re hadamard combined and linear projected out.

- It ends up adding so many parameters, I'm skeptical it's going to work so haven't tried
yet

Variation 8 (convolution)

VARIATION 38

Generalization of 3.1 / 3.2

Instead of only looking at only previous time step or handcoded previous
two steps (previous state + previous previous_ state)

Apply convolution over past n examples

Gate convolution of previous states with current state gate matrix

If num previous time steps = 1, this is equivalent to 3.1

If num previous time steps = 2, this is almost equivalent to 3.2 except
that 3.2 involves sigmoid weighting and this is linear weighting of

preivous states

class FeedForward(nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super () . init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.hidden dim, bias=False)
self.w state = nn.Linear (args.dim, args.dim)

self.num previous time steps = 4 # i.e. kernel size for conv

def forward(self, x) -> torch.Tensor:

batch size, seqg len = x.shapel[0], x.shape[l]

convolution over n rows at a time
padded such that the output at each row index of x is exactly the
n rows above (previous)

the first row of output is 0Os since there is no previous time

step
conv = torch.nn.Conv2d(in_channels=1,
out channels=1,
kernel size=(self.num previous_ time steps,
1),
padding = (self.num previous time steps, 0),
stride = (1,1),

bias=True,

device=device)

conv_over past examples = conv(x.unsqueeze(l)) # add dimension to x
(bt d) -> (b1t d
conv_over past examples = conv_over past examples.squeeze(l) #

remove dimension from output, (b 1 t d) -> (b t d)
conv_over past examples = torch.split (conv_over past examples,

seqg len, dim=-2) [0] # take the first seq len examples

tensor gate

gate = torch.sigmoid(self.w state(x))

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

TOY DEMONSTRATION OF CONV

kernel rows corresponds to how many previous time steps we want to see
kernel rows = 3

data rows = 10

batches = 2

dim = 5

data = torch.ones (batches * data rows * dim).float().view(batches, 1,

data rows, dim)

conv = nn.Conv2d(in channels=1, out channels=1,
kernel size=(kernel rows, 1), padding = (kernel rows, 0), stride=(1, 1),
bias=False)

with torch.no grad():

conv.weight[0, 0, :, :] = 1. # set to 1ls so we can verify easily
output = conv (data)

output = output.squeeze() # Should bring it down to a shape of (1, 7,
1)

print (data)
print (output.shape)
print (torch.split (output, 10, dim=-2) [0])

Tried with num_previous_time_steps = 2 and it was about the same as transformer baseline,
which is much worse than other variations we’ve created.

With 4 time steps it's about the same performance as with 2. In theory, time steps = 2 should be
almost identical to variation 3.2 which is much better performing, save that we sigmoid gate the
time steps together instead of linear convolution combination.

It's odd that a sigmoid there would have such a large effect. The best interpretation | have is that
it is not that we sigmoid gated previous state and previous previous state (gate * PS + (1-gate) *

PPS, it’s that we applied a nonlinearity of any kind.

So let’s do the same thing, but we’ll do sigmoid(conv_over_past_examples)

Variation 8.1 (sigmoid the convolution output)

OK, this also didn’t work.

The other way to create this is something like:

- set up an empty conv layer,

- initialize some parameter scalars,

- and then the softmax(scalars) are used as weights of the conv layer.
This seems closest to what the sigmoid gating over previous states does.

Let’s do that:

Variation 8.2 (softmax the conv weights prior to conv)

The convolution kernel weights are first passed through softmax before being applied. You can
think of this almost as a (softmax) weighted average of n past examples

VARIATION 8.2

class FeedForward (nn.Module) :

SwiGLU

def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w state = nn.Linear(args.dim, args.dim)

self.num previous time steps = 2

self.weights = nn.Parameter (torch.randn (1, 1,

self.num previous_ time steps, 1))

def forward(self, x)

-> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

weights = self.weights.view(self.weights.size(0), -1)

the weights
softmax weights
softmax weights

back to original shape

Flatten

F.softmax (weights, dim=1) # Apply softmax

softmax weights.view as(self.weights)

Reshape

Note for F.conv2d unlike nn.conv2d, you are required to pass in
the weights:
conv_over past examples =

torch.nn.functional.conv2d(x.unsqueeze (1),

softmax weights,

bias=None,

stride=1,

padding=(self.num previous time steps, 0))

conv_over past examples = conv_over past examples.squeeze(l) #
remove dimension from output, (b 1 t d) -> (b t d)

conv_over past examples = torch.split (conv_over past examples,
seq len, dim=-2) [0] # take the first seq len examples

tensor gate

gate = torch.sigmoid(self.w state(x))

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

OK, this works as expected. The performance of this, with last 2 states, matches 3.2 which it
should be basically equivalent to (it's softmax over 2 values vs sigmoid over one value and 1 -
sigmoid(value).

nwp_loss

— baseline-1-var8.2-prev-2-159Me — baseline-1-var8-prev-2-sigmoid-159M = baseline-1-var8-prev-2-159M — baseline-1-var7-166M = baseline-1-var3.2-grad-159M = baseline-1-standard-152M
4
== 1550: 1.874 baseline-1 ndard-152M
= 1550: 1.692 baselin 166M
== 1550: 1.689 baseline-1-var3.2-grad-159M
== 1550: 1.679 baseline-1-var8.2-prev-2-159M
35
3
2.5
2
15
Step
1
0 500 1k 1.5k 2k 2.5k 3k

So this looks like it (purple) works well for 2 states, on par / beating 3.2 and 7. Let’s increase the
previous states it can see.

OK, using the previous 4 states is pretty good but worse than only using the previous 2 states:

nwp_loss

— baseline-1-var8.2-prev-4-150M o — baseline-1-var8.2-prev-2-159M — baseline-1-var7-166M — baseline-1

The behavior of the convolution weights:
After 3000 iters, the weights for four previous examples at each layer.

vals = []

for i in range(1l2):

!! Note i've flipped these so that the first weight will be the
preivous example, second weight is previous previous example, etc.

conv_weights =
F.softmax (model.layers[i].feed forward.weights.detach() .cpul(),
dim=-2) .squeeze () .f1ip (0)

vals.append (conv_weights)

vals

[tensor([0.5240, 0.2573, 0.1713, 0.0475]),
tensor([0.0369, 0.8697, 0.0639, 0.0295]),
tensor([0.6115, 0.2064, 0.0825, 0.0996]),
tensor([0.6126, 0.0608, 0.1149, 0.2116]),
tensor([0.4986, 0.3429, 0.0949, 0.0636]),
tensor([0.9092, 0.0285, 0.0399, 0.0224]),
tensor([0.0355, 0.0134, 0.7668, 0.1844]),
tensor([0.7740, 0.0817, 0.1140, 0.0303]),
tensor([0.1067, 0.6666, 0.0839, 0.1428])),
tensor([0.4732, 0.1307, 0.1239, 0.2723]),
tensor([0.1041, 0.2912, 0.0953, 0.5095]),
tensor([0.8108, 0.0680, 0.0450, 0.0762])]
for i in range(vals[0].shape[0]) :
plt.plot ([x[1i] for x in vals], label=f'state t - {i + 1}")
plt.legend()
plt.show ()

Learned (softmax) weight value across layers for each previous state

state_t -
state t -
state_t -
state t-

0.8 1

oW M=

0.6 1

0.4 7

0.2 1

0.0

- So: the previous example (blue line) tends to have the highest weight, then the example
before that.

- The t-3 stays almost at zero but at layer 6 becomes very important?

- T-4 stays low but becomes important in the last layers.

- The interpretability is probably also confounded by these being randomly initialized
instead of something simple where we’d see a smoother evolution, but maybe not.

- TODO: pull these values and chart them over time.

6 previous steps (orange/brown line) beats baseline but is worse than fewer steps, though the
difference seems to shrink as training goes on.

| don’t think it's worth testing previous step sizes until we're on a larger model.

nwp_loss
baseline-1-var8.2-prev-6-159M e baseline-1-var8.2-prev-4-159M = baseline-1-var8.2-prev-2-159M)ase 1-va A baseline-1-var3.2-grad-159M = baseline-1-standard-152M
4
== 3000: 1.671baseline-1-standard-152M
== 3000: 1.594 baseline-1-var8.2-prev-6-159M
— 3000: 1.578
- 3000
3.5 - 3000
- 3000
3
|
2.5
2
1.5
Step
1
0 500 1k 1.5k 2k 2.5k 3k

Examining the convolution weights per layer:

Learned (softmax) weight value across layers for each previous state

— state t-1
state t-2
0.8 — state t-3
—— state t-4
—— state t-5
—— state_t-6
0.6 1 -
0.4 1
0.2 1
0.0 1

- Somewhat in line with what we think: the further back the state the less weight it has
throughout.
- Interestingly one of these steps will spike at a given layer and the others will dip to 0.
- T-3 spikes at layer 5 just as all others go to 0
- Same for t-2 at layer 9
- Same(ish) for t-5 at layer 8.
- So in a way each of the previous states has one layer focusing on it more than
others.
- Again: this could just be due to wonky weight initialization, so let’s rerun this with
a flat weight initialization across layers.

Next experiment:

Stable initialization of the convolution weights (6 steps, so each weight is initialized as .166
roughly %)

Better performance:

nwp_loss

tak 1it-159M @ = baseline-1-var8.2-prev-6-159M o baseline-1-var8.2-prev-4-159M = baseline-1-var8.2-prev-2-159M baseline-1-var7-166M = baseline-1-var3.2-grad-159M
— baseline-1-standard-152M

= 2700: 1.77 baseline-1-standard-152M
-— 2700
— 2700
- 2700: 1.
-— 2700
-— 2700

Step
0 500 1k 1.5k 2k 2.5k 3k

- This starts out worse than alternatives but eventually has the lowest loss, more or less
tied with 8.2 when we only look at the last 2 steps.
- Soinitialization of the conv weights ends up mattering a lot.

Learned (softmax) weight value across layers for each previous state

0.5 - — state_t-1
state t-2
— state t-3
— state t-4
0.4 7 —— state t-5
—— state t-6
0.3
0.2
0.1
T T T T T T
0 2 4 6 8 10

- This is very well behaved (3000 iterations of training)

- Closer states get more weight, but all states converge to same weight in later layers

- This is an interesting graph. It might sound naive but we should ask and examine: why
does a given example/state prefer to look at its immediate predecessors over very

distant ones? There is no bias towards recency built into the model: it (previous word as

strong predictor of next word) is only in the data.

