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Disclaimer: this writeup is context for upcoming experiments, not complete work. As such it 
contains a lot of (not always well-justified) guess-work and untidy conceptual choices. We are 
publishing now despite this to get feedback. 
 
If you are interested in this work — perhaps as a future collaborator or funder, or because this 
work could provide helpful input into e.g. risk assessments or RSPs — please get in touch with 
us at joel@qallys.com and/or simeon@safer-ai.org. 

Summary 
1.​ A recent report documented how the performance of AI models can be improved after 

training, via post-training enhancements (PTEs) such as external tools, scaffolding, and 
fine-tuning. The gain from a PTE is measured in compute-equivalent gains (CEG): the 
multiplier on training compute required to achieve equivalent performance to a model 
combined with a PTE. 

2.​ We are interested in understanding the contribution that PTEs make to AI system 
capabilities over time. 

a.​ This question in turn is motivated by SaferAI’s work on quantitative risk 
assessments of frontier models. In particular, any risk assessment of 
open-sourcing models or of having closed-source models stolen or leaked should 
take into account PTEs. A system’s capabilities will increase over time as PTEs 
are added to the system built on top of a given base model. 

3.​ We extend a recent analysis of PTEs in order to understand the trend in CEG over time, 
arriving at very rough estimates for the rate of improvement of PTEs. Our primary 
takeaways are that current data is insufficient and experiments are needed to 
better forecast the effects of PTEs, as described below. 

4.​ There are serious limitations in our preliminary analysis, including: problems with the 
CEG metric, many uninformed parameter estimates, and reliance on an ill-defined 
“average task”. 

5.​ High-priority future work includes running experiments to get more evidence on 
important uncertainties for our forecasts of capability gains due to PTEs. In particular, we 
think it will be important to understand how well different PTEs combine, as well as to 
directly study performance on benchmarks relevant to dangerous capabilities rather than 
relying on the CEG and average task abstractions. 
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In this write-up, we will: 
 

1.​ Outline our methodology. (More.) 
2.​ Present CEG estimates for various PTEs. (More.) 
3.​ Aggregate total CEG, using subjective estimates of ‘composability.’ (More.) 
4.​ Note limitations of our analysis and important future work. (More.) 

Methodology 

Definitions 
Post-training enhancements (PTEs) are methods to improve upon a model’s performance 
without training a new model. For the purpose of this analysis, and consistent with prior 
literature, we will operationally define a PTE as requiring a one-time cost of <=10% of training 
the original model and <=100x of the inference cost.1 Examples include fine-tuning and 
scaffolding. 
 
Compute-equivalent gain (CEG) of a PTE is the training compute that a base model would 
have required to improve benchmark performance by as much as the PTE, divided by the 
compute used to train the base model. 
 
The average task is the hypothetical mean task that is an important input for forecasting risk 
levels. 
 
Total CEG is the CEG due to all PTEs2 available at some point in time, relative to some base 
model. See more details below. 

CEG calculation 
Davidson et al. uses the difference in compute between a lower-compute system with a PTE 
and a higher-compute system without the PTE (that has weakly greater performance than the 
lower-compute system with the PTE) to calculate CEG. (See their Figure 1 below; “the 
post-training enhancement improves performance by the same amount as increasing the 
training compute by 5x; so the CEG is 5.”) 

2 Not literally all PTEs will be compatible (e.g. because some are substitutes, and because stacking them 
would go over the compute constraints). We mean the best combination of ones that is feasible within the 
compute constraints. 

1 These numbers are very arbitrary, open to arguments for adjusting. For the inference ones it really 
depends on the use case / threat model so it is hard to settle on a single number. 
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Note that this is a soft lower bound for this particular evaluation; if a system with slightly less 
compute than the higher-compute system would still have achieved greater performance than 
the lower-compute system with the PTE, then the actual CEG value would be higher than that 
estimated by this method3. 
 
We use the above method for some of our new CEG values. For the HumanEval benchmark, 
we estimate a sigmoid curve, using this curve to estimate the compute required to reach 
different levels of performance. For other CEG values, we use a local approximation (log-linear) 
to what we imagine is an underlying sigmoid curve of benchmark performance in log compute. 