- Note also the difference across layers. In early layers information about
immediately recent context is important, but towards later layers the context
window gets larger and larger until at the end each state is almost equally useful
to see. So as the data flows through the model it starts by looking at recent
context and gradually incorporating more distant context.

- Note difference / similarity with self attention:

- Difference: each token attends to each other token in a way that is
unbiased by time (of course there is position bias almost always built in,
but even without position bias decoder models learn sequence order
(NoPE paper, others). So one gets attention patterns that are (in theory)
based in semantics rather than recency: attention strength should just be

affinity

- Similarity: these similarities/affinities/attention patterns end up in practice
being heavily influenced by the time dimension. More recent tokens play a
more important factor, on average, than distant ones.

- As we go deeper into layers, the attention patterns start out
heavily focused on recent tokens and gradually focus grows more

diffusely across distant context

- Our previous state mechanism can be thought of as very close to

sliding window attention.

GPT-2-small attention patterns

Layer 1 attention pattern Layer 2 attention pattern Layer 3 attention pattern

Layer 5 attention pattern Layer 6 attention pattern Layer 7 attention pattern

Layer 9 attention pattern Layer 10 attention pattern Layer 11 attention pattern

Layer 4 attention pattern

Layer 8 attention pattern

Layer 12 attention pattern

(attention patterns over a sequence fed into GPT-2, built quickly on top of the TransformerLens

demo notebook.)

We would probabily like to keep track of the balance between previou state and current state
(torch.sigmoid(self.w_state(x)).

Let’s look at 10 steps:

nwp_Loss
— baseline-1-var8.2-prev-10-stableinit-159M e — baseline-1-var8.2-prev-6-stableinit-150M = baseline-1-var8.2-prev-2-159M — baseline-1-var7-166M == baseline-1-var3.2-grad-159M — baseline-1-standard-152M
4
== 2650: 1.603 baseline-1-standard-152M
= 2650: 1.507 baseline-1-var8.2-prev-10-stableinit-159M
= 2650: 1.496 baseline-1-var7-166M
== 2650: 1.493 baseline-1-var3.2-grad-159M
35 = 2650: 1.49baseline-1-vai ev-6-stabl 1it-159M
== 2650: 1.477 baseline-1-var8.2-prev-2-159M
3
2.5
2
. /_/\
Ste
1 F
0 500 1k 1.5k 2k 2.5k 3k

- Performance starts out poor but gets better over time, but mostly as all variations
converge a little

Learned (softmax) weight value across layers for each previous state

—— state t-1
—— state t-2
0.4 + — state t-3
—— state t-4
—— state t-5
—— state t-6
0.3 7 —— state t-7
—— state t-8

state t-9
0.2 - State t-10
X
0.1 - ‘J "_-"""é;
0.0 T T T T T T
0 2 4 6 8 10

- Very interpretable and in line with past (fewer steps)

8.2 Residual

Simply add a sigmoid residual weight to the input vs the recurrent chunk so we can see how
heavily the model uses it. Actually, we should track the residual strength for all blocks: attention,
recurrence, and FF to see how much each is used over time and over layers.

VARIATION 8.2.residual

Residual weight

For analysis

Same as 8.2 but with residual connection and weight to see how much data

is actually passed through the recurrence block.

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)

self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear(args.dim, args.dim)
self.num previous time steps = 2

self.weights = nn.Parameter (torch.ones (1, 1,

self.num previous time steps, 1) * (1.0 / self.num previous time steps))

self.residual weight = nn.Parameter (torch.zeros (1))

def forward(self, x) -> torch.Tensor:

batch size, seqg len = x.shapel[0], x.shape[l]

weights = self.weights.view(self.weights.size(0), -1) # Flatten

the weights

softmax weights = F.softmax (weights, dim=1)

softmax weights

back to original shape

Apply softmax

softmax weights.view as(self.weights) # Reshape

Note for F.conv2d unlike nn.conv2d, you are required to pass in

the weights:
conv_over past examples =

torch.nn. functional.conv2d (x.unsqueeze (1),

softmax weights,

padding=(self.num previous time steps, 0))

bias=None,

stride=1,

conv_over past examples = conv_over past examples.squeeze(l) #

remove dimension from output, (b 1 t d) -> (b t d)

conv_over past examples = torch.split (conv_over past examples,

seq len, dim=-2) [0] # take the first seq len examples

tensor gate

gate = torch.sigmoid(self.w state(x))

recurrent = gate * x + (1 - gate) * conv over past examples

x = (torch.sigmoid(self.residual weight) * x)

torch.sigmoid(self.residual weight)) * recurrent)

+ ((1 -

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Interestingly the model is much worse. Perhaps a sigmoid weight is incorrect and we should just
do a naked linear weight on the residual. We’ll stop and run a normal linear weight

baseline-1-var8.2.residual-prev-2-159M @ = baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M

4
‘ = 750: 2.168 baseline-1-standard-152M
== 750: 2.005 baseline-1-var8.2.residual-prev-2-159M
i == 750: 1.933 baseline-1-var8.2-prev-2-159M
5
3
5
2
5
1
0 500 1k 1.5k 2k
Residual weight value over time (initialized at sigmoid(0) = .5)
0501 ®© _ Layer
| BN |ayer 1
= Layer 2
e Layer 3
L -]
5 T s - hd Layer 4
[]
2 0.45 e L]]] H H e ol B Layer 5
£ ® 1]] - [] L
=) [ayer 6
i ¢ . m Layer 7
é ® - ° Layer 8
o - g ° ° B Layer 9
% 0.40 7 ° ° Layer 10
:] ® ® B Layer 11
< o
= Layer 12
S 035 g e
3 0.35 .
n o
Z []
®)
e
= o
0.30 e
a
T T T T T T \
0 200 400 600 800 1000 1200

lteration

With linear weight (x = residual_weight * x + recurrence(x))

| realized the weight was still initialized at 0. Even still it does just as well as 8.2, if not a little

better.
Residual weight value over time (initialized at 0)
® Layer
[
e ® o * B layer 1
° ® . Layer 2
0.4 - o o ® Layer 3
° Layer 4
e ® o @ HE Layer 5
o ® o ® o ® Layer &
3 ° ° s o : o mE Layer 7
S 02 S et ® :'.' ° e2gse Layer 8
= . LI ® g e ® ®
£ 8 o ® ® e & ¥ B Layer 9
E > ° ..' P o © Layer 10
z g e gs® socott m Layer 11
2 az...... Layer 12
2 o0l eogpRass
x =
°
L
°
¢ °
0.2 e,
o ®**ecee
® 90
*®%cccco00n0e
T T T T T T T
0 500 1000 1500 2000 2500 3000

Iteration

- This (initializing a residual weight at 0) can be interpreted as beginning with no residual
connection and learning one if desired.
- Interestingly the value goes negative for the early layers.
- Why wouldn't it just stay at 0?
- Negative implies maybe that it hurts but seomthign more interesting: that
subtracting the input representation from the transformed representation actually
helps

OK, with linear weight initialized at 1. In fact this is:
X = residual_weight * x + recurrent_weight * recurrence(x), where both weights are a single
scalar

Residual

Residual weight value over time (initialized at 1)

1.2]
®
e ©® ° °
- -~ o]
8t 2t g e o o o e
1.0 A o . a a : ~ 4 ¢ & & L] L]
o o ¢ e .
L]
L] ® L] °
S 08 ° .
©] - ° .
£ ° ® »
o a *
g o [
= 061 . ®
3 ° e
g . ¢
0.4 * -
L] ®
o o
° ® .
L L
0.2 1 ¢ 5 . a
-
500 1000 1500 2000
lteration
Recurrent weight value over time (initialized at 1)
1.5 A . = L]
e ® o ®
Q
1.4 4 . L e "
[]
L
v 13 . ® 9 ° L
s L e * o .
® ° . ® o
= [] L] ®
2] ™ ° ®
2124 o § o R . :
z
e e o © : e @
o | [g °©
%Ll « * ° * o °
3 ° ! e 2 s ¢ & & e o © o & o o
] a] ®
1.0 e @
]
L
.
0.9 ™ .
o]
0.8 ¢
500 1000 1500 2000
Iteration

Variation 8.2 All Residual - transformer block and recurrent

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Inspired by the behavior when we accidentally initialized learned residual connections at 0, let’s
set the recurrence residual weight at 0 and the transformer block residual weight at 0. That is:

we initialize all residual connections at 0 and give the model the ability to parameterize this
weight.

In the transformer block, we have a residual weight initialized at 0.

r = x + self.attention.forward(self.attention norm(x),
rotary emb fn)
h

self.feed forward.forward(self.ffn norm(x))
x = self.residual weight * x

out = x + h + r

return out

First, the performance is notably better from this small change:

nwp_loss
baseline-1-var.2-all-residuals-init-0-prev-2-159M o — baseline-1-var8.2.residual-linear-prev-2-159M = baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M
4
== 3000: 1.671 baseline-1-standard-152M
== 3000: 1.554 baselin v prev-2 1
== 3000: 1.553 baseline var8.2.residual-linear-prev-2-159M
== 3000: 1.48 baseline-1-var8.2-all-residuals-init-0-prev-2-159M
3.5
3
2.5
2
1.5
Step
1
0 500 1k 1.5k 2k 2.5k 3k

- Throughout training, by adding these few weights, the model is much better throughout
all steps

- If the transformer block residuals are initialized at 1, performance is not nearly as good
as when they are initialize at 0

Residual weight value

Residual weight value

Residual transformer block weight value over time (initialized at 0)

[
S
1.2 4 ..
]
®
®
o ®
1.0 4 L]
L]
]
..
0.8 L]
®
[
L]
0.6 L]
®
[]
o e e 0
0.4 . ee o000 000000
L]
o ..o'
-]
0.2 A _ L
a ®
280004, .
0.0 4 _._._’\»uuw:vaUUUUUUUi‘U‘UU'UU‘UUUUU
X [] v
]
® 9
l.'
—o2 1 ."833::----»--.«-
:
T T T T T T T
4] 500 1000 1500 2000 2500 3000
lteration

- The above is the residual for the entire transformer block
- Early layers greatly prefer to pass through their data in the residual stream rather to use

the transformed data.
TODO: is there any merit in having narrower early layers, or having an inverted

pyramid structure to LLMs to more efficiently use parameters?

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

- Later layers not only prefer the transformed data, they actually would like to subtract the
input representation (this is how | read it)! Very interesting.

Residual recurrence block weight value over time (initialized at 0)

o
0.004 0 a
e
L
-
[]
_ 4]
0.05 :v...
® ®
-
e e 'o.
®
—-0.10 o ® %o e,
". L]
] ® 94 °
° M L ® oo,
-0.15 - ™ e e ® 40
¢ s’ ®e
- - []
e ®eoe,
- 4 ¥ a ®
0.20 ° H ® s e ® e,
fele 97 0% 000 90,
u.,.: ® 00, ® ..:: ®
2 e [] 8
i ® 4 o ° s
-0.25 "‘ [°o°
S Revgoo,."
Uu"v
—0.30 |
T T T T T T T
0 500 1000 1500 2000 2500 3000

lteration

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

- Here as well in the recurrence block, the model actively prefers to subtract the input

representation

Adding residual weight to self attention component

If you add a 0 residual weight to attention, loss is bad and everything goes strange actually:

step 0 :training loss: 10.984538078308105
step 100 :training loss: 4.680907726287842
step 200 :training loss: 5.1240034103393555
step 400 :training loss: 4.418183326721191
step 500 :training loss: 4.562368869781494
step 600 :training loss: 4.919055461883545
step 700 :training loss: 4.79615592956543
step 800 :training loss: 4.84099817276001
step 900 :training loss: 4.5317535400390625
step 1000 :training loss: 4.914287567138672

Residual recurrence block weight value over time (initialized at 0)

®
0.02
° ® o
0.01 - . ® ® ol
° e
“ e . < 8
v I -l
] . ™ o ™]
T 000 o
> °
E L4 b ® e ®
= °
@
2 —0.01 - .
=
3 [
@ °
& -0.02 -
.
—0.03 A
°
o
—0.04 - ° ® L]
®
0 200 400 600 800 1000

Iteration

OK, if we keep the weight on the attention residual but initialize at 1.

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Performance is about the same as without an attention residual weight, but perhaps a little
better:

nwp_loss
= baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M e baseline-1-var8.2-all-residuals-init-0-prev-2-159M baseline-1-var8.2.residual(s)-linear-prev-2-159M = baseline-1-var8.2.residual-linear-prev-2-159M
— baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M
4
== 2800: 1.822baseline-1-standard-152M
== 2800: 1.728 baseline-1-var8.2-prev-2-159M
== 2800: 1.722baseline-1-var8.2.residual-linear-prev-2-159M
== 2800: 1.673 baseline-1-var8.2-all-residuals-init-0-prev-2-159M
3.5 == 2800: 1.658 baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M
3
2.5
2
15
Ste|
1 P
0 500 1k 1.5k 2k 2.5k 3k
Residual attention block weight value over time (initialized at 1)
1.8
o ® e ® Layer
. ® o ® B Layer 1
o ® Layer 2
L
L]
1.6 o ® [Layer 3
® Layer 4
L]
® E Layer 5
L]
™ Layer 6
S 14 . * B Layer 7
g ® Layer 8
i;:1 o B Layer 9
‘U . Layer 10
H 1.2 1 []
=L ° B Layer 11
= [] Layer 12
°
= - o 0 @ & & & 0 & 0 00 0 0 000 00 0 o0
] a o0 L LN]
o R B a $
10 @ Ogg;;;"'-lnooo...
o o | I]
....::-..-...
L] ® 9 L N]
...
® e, % oo,
0.8 oo, ®eeees
® e
LN
® 0 L Y
T T T T T T T
0 500 1000 1500 2000 2500 3000
Iteration

- For the first few layers, the residual connection is very important
- The residual here seems constantly important across layers and time

Let’s try a weight on the attention itself, rather than the attention residual

Performance is basically on par or slighty better than with the weight on the residual.

Attention block weight value over time (initialized at 1)

1.0 L 2 Layer
; BN Layer 1
M Layer 2
[Layer 3
° e o 0 o
0.8 - : g ¢ e ® ® ® 0 o o o ¢ o e o o @ Layer 4
- i ° BN Layer 5
' [Layer 6
E e 4 L N B Layer 7
g o6 [] ° Layer 8
z |
£ b § * . B Layer 9
'g L S . . 2 e ° Layer 10
c o ¢ s . . e s mm Layer 11
= L ® e 904 : o ¢ Layer 12
8 0.4 ° LI ° ¢ 33
b4 ° ® e, s o
®
° ® e
L]
0.2 1 ®
°
® .
L °
® o0 0, o o
0-0 T T T T T T
0 500 1000 1500 2000 2500

lteration

- Low layers focus on passing residuals through

- Middle layers (8,9,10) are a sudden jump up to heavily focused on attention, interestingly
- The jump between layer 7 and 8 is strange

- End layers (11, 12) much less dependent on attention computation.

Args.dim residual weight

The residual weight on the transformer block

class TransformerBlock (nn.Module) :
def init (self, args: ModelArgs):

super (). init ()
self.n heads = args.n heads
self.dim = args.dim
self.attention = Attention (args)
self.feed forward = FeedForward(args=args)
self.attention norm = RMSNorm(args.dim, eps=args.norm eps)
self.ffn norm = RMSNorm(args.dim, eps=args.norm eps)
self.args = args

#self.residual_weight = nn.Parameter (torch.zeros (1))

self.residual weight = nn.Parameter (torch.zeros (args.dim))

#self.attention residual = nn.Parameter (torch.ones (1))

def forward(
self, x: torch.Tensor,
rotary emb fn
) —> torch.Tensor:
PALM parallel layers (pre-norm) :
https://arxiv.org/pdf/2204.02311.pdf
#r = x + (self.attention residual *
self.attention.forward(self.attention norm(x), rotary emb fn))
r = x + + self.attention.forward(self.attention norm(x),
rotary emb fn)
h

self.feed forward.forward(self.ffn norm(x))
x = self.residual weight * x

out = x + h + r

return out

Is what made the big performance difference. So here we will make it a (1,args.dim) vector of Os
instead of a (1,1) scalar of Os.

Surprisingly using a args.dim size weight is basically the same performance as with a scalar.
This run (pink) is basically overlaid on the scalar weight run (brownish-orange)

2.2

1.8

1.6

Residual weight value

nwp_loss
baseline-1-var8.2-resid-vec-prev-2-159M @ = baseline-1-var7.1-norm-prev-2-166M baseline-1-var8.2-all-residuals-init-0-prev-2-159M == baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M

-— 1950
- 1950
== 1950
— 1950
-—1950:

1
1
1
1
1

.796 baseline-1-standard-152M

.634 baseline-1-var7.1-norm-prev-2-166M

.623 baseline-1-var8.2-prev-2-159M

.541 baseline-1-var8.2-resid-vec-prev-2-159M

.536 baseline-1-var8.2-all-residuals-init-0-prev-2-159M

500 1k 1.5k 2k
Looking at the mean value of these vectors:
Residual transformer block mean weight value over time (initialized at 0)
0.35
L]
P
L]
L]
0.30 °
°
°
.
o
0.25 °
.
o
0.20 - L
L]
o
i L] e © ©
0.15 . Lo ® e ®
® o 0 *
e L
0.10 - . o ®
® L]
. o
-~ 2 ¢
0.05 ...:00"°' e o 6 8 08 & 0 0 0 0 0 0 0 @
faftfRz2220cee0ee
8 A R &R & R R B & ® o o o
o] o BRERERRRBR L0 aiiiisssey
0 500 1000 1500 2000 2500

lteration

Much gentler slope going negative

Step

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Residual variance value

Residual transformer block weight variance over time (initialized at 0)

0.0020 A
®
®
L]
0.0015 - e ®
L J L]
]
)
° L s
0.0010 - ° ®
[] ° L g & - [
® ® L e o ® o ©
® ® [] L]
® - ' ® L e @
0.0005 .] -] e e
";\’.Hi;. [] e o o o
8§l L v ?®
¥
-~ 82 %
& v
0.0000 A L]
T T T T T T
0 500 1000 1500 2000 2500
Iteration

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

- Looking at the variance here, it seems the later layer residual vectors do start to take on
more variance. Maybe we use some random initialization around 07? | think it makes

sense that a vector would be better than a scalar for this reason...

We’ll add a little noise to the zero vector (+ torch.randn(args.dim) / 100) and see what

happens..

Eh, very similar

Residual mean value

Residual transformer block mean weight over time (initialized at 0)

0.40 - e ®
L]
e ®
.
0.35 .
.
0.30 1 ®
[]
o ®
0.25 4 ®
°
.
0.20 .‘
[] ... ° o
° °
B L
0.15 . o
°
[] ...
0.10 ° e ®
o..‘
-~ """ E R ENN e ® L I I] [BN
i B
T
ﬁa==nhn==!:!,\.... o e e o e
'EEEEEERRERI [N]
0.00 e IS S B NN N NN TER s
T T T T T T
500 1000 1500 2000 2500 3000

lteration

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Residual transformer block weight variance over time (initialized at 0)

0.0025 P |
™
°
°
™
0.0020
°
7] e °
= []
(1]
= L] LN
o @
¥ 0.0015 -] ...' °®
< . °
®
% ® ° o ® . @ o ®
2 g e e ®
5 []
% L : ® ® P
T 0.0010 A e ?® -8 e ® @
& e ® L o ®
o . o . o S °
° gl g2 e o
® .. e 2200 e oo e
0.0005 T2 EEE B BEE e Cevo
] 8 |] : s 0@ e 0 @
s §¢°
]
¢ L)
0.0000_ T T T T T T T
0 500 1000 1500 2000 2500 3000
teration

Create a skip weight for: block (identity), ff, attention, recurrence

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

We want to see the weight of the skip connection as a proxy for how “important” the associated
residual is, like measuring how much each residual computation is valued by the model.

We can also add a linear weight to the residual itself, but we’ll start here.

Initall at 0

Performance is not good

All the skip weights look like this, no real pattern:

Value

Attention skip weight value over time (initialized at 0)

0.02

0.00 1

—0.014

—0.02 1

—0.03 1

—0.04

—0.05 1

[Layer
Layer 1
Layer 2
- Layer 3
[] L] Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer9
Layer 10
Layer 11
Layer 12

L
® G
» &
N
L I
-
-
oW
.«
o @
L
L
(IR RN B |

o0 0 C

T T T T T T T
o] 200 400 600 800 1000 1200
Iteration

So clearly the model’s having trouble nad some of these skip weights need to be initialized
higher.

Init all at .5

If we see the direction the skips head when initialized at .5 (up/down) then we can initialize
better

OK, ff, attention and identity skip all have the exact same values. Why?