Data collection 
We compile data on CEG for various PTEs studied in public research papers. We attempt to 
adjust these CEG values in order to estimate values for an ‘average task,’4 rather than on the 
particular benchmarks tested in research papers. The adjustment was done in an ad-hoc rather 
than systematic manner due to the lack of data for most PTEs. 

4 The way we thought about the ad-hoc adjustments was: we split the benchmarks from which CEG 
values were derived into several clusters of categories: Math, coding, QA, Common-sense reasoning 
(CSR), facts, classification, aggregations of many benchmarks, and a few others. QA, CSR, Math, 
aggregations, and coding seem most important to us of the things we’re measuring in terms of datasets of 
interest for forecasting risk, though the others can be proxies for the ones we care about. Let’s very 
naively say that a CEG that helps for only one of these counts for ⅕ of it in the 'average', 2 -> ⅖, etc. See 
below for visuals on how PTE varies by task type. 

3 However, note that ,without further experiments, this method may naively overestimate results as papers 
showcase tasks and settings where their method performs best. See the average task limitation section 
for more. 



CEG aggregation 
Within each category of PTEs, we specify highly subjective estimates of ‘composability’ of 
different PTEs. We use these to calculate the aggregate CEG from a given category of PTEs 
when only some PTEs within the category are activated. To calculate aggregate CEG across all 
PTE categories, we use an exponential weighting formula with another arbitrary composability 
constant. 
 
Using our formula for aggregating CEG across PTE categories, and our estimates for aggregate 
CEG within a PTE category when only some PTEs are activated, we can estimate aggregate 
CEG for different combinations of PTEs. Then, using the release date of different PTEs, we can 
estimate aggregate CEG at different points in time. We adjust this historical trend in aggregate 
CEG based on various qualitative considerations. 

Clarifying total CEG 

 
Figure 1: How performance changes with progress in both models and PTEs 

The performance trend we care about 
Since our motivation in this work is to understand how PTEs applied over time will increase 
performance of open-sourced or leaked AI systems, we are concerned with the performance 
trend given by combining a model released in year X with PTEs developed through years after 
X. This is the blue trend in Figure 1 going from top to bottom. 



What total CEG measures 
Ultimately, we care about the dangerous capabilities implied by performance levels in each cell. 
But since extrapolating performance for dangerous capabilities is difficult, CEG aims to anchor 
performance improvements against how much performance would increase with only scaling up 
compute. The idea is that if the improvement from (Model X, PTEs X) to (Model X, PTEs X+Y) is 
the same as (Model X, PTEs X) vs. (Model X + N OOMs compute, PTEs X), then Y PTEs have 
a total CEG of N OOMs. 
 
This compares the blue top-to-bottom trend to a trend similar to the yellow left-to-right 
trend above (except without algorithmic improvements in training included in the yellow 
trend). 
 
Note that we think there are serious issues with total CEG as a measure; see below. 

Other things that would be valuable to measure 
1.​ Actual progress (red trend) as a reference point for the blue trend: Arguably, 

comparing against actual progress might give better intuitions regarding performance. 
There might also be a case for using the yellow trend as a reference. 

2.​ Actual progress (red trend) compared to the yellow trend (progress holding PTEs 
fixed): This would be an important metric for understanding algorithmic progress of 
PTEs, in addition to understanding the blue trend. 

Issues with our measurement of total CEG 
There are many gaps between total CEG and what we’ve been able to measure/forecast thus 
far. Experiments will be valuable to gain insight into each of the all of the yellow/red/blue trends 
as well as lessening the need for a reference trend. See also limitations and future work below. 

CEG estimates 
Below is a table of all the post-training enhancements considered in our analysis. We have 
heavily drawn upon Davidson et al., for both which PTEs to look into and how they should be 
categorized. We add some more PTEs, adjust some CEG values, break CEG values down by 
dataset, order by date, and include subjective estimates of 'composability' of various PTEs in 
order to produce a running total over time of the total CEG for each type of PTE.5 
 
Our full list of CEG estimates categorized by benchmark and task type are in 

. Reasoning for the CEG values by dataset are mostly in Davidson et CEGs across datasets
al.. Otherwise they are linked from the table cells. Some are unfortunately not documented well 

5 For now we are just hackily averaging CEG values together in a hacky sort of logarithmic average, like 
biasing toward lower ones. Should think about if this is a principled approach, really should at least apply 
it consistently. Also in general all the intuitive steps in this table should be reduced as much as possible.  
TODO. 

https://docs.google.com/spreadsheets/d/1Y-FcO-ggslJym50x1X8YatnzfN2RGZlr2xNAWRMSiEk/edit#gid=0
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yet, especially in cases where we modified or added CEG values for PTEs considered in 
Davidson et al.. 
 