Value

Identity skip weight value over time (initialized at 0)

®
0.70 1
]
0.65 1 L4
]
0.60 1
[]
0.55 1 L]
L J
0.50 1 |] .
-~ 8 °
] a8
C | 2]
[] -] | 2 - - -4
0.45 - 4 °
L] [] H 3
¢ &
~
. H |
0.40 L
T T T T T T
0 200 400 600 800 1000
Iteration

Identity, ff, and attention all have the exact same values

Layer

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

-
Il

r + self.attention skip * x
h =h + self.ff skip * x # adding a ff skip

self.identity skip * x

out = x + h + r

return out

If you write it out, it’s just fusing these as one weight on the skip connection.

Recurrence weight

Recurrence skip weight value over time (initialized at 0)

[
-
w

<
[17]
=
=

o« D
[£
@

a
[¢

] : L] H Layer 3
. ® Layer 4
0.4 B Layer5
Layer 6
B Layer 7
Layer 8
B Layer 9
Layer 10
B Layer 11
® Layer 12

0.3 1 e

Value
[]

0.1

T T T T T
0 200 400 600 800 1000
lteration

- Heading to O for early layers, about .5 for later layers.

Init: Custom1 - all residuals + skips

We’'re actually going to attach weights to the residual (computation) instead of the skip. Ignore
the variable name, this is just easier to run quickly.

- Attention, ff are init at 1,
- identity and recurrence are init at 0
- Recurrence still weighs the skip connection, not the residual

-
Il

r * self.attention skip + x

h =h * self.ff skip + x # adding a ff skip

self.identity skip * x
out = x + h + r

return out

The idea is adding all of these:

Identity * identity_wieght

Attention * attention_weight

Ff* ff_weight

Recurrence * recurrence_weight - but recurrence has its own identity weight inside of ff

We should really parse out recurrence from ff...

Performance is about the same as 8.2 and worse than the versions where we do simple skip
connections on the recurrence and block @ 0.

nwp_loss
— baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M = bast
= baseline-1-standard-152M
4
= 800: 2.004 baseline-1-standard-152M
== 800: 1.809 baseline-1-var8.2-prev-2-159M
== 800: 1.696 basel 1-var8.2-all-residuals-0-attn-1-prev-2-159M
3.5 = 800: 1.692 baseline-1-var8.2-all-residuals-init-0-prev-2-159M
3
2.5
2
1.5
1

Value

Value

Identity skip weight value over time (initialized at 0)

4 [+] []
0.00]
° []
—0.05 - 2 -
]
]
_]
-0.10 L] ®
I
e e -
0.15 ¢ . $ p-
. s e : 3
[s) L] ® b ®
< L = d
—-0.20 ' ° '
.
L]
-0.25 4 °
o
0
-0.30 - -
0 200 400 600 800 1000
lteration
Attention skip weight value over time (initialized at 1)
1.1 1
. o e ° e o .
10{ ® ® ¢ $ ¢ s °
- .] o []
- e]
L]]
o] ° e
° L] L] ®]
0.9 L L]
. ° ®
. (]
o
0.8 °
L [
°
0.7
[
°
0.6
L
L]
T T T T T T
0 200 400 600 800 1000

Iteration

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Feedforward skip weight value over time (initialized at 1)

[] Layer
1.30 A ° B Layer 1
Layer 2
® BN Layer 3
12549 ° * o Layer 4
L] B Layer 5
1.20 - Layer 6
P ® I Layer 7
P Layer 8
1.15 4
© L ° ® B Layer 9
= Layer 10
[
2 ® ™ e ¢ e Layer 11
1.10 - ° ° yer
b Layer 12
105 ¢ ‘ L :
05 1 ®
e o (] . (]
[] e
[] . [|
1.00 L g v -
L
0.95
[]
T T T T T T
0 200 400 600 800 1000
lteration
Recurrence skip weight value over time (initialized at 0)
Layer
0.10 1 ° N |ayer 1
8 ~ Layer 2
. s 2 W Layer 3
® P
0.05 - . 8 ° Layer 4
a (] BN Layer5
[] b4
2 Layer 6
L]]
- B Layer 7
4 ' o
0.00] Y g n - 4 0 ® 8 ™ o Layer 8
I Layer9
] . Layer 10
g —0.05 1 ¥
[] e B lLayer 11
® Layer 12
o
—0.10 + L]
e
—0.15 + °
L
L]
—0.20 ® P
]
T T T T T T
0 200 400 600 800 1000
lteration

Init: Custom2 - block skip only

Now we only have a skip connection init at O for the transformer block, so we’re isolating what
this does for the model as a whole.

r = x + self.attention.forward(self.attention norm(x),

rotary emb fn)

o1
Il

self.feed forward.forward(self.ffn norm(x))

b
I

self.identity skip * x

out = x + h + r

return out

The recurrent block ahs no residual either:

recurrent = gate * x + (1 - gate) * conv over past examples
#x = (self.recurrence skip * x) + recurrent
X = X + recurrent

For performance, it's better than 8.2 plain by a bit but worse than when both the block and
recurrence have 0 init skip weights:

nwp_loss
baseline-1-var8.2-allresiduals-custom2-prev-2-159M @ = baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M baseline-1-var8.2-all-residuals-init-0-prev-2-159M
= baseline-1-standard-152M
4
== 900: 1.913 baseline-1-standard-152M
= 900: 1.743 baseline-1-var8.2-prev-2-159M
== 900: 1.711 baseline-1-var8.2-allresiduals-custom2-prev-2-159M
== 900: 1.618 baseline-1-var8.2-all-residuals-init-0-prev-2-159M
3.5 == 900: 1.611 baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M
3
2.5
2
1.5
1
0 500 1k 1.5k 2k

What we saw in other versions:

Identity skip weight value over time (initialized at 0)

0.8 L] Layer
E |ayerl
L Layer 2
L. 3
. I_ayer :
0.6 ayer
® B Layer 5
Layer 6
® Em Layer 7
Layer 8
o 0.47 e B Layer 9
3 Layer 10
g ®
B Layer 11
Layer 12
0.2 e
L]
L]
g g a
ood @ - g : . . o o w
8 ® v °
] : * s
L]
-
0 200 400 600 800 1000

lteration

Init: Custom3 - recurrence skip only

Let’s isolate the effect of the recurrence skip weight only
[We can consider just removing it also...]

There is almost no effect here, it looks just like 8.2 normal:

Suggesting that the effect of having both skip weights is not just the additive sum of having a
skip weight on either, but rather due to some interaction when both are available.
Recurrence skip alone effect = 0

Block skip alone effect = little

Recurrence and block skip together = a lot

3.5

2.5

1.5

Value

— baseline-1-var8.2-allresiduals-custom3-prev-2-159M

nwp_loss

= baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M baseline-1-var8.2-all-residuals-init-0-prev-2-159V

== baseline-1-standard-152M

== 800: 2.004 baseline-1-standard-152M
= 800: 1.809 baseline-1-var8.2-prev-2-159M
== 800: 1.8 baseline-1-var8.2-allresiduals-custom3-prev-2-159M
= 800: 1.696 baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M
== 800: 1.692 baseline-1-var8.2-all-residuals-init-0-prev-2-159M
0 500 1k 1.5k 2k
Recurrence skip weight value over time (initialized at 0)
0.2 1 Layer
. I Layer 1
- - Layer 2
W Layer 3
L] ° Layer 4
0.1 ° ° b BN Layer 5
L]
1 Layer 6
® ' H BN Layer 7
L]
- bt Layer 8
H] L
& g - ° . s Layer 9
0071 @ @ [] 4 Layer 10
I Layer 11
] Layer 12
L]
_0.1 -
L]
L
L]
L]
-0.2 1 °
L]
T T T T T
0 200 400 600 800
fteration

There is the opposite effect of the identity/block skip: the early layers here subtract the
skip, whereas in the identity/block skip the first layers are used heavily

Init: Custom4 - recurrence skip and block skip, both init @ 0

Ok, here is the good performance we saw a few days ago again:

3.5

2.5

15

baseline-1-var8.2-allresiduals-custom4-prev-2-159M @ = baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M

500

1k

nwp_loss
baseline-1-var8.2-all-residuals-init-0-prev-2-159

= baseline-1-standard-152M

1200:

1200

1200:
1200:
1150:

2.265 baseline-1-standard-152M

2.052 baseline-1-var8.2-prev-2-159M

1.918 baseline-1-var8.2-all-residuals-init-0-prev-2-159M
1.916 baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M
1.804 baseline-1-var8.2-allresiduals-custom4-prev-2-159M

1.5k 2k

The two skips in combination are greater than the sum of their parts, which is very interesting.

-0.05

-0.10

Value

-0.15

-0.20

-0.25

Recurrence skip weight value over time (initialized at 0)

ETY

we oo

see

400

teration

1000

1200

1400

Layer
- Layer 1
Layer2
= Layer 3
Layer 4
m—Layers
Layer 6
m— Layer 7
Layer 8
m—Layer9
Layer 10
m—Layer 11
= Layer 12

Identity skip weight value over time (initialized at 0)

0.6

8 o o
2 2 2 2 ° .
........
......

- We can notice that for both of these, the curve of the first layer is much less dramatic on
both vs. when compared to the skip weight in custom 2 and custom 3 (when it's one skip
at a time)

Init: Customb5 - recurrence skip, block skip, and attention skip all init @ 0

This blows up. All the skip weights also lose all their patterns

Init: Custom6 - recurrence skip, block skip init @ 0. Add skip inside attention init @ O
y = att@val

y = y.transpose(l, 2).contiguous() .view(batch size, seqg len,
self.n heads * self.args.head dim) # re-assemble all head outputs side by
side

return self.wo(y) + (x * self.attention skip output)

| don’t think this does anything different?

Performance is the same as Custom4.

Actually the attention weight and identity weight end up being slightly different. | don’t totally
understand why they’re different here but the same when you add it inside the transformer
block...

Init: Custom6 - recurrence skip, block skip init @ 0. Add residual weight to attention inside block

init @ 1

So this is just custom4, which works well, but we’re adding a parametrizable weight on attention.

Performance is the same as custom4

Identity skip weight value over time (initialized at 0)

1.2 4 o Layer
L]
o ® L] BN Layer 1
° L Layer 2
104 P S Layer 3
’ P Layer 4
° L B Layer 5
® Layer 6
0.8 1 . e = Layer 7
] Layer 8
v . . B Layer 9
= 0.6 ° Layer 10
g Y B Layer 11
L] Layer 12
oo °*? y
[] PR e @
0.4 4 Py . ® o0 ®
]
L] PO o ®
° o ® o ® aapsset
0.2 ® L aags gt °
L] M L
ag ® YRR R EEEE
ameooeamph gCCebvw @ cssssssss
- S & ® e
0088 Coveg o e o e e : : : AAAAAAAaAMAS
0.0 1 L J e o o0 0@
T T T T T T T
4] 500 1000 1500 2000 2500 3000
lteration

Attention skip weight value over time (initialized at 1)

co e o000 [} Layer
1.4 o ® o @ B Layerl
P e ® Layer 2
° ® o I Layer 3
1.3 o ® Layer 4
° H Layer 5
1.2 1 . Layer 6
° I Layer7
L] Layer 8
. 1.14 . g e Layer 9
i TR Layer 10
L] L]
1.0 1 anA'. ® 00 e ® o0 B Layer 11
|] At ® 000,44, ° Layer 12
L B H ®® o000,
0.9 s AR
e : 8 °
@ 1 8 = s s ®
- Y A - ® 850
e a L] ® 9 L BN] e s
0.8 2 e eS80,
X L P L H
® e 44 e $
®®040e,
0.7 1
T T T T r T \
0 500 1000 1500 2000 2500 3000
Iteration

- Note that this is not for the skip weight, this is for the residual; it is a multiplier on the
attention computation itself

Recurrence skip weight value over time (initialized at 0)

] Layer
= B Layerl
®
0004 @ g [} Layer 2
! ? I Layer 3
[]
] Layer 4
—0.05 - ez & . B Layer 5
[¢ [S ® Layer 6
o B é L B Layer7
-0.10 A L ‘ : : e o Layer 8
° LY e e, e ® BN Layer9
o [] . ® o 0 ® 9
3 LI] L e 2% Layer 10
2 0151 e , e°2 e o, B Layer 11
e o . 3 e Layer 12
5] L [] o [] 8
| ® °]
-0.20 v..'!. "l:
S e e * $%,°,
° $o . PO | ® e,
ooa ™ '] ®
—0.25 - !02.0:.‘ $¢2
L] R]] - w ' s
LY °
8
]
—0.30 ¢%s
0 500 1000 1500 2000 2500 3000
lteration
Init: Custom7 - recurrence skip, block skip init @ -.5
Performance is bad, but the skip weights tell us something
Identity skip weight value over time (initialized at 0)
—0.21 ° Layer
[] EEE |layerl
® Layer 2
® W Layer 3
—0.3 1 Layer 4
L] I Layer 5
L ® Layer 6
° ° * B Layer 7
- s Layer 8
Y, 04 o 3 ° . . e Layer 9
E o . e (] 9 8 Layer 10
[] ® L
b 2 H) e e layer 11
i] e H ® . . me Layer 12
051 @ . ® °
® L
®
L
—0.6 ®
L
0 200 400 600 800 1000

lteration

Recurrence skip weight value over time (initialized at 0)

[] Layer
—0.36 - [N Layerl
] Layer 2
® Layer 3
—0.38 ® Layer 4
° I Layer 5
—0.40 1 ° Layer 6
BN Layer 7
® Layer 8
o —0.42 1 I Layer9
i * ® Layer 10
-
L]
—0.44 ® s s BN Layer 11
Layer 12
° L] e Y
&
~0.46 . “]
- = :
® [] ®
—0.48 -] [] s [] ° ®
L] [L]
L]
° b ¢
—0.50 ~ - o
L 4)
-0.52 T T T T T T
0 200 400 600 800 1000

lteration

All those values are too low for recurrence skip weight
For identity skip weight some of these are too low but some are not even low enough.

Should we consider initializing these based on layer depth?

Init: Custom8 - recurrence skip, block skip init @ 0, block skip layer 1 and 2 init at .5

with torch.no grad():
model.layers[0].identity skip += .5
model.layers[1l].identity skip += .5

Let’s boost the identity skip weight for the frist two layers since they want to pass through
identity information and see what happens.

Performance is basically the same as custom4

nwp_loss

= baseline-1-var8.2-allresiduals-custom9-prev-2-159M ¢ = baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M = baseline-1-var8.2-prev-2-159M = base
4
== 1450: 2.117 baseline-1-standard-152M
== 1450: 1.902 baseline-1-var8.2-prev-2-159M
== 1450: 1.784 baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M
== 1450: 1.773 baseline-1-var8.2-allresiduals- -prev-2-159M
3.5
3
2.5
2
1.5
1
0 500 1k 1.5k 2k

However it does have the desired effect:

Identity skip weight value over time (initialized at 0)

[] Layer
° b E |Layerl
1.0 1 ° Layer 2
N b mE Layer 3
® Layer 4
0.8 ® I Layer 5
L] Layer 6
. b e Layer 7
0.6 ° Layer 8
. - B Layer 9
= ® Layer 10
s B Layer 11
0.41 e Layer 12
® ®
0.2 1 Py ® L]
e ¢ °
°
_ - ® e $]] @] [] [] L]
@
0o0o{ o o © © ¢ 8 g $ S5 2 ° 2 o 0 e
= L] _. L °
© 2 2 e
T T T T T T T T
0 200 400 600 800 1000 1200 1400

lteration

The recurrence weights, untouched, do the same thing

Recurrence skip weight value over time (initialized at 0)

] Layer
2 B Layerl
0.004 O [] e Layer 2
L] ! s I Layer 3
L] . Layer 4
e o - ° B Layer 5
—0.05 1 - -+ P Py L
° - ayer 6
. *® . ° ® . H e . B Layer 7
[] Layer 8
—0.10 - ° i ® ° B Layer 9
% ¢ . ¢ Layer 10
E L [°]] ¥
® ° ® ® B lLayer 11
® - Layer 12
-0.15 | ° ° .
L n =
.]
e ° L] P
L]
~0.20 - . * e ® e
.] ®] ®
[° L ® ®
[]
~0.25 A b ®
[)]]
T T T T T T T T
0 200 400 600 800 1000 1200 1400
lteration

Residual baseline - init @ 0

Let’s run a standard transformer with identity weight at 0

OK, this residual/skip phenomenon isnt specific to recurrence model, it's the same for vanilla
transformer: Solid purple (this run) vs green (vanilla transformer)

nwp_loss
— baseline-1-standard-w-blockskip-init-0-152M ¢ = baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M == baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M
4
= 1650: 2.144 baseline-1-standard-152M
== 1650: 1.986 baseline-1-standard-w-blockskip-init-0-152M
== 1650: 1.896 baseline-1-var8.2-prev-2-159M
= 1650: 1.793 baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M
3.5
3
2.5
2 _
L5
1

Identity skip weight value over time (initialized at 0)

1.00 g

0.75 4 L]

0.50 4 [

Value

0.25 4

W

0.00 4

[8))]
«ary
(&5 X]

axe e
asene
osse v e
®
]

—0.25 4

«»
we
»
® 00
»

»ye oe
L N]
e e

—0.50 1

Layer 10
Layer 11
Layer 12

T T T T T T T
0 250 500 750 1000 1250 1500
Iteration

- The differences are even more exaggerated here

Residual baseline - init @ 1

The story as | can tell so far is basically:

T
1750

The skip connection is important for early layers (and redundant layers if they exist) to let the
network pass the identity through. But it actually hurts middle/later layers because the residual
is important, and diluting the residual with identity hurts performance. For this reason the middle
layers actually want to boost their residual signal by actually subtracting the identity. Adding a
learnable multiplicative weight to skip connection allows the network to do both. Note that the
model is not setting the identity connection to 0: it is actually subtracting a portion of the input
representation from the result of the residual computation, as if to erase the effect of the input.

It's quite sensitive to initialization as well. If you initialize the weight at 1.0, which makes the
most sense, the model actually does slightly worse. So it seems like a trick that does nothing.

But you will notice the following pattern:

Identity skip weight value over time (initialized at 1)

) Layer
. L B Layer 1
°® Layer 2
1.2 1 ° Layer 3
L]
° Layer 4
° B Layer 5
o ° ® b Layer 6
Loq ©] B Layer 7
Layer 8
" 8 I Layer 9
= H Layer 10
£ 084 o] B Layer 11
. Layer 12
4 y
o o
- []
S S S
0.6 L] ° ™ . L " °
L L] []
]
[]
L]
® [] e
0.4 4 ® ® []
®
L]
0 200 400 600 800 1000 1200
lteration

Initializing at 0 makes hte model perform considerably better, and you see the following

Identity skip weight value over time (initialized at 0)

[] Layer
]
1.00 1 [] EEE Layerl
° b4 Layer 2
[] Layer 3
075 o L Layer 4
’ ® BN Layer5
[] Layer 6
L] B Layer7
0.50 1 . ° Layer 8
" ° I Layer9
=
§ 0.25 ° Layer 10
° N Layer 1l
a Layer 12
a
|]
0.00 1 v [
5 ; : L] ® L ® L] L] L] L] L] L] L L J L] e
e
- | H : : ® o o
L L] - e [] ®
—0.25 A - [[] ® ® -
“ hd] = : e . [[] e ™
® ¢ ¢ o o o
—0.50
T T T T T T T T
0 250 500 750 1000 1250 1500 1750
lteration

I's not clear why initializing at 0 allows it to perform considerably better. Perhaps the benefit of
having a strong early layer identity signal is much less important than being able to subtract the
identity in later layers. Initializing the early layers at higher value doesn’t do much to
performance save at the very start of training, so that supports this view. This is the working
hypothesis.

Other residuals have even stronger preference to subtract the identity. In an experimental
architecture that is a vanilla transformer which includes a style of recurrent computation

between attention and feed forward at each layer, the recurrent skip connection is even more
dramatic:

Recurrence skip weight value over time (initialized at 0)

[] Layer
| | EEE Layerl
i ®
0.00 ® e H Layer 2
9 m Layer 3
o e _ Layer 4
—0.05 - e * B |ayer 5
. ¢ | M [Layer 6
®
P I Il Layer 7
—0.10 A L LA -4 Layer 8
L] 2 LY B Layer 9
" o ° ® o0
3 LI ' ® L P Layer 10
2 015 e 22, o, mm Layer 11
c L ° o3 Layer 12
5] - L [] o [] 8
°
-0.20 ce® e ‘s ¢
® . ° L | $ e 4 g ° °
o _ _ 6, e 8 : e,
~e - . [] o e ®
-0.25 .'..=.lonl'
e g s
-]
*tee;,
[]
—0.30 ¢ ®
T T T T T T T
0 500 1000 1500 2000 2500 3000
lteration

Where the early layers even more so than the later layers prefer to subtract the identity.