You can find plots comparing these CEG values across PTEs, task types, and benchmarks in 
the Plots of CEG values appendix section. 
 

Date Technique Explanation ~CEG reasoning: very rough 
estimates of CEG for 
'average dataset', and 
composability with prev. 
PTEs 

~CEG 
running 
total for 
type 

Compute 
multipliers 
(1-time cost, 
inference 
cost) 

Tools 

12/2021 WebGPT 
Tools 

Fine-tune a 
model to use a 
web browser to 
answer factual 
questions and 
provide 
citations. 

1 *8  = 8 
 
CEG: 8 
 
ELI5: >15 
TruthfulQA: >220 
 
Seems much more helpful for 
QA than other types of tasks, 
but not only helpful for QA. So 
let’s say it’s 20 CEG for QA -> 
20*(⅖) = 8 for avg dataset. 

8 (~0.01%, 1) 

12/2021 RETRO 
Tools 

The model 
retrieves text 
that is similar to 
the text it is 
predicting, and 
uses it to inform 
its predictions. 

8 * 2^.2 = 9 
 
Composability:6 .2 
 
V. similar to WebGPT so don’t 
expect much composition 
 
CEG: 2 
 
Varies from 0 to 43 on 
next-word prediction tasks, but 
the 43 is on text with very 
similar text in the training 
corpus and the others are 
substantially lower. 

9 (<3.3%, <1.1) 

02/2023 Toolformer​
Tools 

Fine-tune a 
model to use a 
calculator, a 

9 * 7^.3 = 16 
 
Composability: .3 
 

16 (~0.01%, 1) 

6 Composability is hackily defined as the exponent for the lesser number in the multiplication 

https://arxiv.org/pdf/2312.07413.pdf
https://arxiv.org/abs/2112.09332
https://arxiv.org/pdf/2112.04426.pdf
https://arxiv.org/pdf/2302.04761.pdf


Q&A system, a 
search engine, a 
translation 
system, and a 
calendar. 

Overlap with WebGPT, with 
some added tools. 
 
CEG: ~7 
 
>20 in benchmarks for factual 
knowledge, math, and temporal 
questions. CEG = 7 for QA, ~1 
for translation 

Prompting enhancements 

05/2020 Few-shot 
prompting 
Prompting 
enhanceme
nts 
 
InstructGP
T paper 
also used 
for data 
points 
 

Provide a few 
solved 
examples to the 
model. 

1 * 26 = 26 
 
CEG: 26 
 
~26 in SuperGLUE, an 
aggregative benchmark. Highly 
varying CEG values on other 
tasks: 2 times >200 and 6 
times 1-2. 
 

26 (0, >5 and <50 
in three 
examples) 

01/2022 Chain of 
thought 
Prompting 
enhanceme
nts 
 
Lanham et 
al. also 
used for 
later  data 
points. 

Encourage a 
model to make 
its reasoning 
chain explicit. 

3^.5 * 26 = 45 
 
Composability: .5 
 
We think it does combine with 
few-shot some but doesn’t 
stack super well. 
 
CEG: ~3 
 
Got >9 on many benchmarks in 
the original paper, but more like 
~1.5 on several tasks in a more 
recent paper using less 
undertrained models. It’s 
debatable which of these is 
more relevant for our purposes, 
will take in between. 

45 (0, 10) 

Scaffolding enhancements. CEG calcs for HumanEval and HotpotQA 

07/2022 CodeT Have a model 
generate test 

1 * 2 = 2 
 

2  
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Scaffolding 
enhanceme
nts 

cases for code 
samples 
generated, 
choosing the 
best solution. 

CEG: ~4 on HumanEval 
(coding). Let’s say 2 for an 
average task. 

10/2022 ReACT 
Scaffolding 
enhanceme
nts 

Have a model 
generate 
interleaving 
reasoning traces 
and 
task-specific 
actions. 

2^.7 * 2 = 3 
 
Composability: .7 
 
Think it adds a decent amount 
on top of CodeT 
 
CEG: ~2 
 
~2x HumanEval, ~4x 
HotpotQA. Choose lower due 
to average task. 