8.2.X

Variation 8.2.1 - 8.2.4 Performance

All somewhat worse than 8.2 original and all with higher parameter count

nwp_loss
— baseline-1-var8.2.4-prev-2-181M = baseline-1-var8.2.3-prev-2-173M = baseline-1-var8.2.2-prev-2-166M = baseline-1-var8.2.1-prev-2-166M == baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M

= 1200: 2.265 baseline-1-standard-152M

= 1200: 2.138 baseline-1-var8.2.4-prev-2-181M
== 1200: 2.123baseline-1-var8.2.3-prev-2-173M
= 1200: 2.085 baseline-1-vars 2.1-prev-2-166M
3.5 = 1200: 2.071baseline-1-var8 2.2-prev-2-166M
== 1200: 2.052baseline-1-var8.2-prev-2-159M

2.5

H
14
v
¥
'

15

Step

Variation 8.2.1
VARIATION 8.2.1

Add a weight matrix to h after convolution

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear(args.dim, args.dim)
self.h state = nn.Linear (args.dim, args.dim)
self.num previous time steps = 2

self.weights = nn.Parameter (torch.ones (1, 1,

self.num previous time steps, 1) * (1.0 / self.num previous time steps))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

weights = self.weights.view(self.weights.size(0), -1) # Flatten
the weights

softmax weights F.softmax (weights, dim=1) # Apply softmax
softmax weights = softmax weights.view as(self.weights) # Reshape

back to original shape

Note for F.conv2d unlike nn.conv2d, you are required to pass in
the weights:
conv_over past examples =

torch.nn.functional.conv2d (x.unsqueeze (1),
softmax weights,
bias=None,

stride=1,

padding=(self.num previous time steps, 0))

conv_over past examples = conv_over past examples.squeeze(l) #
remove dimension from output, (b 1 t d) -> (b t d)
conv_over past examples = torch.split (conv_over past examples,

seq len, dim=-2) [0] # take the first seq len examples

tensor gate

w x = self.w state(x)

apply h state post convolution

conv_over past examples = self.h state(conv _over past examples)
gate = torch.sigmoid (w_x)

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Variation 8.2.2

VARIATION 8.2.2

Add a weight matrix to h before convolution

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear (args.dim, args.dim)
self.h state = nn.Linear (args.dim, args.dim)
self.num previous time steps = 2

self.weights = nn.Parameter (torch.ones (1, 1,

self.num previous time steps, 1) * (1.0 / self.num previous time steps))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

weights = self.weights.view(self.weights.size(0), -1) # Flatten
the weights

softmax weights F.softmax (weights, dim=1) # Apply softmax
softmax weights = softmax weights.view as(self.weights) # Reshape

back to original shape

Note for F.conv2d unlike nn.conv2d, you are required to pass in

the weights:
apply h state before convolution
conv_over past examples =

torch.nn.functional.conv2d(self.h state(x).unsqueeze(l),

softmax weights,
bias=None,

stride=1,
padding=(self.num previous time steps, 0))
conv_over past examples = conv_over past examples.squeeze(l) #
remove dimension from output, (b 1 t d) -> (b t d)
conv_over past examples = torch.split(conv _over past examples,

seq len, dim=-2) [0] # take the first seq len examples

tensor gate

w x = self.w state(x)

gate = torch.sigmoid (w_x)

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

As the best performing 8.2.x variation (though not better than plain 8.2), also tried scaling down
this h_state(x) by sqrt(args.dim) but performance was worse.

Variation 8.2.3
VARIATION 8.2.3
Make the previous state input dependent (selective re Mamba)

Concatenate h and x and linear transform before gating

class FeedForward (nn.Module) :

SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w state = nn.Linear(args.dim, args.dim)
self.concat out = nn.Linear (args.dim * 2, args.dim)
self.num previous time steps = 2

self.weights = nn.Parameter (torch.ones (1, 1,

self.num previous time steps, 1) * (1.0 / self.num previous time steps))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

weights = self.weights.view(self.weights.size(0), -1) # Flatten
the weights

softmax weights = F.softmax(weights, dim=1) # Apply softmax

softmax weights softmax weights.view as(self.weights) # Reshape

back to original shape

Note for F.conv2d unlike nn.conv2d, you are required to pass in
the weights:
conv_over past examples =

torch.nn.functional.conv2d(x.unsqueeze (1),

softmax weights,

bias=None,

stride=1,
padding=(self.num previous time steps, 0))
conv_over past examples = conv_over past examples.squeeze(l) #
remove dimension from output, (b 1 t d) -> (b t d)
conv_over past examples = torch.split (conv_over past examples,

seqg len, dim=-2) [0] # take the first seq len examples

tensor gate

w x = self.w state(x)
concatenate (b t 2d) and transform to (b t d)
conv_over past examples = self.concat out (torch.cat ([x,

conv_over past examples], dim=-1))

gate = torch.sigmoid (w_x)

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Variation 8.2.4

VARIATION 8.2.4
Make the previous state input dependent (selective re Mamba)
Add a weight matrix to h before convolution

Concatenate h and x and linear transform before gating

class FeedForward(nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super () . init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear (args.dim, args.dim)

self.h state = nn.Linear(args.dim, args.dim)

self.concat out = nn.Linear (args.dim * 2, args.dim)
self.num previous time steps = 2
self.weights = nn.Parameter (torch.ones (1, 1,

self.num previous time steps, 1) * (1.0 / self.num previous time steps))

def forward(self, x) -> torch.Tensor:

batch size, seqg len = x.shapel[0], x.shape[l]

weights = self.weights.view(self.weights.size (0), -1) # Flatten
the weights
softmax weights = F.softmax(weights, dim=1) # Apply softmax

softmax weights = softmax weights.view as(self.weights) # Reshape

back to original shape

Note for F.conv2d unlike nn.conv2d, you are required to pass in
the weights:
conv_over past examples =

torch.nn.functional.conv2d(x.unsqueeze (1),

softmax weights,

bias=None,

stride=1,

padding=(self.num previous time steps, 0))

conv_over past examples = conv_over past examples.squeeze(l) #
remove dimension from output, (b 1 t d) -> (b t d)

conv_over past examples = torch.split (conv_over past examples,
seq len, dim=-2) [0] # take the first seq len examples

tensor gate

w x = self.w state(x)

apply h state post convolution

conv_over past examples = self.h state(conv over past examples)

concatenate (b t 2d) and transform to (b t d)

conv_over past examples = self.concat out (torch.cat ([x,
conv_over past examples], dim=-1))

gate = torch.sigmoid (w_x)

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Variation 8.2.1

Variation 8.3

We could also have larger convolution kernels, so this kernel is essentially providing a single
scalar (softmaxed) weight for each example, whereas we could provide a larger convolutional
kernel, or a (num_past_examples, dimension) convolution.

You need to adjust num_groups as well as previous time steps here.

VARIATION 8.3

Generalization of 8.2 to groups:

Instead of a kernel of size (num previous time steps, 1),

we effectively create kernels of size (num previous time steps, n) where

is some divisor of dim

H S W 4 o =

The result is that we can effectively have a richer convolution: kernel

weights for each dimension, or dimension / m where m is some divisor

Note this requires moving around our input in order to treat each

dimension like its own in channel

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super () . init ()

self.wl = nn.Linear(args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)

self.w state = nn.Linear(args.dim, args.dim)

self.num previous time steps = 2
self.num groups = 1
self.weights = nn.Parameter (torch.ones (args.dim, int (args.dim /

self.num groups), self.num previous time steps, 1) * (1.0 /

self.num previous time steps))

def forward(self, x) -> torch.Tensor:

batch size, seg len = x.shape[0], x.shape[l]

weights = self.weights.view(self.weights.size(0), -1) # Flatten
the weights
softmax weights = F.softmax(weights, dim=1) # Apply softmax

softmax weights = softmax weights.view as(self.weights) # Reshape

back to original shape

conv_over past examples =
torch.nn.functional.conv2d (x.permute (0,2,1) .unsqueeze (-1), # reshaping the

input

softmax weights,
bias=None,

stride=1,

padding=(self.num previous time steps, 0),

groups=self.num groups)

conv_over past examples =
conv_over past examples.squeeze(-1) .permute(0,2,1) # returning to shape
conv_over past examples = torch.split (conv_over past examples,

seq len, dim=-2) [0] # take the first seq len examples

tensor gate

gate = torch.sigmoid(self.w state(x))

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

RuntimeError: Given groups=1l, weight of size [768, 1, 2, 1], expected
input[16, 768, 512, 1] to have 1 channels, but got 768 channels instead
#Given groups=1, weight of size [768, 8, 2, 1], expected input[l6, 768,
512, 1] to have 8 channels, but got 768 channels instead

TOY EXAMPLE OF GENERALIZED GROUP CONVOLUTION OVER PAST TIME STEPS

num groups 1is the important variable, informing what size convolution we

have

num groups = dim means weights for each dimension

batch size = 3

seq len = 10

num previous examples = 4

dim = 8

num groups = 8

assert dim % num groups == 0, "dim not divislbe by num groups"
orig data = torch.arange(batch size * seqg len *

dim) .float () .view(batch size, seq len, dim)
we're treating each dimension as an in channel of (row, 1)

data = orig data.permute(0,2,1) .unsqueeze(-1) # (minibatch, in channel,

H, W)

(out channel, in channel/groups, H, W)

kernel = torch.ones (dim, int(dim/num_groups), num_ previous examples, 1)
output = F.conv2d(data,

kernel,

padding=(num previous_examples, 0),

groups=num_groups)

output = output.squeeze(-1) .permute (0, 2, 1)

Here we’re interested in playing around with group size.

Part of the motivation in fact is that having more capacity to weigh the previous states will make
increasing the number of previous states more effective

If num_groups = args.dim then we’re basically creating convolution filter size
(num_previous_time_steps, args.dim) that passes over timesteps and outputs a (1, args.dim)
output. So instead of weighting each dimension of the previous examples with a single scalar,
we are weighting it with args.dim scalars.

num_groups = 1 doesn’t work well (same as baseline) - we’re creating kernels of (args.dim,
args.dim) which is enormous. We’re primarily interested in:

num_groups = args.dim: creates kernels of (1, args.dim)

But we can increase the size and see what happens.

With num_groups = args.dim, performance is pretty good. It starts out in the middle of the pack
and ends up being second best.

Plot: after 3000 iters. Take the mean across dimension of each layer per previous state

Learned (softmax) weight value across layers for each previous state

—— state t-1
0.60 state t-2
0.55 1
0.50
0.45 1
0.40 -

For 6 previous states, this does fine

== ©: 10.716 baseline-1-vars.3-prev-6-group-dim-159M
|

Step
500 1k 1.5k 2k 2.5k 3k

Although basically everything is converging: variations are converging together, and baseline is
also converging with variations though at a slower rate. Or (we're just eyeballing the graph
above): all these variations are better than baseline and they’re all just converging together.

3000 iters,the previous states all converge over layers towards even distribution (6 states,
approximately .16)

Learned (softmax) weight value across layers for each previous state

0.40 -
— state t-1
— state t-2

0.35 — state t-3
— state t-4

0.30 - —— state t-5
— state t-6

0.25 A

0.20 -

0.15 A

0.10 A

0.05 T T . .

o -
IJ
-
=]
co

10

Variation 9

VARIATION 9

h =A(x)h
Hardcoded weight matrix A state of (t d)

class FeedForward (nn.Module) :
SwiGLU
def init (self, args: ModelArgs):

super (). init ()

self.wl = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w2 = nn.Linear (args.hidden dim, args.dim, bias=False)
self.w3 = nn.Linear (args.dim, args.hidden dim, bias=False)
self.w state = nn.Linear(args.dim, args.dim)

self.A state = nn.Linear (512, args.dim)
self.concat out = nn.Linear (args.dim * 2, args.dim)
self.num previous time steps = 2

self.weights = nn.Parameter (torch.ones (1, 1,

self.num previous time steps, 1) * (1.0 / self.num previous time steps))

def forward(self, x) -> torch.Tensor:

batch size, seq len = x.shape[0], x.shape[l]

weights = self.weights.view(self.weights.size(0), -1) # Flatten
the weights

softmax weights F.softmax (weights, dim=1) # Apply softmax
softmax weights = softmax weights.view as(self.weights) # Reshape

back to original shape

Note for F.conv2d unlike nn.conv2d, you are required to pass in
the weights:
conv_over past examples =

torch.nn.functional.conv2d(x.unsqueeze (1),

softmax weights,
bias=None,

stride=1,

padding=(self.num previous time steps, 0))

conv_over past examples = conv_over past examples.squeeze(l) #
remove dimension from output, (b 1 t d) -> (b t d)
conv_over past examples = torch.split (conv_over past examples,

seq len, dim=-2) [0] # take the first seq len examples

input modifies weight matrix that modifies state
h @ (x.T @ A)
inter = self.A state(x.transpose(-1,-2)) # b d d

conv_over past examples = conv_over past examples @ inter # b t d

tensor gate

w x = self.w state(x)

gate = torch.sigmoid(w_x)

x = gate * x + (1 - gate) * conv_over past examples

return self.w2 (nn.functional.silu(self.wl(x)) * self.w3(x))

Loosely incorporating ideas from

https://arxiv.org/pdf/2404.08819.pdf
"The lllusion of State in State-Space Models"

First try NaNs

Debugging

The first idea is that there are too many matmuls blowing up the numbers

inter = self.A state(x.transpose(-1,-2)) # b d d

conv_over past examples = conv _over past examples @ inter # b t d
So if we divide each of these terms by sqrt(args.dim) the model runs. Performance isn’t great.
The remaining variations would be to just try norming only the first of these, then only the
second of these.

https://arxiv.org/pdf/2404.08819.pdf

Results

Day 1 results / initial

All variations so far

nwp_loss
= baseline-1-var5-grad-152M e = baseline-1-var4-grad-195M = baseline-1-varl-grad-152M baseline-1-var4-195M = baseline-1-standard-152M — baseline-1-var2-166M = baseline-1-var1-152M
3.5
3
\ /
25\
i /
/
L
= 74 A\
2 / \/\ — \
/ \
\ \ ~7
15
Ste
1 8 i p
1k 2k 3k

Variation 1 is the most promising and should be tested at larger scales. It simply gives
the model the choice, during feedforward layer, to incorporate through weighted (gate)
addition the hidden representation of the previous time step (previous example)

Simple implementation

No noticeable slowdown (there’s an extra matmul)
No extra parameters (1 gate parameter per layer)
Significantly lower loss (~.1)

- Models tend to actually favor the data from the previous example in early layers, and in
later layers favor the current example (see graphs of gate weights), e.g. from variation 1:

Gate value strength per layer over 3000 iterations (initialized at 0)

1.50 A

1.25 4

1.00 ~

0.75 A

0.50 ~

Gate value (pre-sigmoid)

0.25 A

0.00 A

—0.25 1

0 2 4 6 8 10
Layer number

- Grad version of creating the preivous_state tensor doesn’t seem to make a difference.
We can create a matrix of the previous examples either in a way that breaks or doesn’t
break backprop down through the matrix. There doesn’t seem to be a noticeable
difference, for a given variation, when including or excluding this.

- Having the model look at additional previous examples (variation 5) doesn’t seem to help
performance

- Variation 2 Nans eventually, but prior to that performance looked slightly worse than
variation 1

- Variation 3 is slightly better than baseline but worse than Variation 1

- Variation 4 (basically GRU translated to this data format) outperforms variation 1 (and
baseline) by a small amount, but at the cost of significantly more parameters (195M vs
152M)

- TODO: parameter-parity benchmark: test Variation 4 against a baseline model of
195M parameters

nwp_loss
— baseline-1-var4-grad-195M — baseline-1-varl-grad-152M — baseline-1-var4-195M — baseline-1-varl-152M

St
1 P

Day 2 results

nwp_loss
= baseline-1-var3.2-grad-159M e baseline-1-var6-grad-152M = baseline-1-var3.1-grad-159M = baseline-1-var4-grad-195M = baseline-1-standard-152M
4
== 1800: 1.639 baseline-1-standard-152M
= 1800: 1.499 baseline-1 152N
- 1800
3.5 - 1800 .
- 1800
3
2.5
2
1.5
Ste|
1 P
0 500 1k 1.5k 2k 2.5k 3k

Close

- 3.1, 3.2 added. Both are quite good with 3.2 being consistently very good, significantly
below baseline and much below others. This very simply adds a gate that is not a single
parameterized scalar but a) data dependent b) weight matrix. (Mamba inspired). 3.2
expands this to the previous two examples and shows improvement over 3.1, which only
looks at the previous state. Overall extremely simple and effective

Day 3 results

- 7,8,8.1,8.2 added.

- 7 is Griffin-like, though it doesn’t implement the full lambda weights (we basically just
borrow the gating structure) and our RG-LRU blocks aren’t in the same place in the
architecture. This version does well, though it NaNs after a while. ADding a norm after
RG-LRU and before the FF stabilizes the training. The norm version and non-norm
version perform slightly differently, but I'm not sure it's not just noise. Also useless to
rigorously test at this small of a scale

- 8 variations are interesting. The idea is basically like version 3, where we’re doing a
version of convolution, and this just translates this into convolution operation so that we
can expand our previous state information as many time steps back as we want (rather
than hand coding out each one with a downshift matrix).

Plain convolution doesn’t work well

Nor does adding a nonlinearity post convolution

However softmaxing some parameterized weights before passing them in to be
used as convolution kernel weights works well - equivalent ot hwat we had in 3.2
which was the winner. So the weights need to be either nonlinearized, sum to 1,
or both.

8.2 reflects these changes and seems like the best

I's also important to intialize these kernel weights evenly. Looking at the weight
values post training shows distribution fo weight over past tokens looks sensical /
well-ordered if we initialize them sensibly, but if you initialize them randomly you
get strange looking weight distributions (see visualizations in 8.2)

nwp_loss

baseline-1-var8.2-prev-6-159M o baseline-1-var8.2-prev-4-159M = baseline-1-var8.2-prev-2-159M)3 ne-1-var7-16 = baseline-1-var3.2-grad-159M
= baseline-1-standard-152M

= 2700: 1.77 baseline-1-standard-152M

= 2700: 1.687 baseline-1-var8.2-prev-6-159M
— 2700: 1

= 2700: 1.654 baseline-1-var8.2-prev-4-159M
== 2700: 1.652 baseline-1-var8.2-prev-2-159M
=— 2700: 1.651ba ar3.2-grad-159)

Step
500 1k 1.5k 2k 2.5k 3k

Learned (softmax) weight value across layers for each previous state

0.4 1

0.3

0.2 1

0.1

—— state t-

state t -
—— state t-
—— state t-
—— state t-
—— state t-

state t -
—— state t-

state t -
—— state t-

W o~ O B W N e

=
=]

0.0

0 2 4 6 8 10

Interesting result here. Notes pulled straight from section 8.2 repeated here:

This is very well behaved (3000 iterations of training)

Closer states get more weight, but all states converge to same weight in later layers
This is an interesting graph. It might sound naive but we should ask and examine: why
does a given example/state prefer to look at its immediate predecessors over very
distant ones? There is no bias towards recency built into the model: it (previous word as
strong predictor of next word) is only in the data.

- Note also the difference across layers. In early layers information about
immediately recent context is important, but towards later layers the context
window gets larger and larger until at the end each state is almost equally useful
to see. So as the data flows through the model it starts by looking at recent
context and gradually incorporating more distant context.

- Note difference / similarity with self attention:

- Difference: each token attends to each other token in a way that is
unbiased by time (of course there is position bias almost always built in,
but even without position bias decoder models learn sequence order
(NoPE paper, others). So one gets attention patterns that are (in theory)
based in semantics rather than recency: attention strength should just be
affinity

- Similarity: these similarities/affinities/attention patterns end up in practice
being heavily influenced by the time dimension. More recent tokens play a
more important factor, on average, than distant ones.

- As we go deeper into layers, the attention patterns start out
heavily focused on recent tokens and gradually focus grows more
diffusely across distant context

- Our previous state mechanism can be thought of as very close to
sliding window attention.

GPT-2-small attention patterns

Layer 1 attention pattern Layer 2 attention pattern Layer 3 attention pattern

Layer 4 attention pattern

Layer 5 attention pattern Layer 6 attention pattern Layer 7 attention pattern Layer 8 attention pattern

Layer 9 attention pattern Layer 10 attention pattern Layer 11 attention pattern Layer 12 attention pattern

(attention patterns over a sequence fed into GPT-2, built quickly on top of the TransformerLens
demo notebook.)

Day 4 results

- 8.3 works fine but not great. There’s still more testing to do with group size for the
convolution.

- At this point it's maybe worth doing another one or two small versions, but it's time to
take the best candidates and scale them up.