3  

12/2022 Parsel 
Scaffolding 
enhanceme
nts 

The model 
decomposes a 
complex task 
into natural 
language 
function 
descriptions, 
generates 
modular 
implementations 
for each, and 
searches over 
combinations of 
these 
implementations 
by testing 
against 
constraints. 

3 * 2 = 6 
 
Composability: 
 
Builds on top of CodeT, so 
should just multiply by 4/2=2 
 
CEG: ~4 
 
~7 on HumanEval including 
CodeT, ? on APPS. Then 
adjust down some to 4 as 
somewhat code-specific. 

6 (0, ~32) 

03/2023 Reflexion 
Scaffolding 
enhanceme
nts 

A model makes 
use of reflection, 
memory, and 
evaluation to 
iteratively 
improve its 
output 

6 * 5^.1 
 
Composability: ~.1 
Don’t think it combines that 
well, Very similar to Parsel. 
 
CEG: ~10 
 

7 (0, ~32) 

https://arxiv.org/pdf/2210.03629.pdf
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HumanEval: ~5 
HotpotQA: ~86 
So let’s say ~5, taking lower for 
average task. 

10/2023 LATS 
Scaffolding 
enhanceme
nts 

A model assigns 
sub-tasks to 
copies of itself, 
reads and writes 
to memory, has 
a chance to 
learn from their 
mistakes, etc. 

7^.4 * 20 
 
Composability: 0.4 
 
We thought it wouldn’t combine 
well in general but it apparently 
does with ReACT, at least on 
one dataset. 
 
CEG: ~20 
 
CEG with ReACT on one 
dataset: ~80? 
 
Compromising between 
HumanEval, HotpotQA. Taking 
lower again for average task. 
 
~20 CEG on HumanEval,  
~400x on HotpotQA by itself 
vs. ~1800x with ReACT 

44 (0, ~160 (for 
LATS at 
HumanEval)) 

10/2023 FireAct 
Fine-tuning 
+ 
Scaffolding 

 Will leave the same as above 
for now since it requires a 
bigger model, and also is really 
a data point on how CEG 
aggregates. 
 
~5 CEG on HotpotQA on top of 
ReACT 

44  

Solution choice enhancements 

10/2021 Verification 
Solution 
choice 
enhanceme
nts 

A verifier rates 
100 candidate 
solutions and 
submits the one 
with the highest 
rating. 

CEG: ~20 
 
>26 on GS8MK benchmark, 
but adjusting down a little bit 
because it seems somewhat 
dataset-specific 

20 (~0.05%, 200) 

https://arxiv.org/abs/2310.04406v1
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https://arxiv.org/pdf/2110.14168.pdf


02/2022 AlphaCode 
sample 
selection 
Solution 
choice 
enhanceme
nts 

Six techniques 
for choosing 
which coding 
solutions to 
submit out of 
1000s of 
candidates. 

20 * 3^.1 
 
Composability: 0.1 
 
Doesn’t seem that composable 
 
CEG: ~3 
 
~6 on Codeforces problems, 
adjust down some since not 
that transferrable 

22 (~0.45%, <2) 

03/2022 Self-consist
ency / 
majority 
voting 
Solution 
choice 
enhanceme
nts 

Sample multiple 
times then take 
the answer that 
is most common 

1.5^.9 * 22 
 
Composability: .9 
 
It is pretty orthogonal to the 
other enhancements 
 
CEG: ~1.5 
 
1.5-2 on various math/CSR 
benchmarks 
 
CEG calcs here. 

32  

05/2023 Verification 
with 
process-ba
sed 
feedback 
Solution 
choice 
enhanceme
nts 

Improves on a 
“outcomes 
based” verifier 
baseline by 
fine-tuning a 
verifier with 
“process based” 
feedback. 

3^.1 * 1.5^.9 * 20 * 5 
 
Composability: 0.1  
with AlphaCode / 
self-consistency, .9 with 
self-consistency 
 
CEG: ~5 
 
8 for MATH, on top of 
verification. Adjusting down to 
5 for the same reason as 
verification above. 