Day 5 results - subtractive skip connections

- 8.2.1-8.2.4 variations didn’t do well - all were variations on attempts to more thoroughly
incorporate input data as a selector gate over the previous states

- Variation 9 NaNs, we can revisit: | suspect repeated matmuls are blowing the numbers
up, so a norm or division by sqgrt(dim)

Residual weight value

- 8.2 with residual weights very good results. So: add residual to the recurrent component
and add a weight to the recurrent stream. We also add a weight to the residual

component of the transformer block

- The main result is that initializing the residual streams to 0 provides a

significant performance improvement

nwp_loss

baseline-1-var8.2-all-residuals-init-0-prev-2-159M o
4
= 3000: 1.671ba
— 3000: 1.5
— 3000: 1.553ba
= 3000: 1.48 ba

35

1
0 500 1k 1.5k 2k

— baseline-1-var8.2.residual-linear-prev-2-159M = baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M

Step
3k

- Initializing the attention specific residual at 0 does not work well, but initializing at

1 possibly helps, or esle is equal.
- The analysis of these residual weights is very revealing

Residual transformer block weight value over time (initialized at 0)

.'..
L]
12 1 o ®
[]
L]
L
..
1.0 4 ..
L]
..
0.8 L]
L]
L]
[]
0.6 1 L]
{]
L
0.4]
L]
[]
0.2 s
=& ® 00 4 0 .
00 - »-,;7_vazvu...vuvui&diii"‘ii"iiii'
. v5
]
LN]
...
| .."gg:'dvuvuuvvu
—0.2
T T . T T T .
0 500 1000 1500 2000 2500 3000
lteration

- The above is the residual for the entire transformer block

Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

- Later layers not only prefer the transformed data, they actually would like to subtract the

input representation (this is how | read it)! Very interesting.

Residual weight value

Residual recurrence block weight value over time (initialized at 0)

-
]
00017 0 a
g e
L -
2o
—0.05 1 Bce -
[] ..
g° L
e e, -
~0.10 1 e0 g ‘...
2 o oo, ., -
e 8° o, °° e,
—0.15 - 5o H e ® 44]
L] v e L] ...
c o ® ® ® 9
¢ _®6 . ®eoe,
—0.20 e ° e s ee ® e 4
fe%e 907 0%00e "9,
ECasg Ooo..! "3':'
e, * .8 _ o °
—0.25 A ' ." e e,
'I--‘uﬁ_ﬁ_ﬁo
Uu":
—0.30 A
0 500 1000 1500 2000 2500 3000
Iteration

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Here as well in the recurrence block, the model actively prefers to subtract the input
representation. Note that is not more heavily weighting the recurrence vs. the residual, it

is actively subtracting the residual

Lastly, we attach a weight to the attention block itself (not the residual attached tot he

attention block)

Attention block weight value over time (initialized at 1)

.04 ©
=
)
'Y
]
e e ® & @& g g o
0.8 H g 2¢° RO IR T S NP
L\
IS
"
L J ® [}
3
E s $..
£ 0.6 1 L) °
o [] ..
2 * ° o
e ° L]
c ° e °® e o
G L4 ® o []
2 L] [] Y []
2 . s MR I |
& 04 . ° . ® 4 4 ° L A
-4 ®
... e o °
e ...
® . ® o
0.2 ® .
..
....
......
0.0 T T T T T T
0 500 1000 1500 2000 2500
lteration

Very interesting behavior in the 8-10 layers, note the discontinuous jump between layer

7 and 8.

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

- The overall more important point is that the model prefers to reduce the amount that
attention influences the computation. | would have expected attention weight to be > 1.0
but for all layers and all time steps it is < 1.0, and in many layers < .5.

- TODO: test this on a regular transformer. The decreased weight might be
because the necessary computation is taken over sufficiently by the weak
recurrence blocks.

Day 6 results - subtractive skip connection

- Added a more “proper” version of the Griffin computation (7.2) but it ends up adding so
many parameters, and we’re not doing the cache operation, so it seems just like a very
overweight version of the 8.x models that we already have

- Lots of testing of skip and residual weights.

- Anything other than identity/block skip weight and recurrence skip weight both init
@ 0 seems worse. This includes intiializing at 1, adding skip weights to other
parts of computation, adding weights to the residuals of ff, attention, recurrence,
block...

- So the best combo is identity and recurrence skip weights @ 0. Is this good
performance just a sum of its parts? No. Testing each individually shows
that the recurrence weight @ 0 has essentially no effect, and the identity
weight @ 0 on its own has a small effect. So there is some benefit beyond
just the additive effect of these skip connections

- Tested the skip connection on a standard vanilla transformer

- Init @ 1 results in worse performance

- Init @ O results in a large boost.

The story as | can tell so far is basically:

The skip connection is important for early layers (and redundant layers if they exist) to let the
network pass the identity through (this has been identified before: as the network “warms up”
these early layers just want to pass the input through). But it actually hurts middle/later layers
because the residual is important, and diluting the residual with identity hurts performance. For
this reason the middle layers want to boost their residual signal by actually subtracting the
identity. Adding a learnable multiplicative weight to skip connection allows the network to do
both. Note that the model is not setting the identity connection to 0: it is actually subtracting a
portion of the input representation from the result of the residual computation, as if to erase the
effect of the input leaving an even more exaggerated residual.

It's quite sensitive to initialization as well. If you initialize the weight at 1.0, which makes the
most sense, the model actually does slightly worse. So it seems like a modification that does
nothing. But you will notice the following pattern:

Identity skip weight value over time (initialized at 1)

1.2 1 ° Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

]

1.0 @ |
Layer 8

]

|

@

Layer 9

Layer 10
Layer 11
L Layer 12

o

Value

0.8

e
[& (&Y]

0.6

0.4
L

0 200 400 600 800 1000 1200
lteration

So the early layers want stronger identity connections, less so for the later layers.

[It's a bad habit to talk about what the model “wants” or what it “prefers” but we can pull some
broad generalizations here. Note also that just because these values are heading up or down
does not mean that in all cases they converge to a “preferred” value, and it’s just a matter of
finding the value they converge to and initializing it as such.

Different initializations lead to different convergences on “preferred” values, different networks
lead to different convergences: the system balances itself. That said, as we will see, some
initializations are better than others.]

Initializing learnable block/identity skip connections @ 0 makes the model perform considerably
better (solid purple) than vanilla (green)

nwp_loss
— baseline-1-standard-w-blockskip-init-0-152M ¢ = baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M == baseline-1-var8.2-prev-2-159M = baseline-1-standard-152M

== 1650: 2.144 baseline-1-standard-152M
== 1650: 1.986 baseline-1-standard-w-blockskip-init-0-152M
== 1650: 1.896 baseline-1-var8.2-prev-2-159M
== 1650: 1.793 baseline-1-var8.2-all-residuals-0-attn-1-prev-2-159M
3.5
3
2.5
2 _
1.5
1
0 500 1k 1.5k 2k 2.5k

And you see the following:

Identity skip weight value over time (initialized at 0)

° [] Layer
1.00 1 ® E Layerl
° b4 Layer 2
[] Layer 3
075 o L Layer 4
) P BN Layer 5
[Layer 6
L] B Layer 7
0.50 1 . ° Layer 8
" ° I Layer9
=
§ 0.25 ° Layer 10
° N Layer 1l
a Layer 12
a
|]
0.00 1 v [
g ; : e & o o o © o & e @ ® o o o
e
= ¢ H : : ° [] .
-0.25 T 6 8 g e o o 4
“ hd | = : e . L []] -
® ¢ ¢ o o o
—0.50 -
T T T T T T T T
0 250 500 750 1000 1250 1500 1750
lteration

I's not clear why initializing at 0 allows it to perform considerably better. Perhaps the benefit of
having a strong early layer identity signal is much less important than being able to subtract the
identity in later layers. Initializing the early layers at higher value (first two layers at .5, e.g.)
doesn’t do much to performance, so that supports this view. So this is the working hypothesis.

Other residuals have even stronger preference to subtract the identity. In an experimental
architecture that is a vanilla transformer which includes a style of recurrent computation

between attention and feed forward at each layer, the recurrent skip connection is even more

dramatic:
Recurrence skip weight value over time (initialized at 0)
®
-
ooo{ © % e
-~
. 5
°
v
—0.05
L
™ . ¢
. M
-0.10 * 3
o
$ * ety °e .
2 015 : . 00,0
~ . "N
L] ™ ol ® .
®
-0.20 - o 2
8 a e ® s e
L]
e =~ 8 4 2 e,
L L] - BN B
4 8 . e
-0.25 - - a o
® 9 -] []
]
.
—0.30 s*s
T T T T T T
500 1000 1500 2000 2500 3000
lteration

Where early layers, even more so than the later layers, prefer to subtract the identity.

Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

	Notes
	Idea
	Design questions / variations for SSMs
	Related works

	How to create the previous example tensor?
	Residual Notes
	Important note
	Related works
	Hypothesis

	Setup
	Experiments
	Variation 1
	Variation 2
	Variation 3
	Variation 3.1 (Mamba input-dependent gating)
	Variation 3.2 (Mamba over previous 2 examples)

	Variation 4 (GRU)
	Variation 5
	Variation 6
	Variation 6.1

	Variation 7 (Griffin-like)
	Debugging
	Variation 7.1
	Variation 7.2

	Variation 8 (convolution)
	Variation 8.1 (sigmoid the convolution output)
	Variation 8.2 (softmax the conv weights prior to conv)
	8.2 Residual
	Variation 8.2 All Residual - transformer block and recurrent
	Adding residual weight to self attention component

	
	Args.dim residual weight
	Create a skip weight for: block (identity), ff, attention, recurrence
	Init all at 0
	Init all at .5
	Init: Custom1 - all residuals + skips
	Init: Custom2 - block skip only

	
	Init: Custom3 - recurrence skip only
	Init: Custom4 - recurrence skip and block skip, both init @ 0
	Init: Custom5 - recurrence skip, block skip, and attention skip all init @ 0
	Init: Custom6 - recurrence skip, block skip init @ 0. Add skip inside attention init @ 0
	Init: Custom6 - recurrence skip, block skip init @ 0. Add residual weight to attention inside block init @ 1
	Init: Custom7 - recurrence skip, block skip init @ -.5
	Init: Custom8 - recurrence skip, block skip init @ 0, block skip layer 1 and 2 init at .5
	Residual baseline - init @ 0
	Residual baseline - init @ 1

	8.2.X
	Variation 8.2.1 - 8.2.4 Performance
	Variation 8.2.1
	Variation 8.2.2
	Variation 8.2.3
	Variation 8.2.4
	Variation 8.2.1

	Variation 8.3
	Variation 9
	Debugging

	Results
	Day 1 results / initial
	All variations so far
	Takeaways:

	Day 2 results
	Day 3 results
	Day 4 results
	Day 5 results - subtractive skip connections
	Day 6 results - subtractive skip connection