161 (~0.001%, ~1) 

Data enhancements 

03/2022 Instruct 
GPT 
Data 
enhanceme
nts 

Finetune a 
model on 
examples of 
humans 
following 
instructions; 
finetune against 
a reward model 

CEG: ~30 
 
>3900 at instruction following; 
>130 on some other NLP 
benchmarks; 
no gain on many NLP 
benchmarks. 
 

30 (~0.3%, 1) 

https://arxiv.org/pdf/2203.07814.pdf
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trained to 
predict human 
preferences. 

Chatbotting is the thing it was 
optimized for. It also gains a 
bunch on summarization and 
TruthfulQA, but little on 
commonsense reasoning. 
 
Overall it seems roughly fair to 
say average of 30x 

07/22 Generating 
your own 
fine-tuning 
data 
Data 
enhanceme
nts 

Models write 
coding puzzles 
and solutions; 
solutions are 
automatically 
checked; 
fine-tune on 
correct solutions 

Composability: 0 
 
Some of the things above are 
~strictly better if you put in the 
effort and compute, this is a 
way to do it cheaply. We’re not 
really capturing that in our 
framework well right now. 
 
CEG: ~5 
 
Requires automatic checking 
so reducing some, but could 
perhaps be done okay with 
verifiers. 
 
>22 in a coding benchmark, 
compared to a baseline with no 
finetuning for coding 

134 (~0.04% , 1) 

06/2023 Learning 
from a 
teacher 
model 
Data 
enhanceme
nts 

Fine-tune a 
small model on 
detailed 
explanations 
produced by a 
larger model 

Composability: 0 
 
Not as relevant since it can't be 
used without a substantially 
bigger model. 
 
CEG: ~10 
 
~10 on a range of benchmarks 

134 (~2.5%, 1) 

08/2023 OctoPack 
Data 
enhanceme
nts 

Fine-tune 
models on a 
large number of 
filtered git 
commits and 
multi-turn 
dialogues 
containing 
natural 
language and 
some code. 

134 * 10^.1 
 
Composability: 0.1 
 
This doesn’t really stack on top 
of SFT, we think. So we will set 
composability low 
 
CEG: ~10 
 
Varied between ~4x and ~80x 

169 (?, 1) 

https://arxiv.org/pdf/2207.14502.pdf
https://arxiv.org/pdf/2207.14502.pdf
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for models on HumanEval. It is 
fairly code-specific so will 
adjust down but could be 
applicable to some other stuff. 
CEG calcs here. 

CEG aggregation 

Methodology 
We gathered the data from the overall table above into , which tracks the CEG over time
aggregated CEG values for each category at each timestep. 
 
To compose the aggregated CEG values for each category into a total CEG value at each 
timestep: 
 

1.​ For each point in time, the aggregated CEG for each category (ad-hoc, using numbers 
from the above table) are sorted from highest to lowest as C_0, C_1, … C_4 

2.​ Define an arbitrary composability constant M=.6 
3.​ The overall CEG is (C_0 ^ (M^0)) * (C_1 ^ (M^1)) … * (C_4 ^ (M^4)) 

 
The motivation for this is that the overall CEG should always be at least as high as the highest 
category CEG, but there should of course be some diminishing returns for the rest. 

Setting the composability constant 
These points apply not only to the composability constant for across PTE groups, but also the 
composability values within PTE groups as in the overall table above. 
 

1.​ Points for lower composability 
a.​ Even if some methods can theoretically be combined it might be too expensive to 

do so, at least for actors without access to huge amounts of compute. In practice, 
there aren’t that many papers reporting results that combine many PTEs together 
in a way such that the CEG is easily measurable. 

b.​ CEG values appearing in published literature are selected for usefulness on the 
tasks/datasets they are tested on, and may not be as useful or even be able to 
be combined for use on other datasets (in some cases, this is very obvious; in 
other cases, less clear). 

2.​ Points for higher composability 
a.​ We were quite pessimistic about the composability of LATS/ReACT and thought 

that LATS had basically just usurped ReACT, but in fact they seem to compose 
very well on HotpotQA i.e. it would have a constant of close to 1. This is just one 
data point but the first sample gives the most information. 

 

https://docs.google.com/spreadsheets/d/13XrINepNR-p_ybK6nItbZ0l1d45u3j6OuKKmvrErcKE/edit#gid=0


We chose an estimate of .6 by (a) subjectively weighing these considerations (b) trying a few 
CEG combination spot checks and picking the median of what seems roughly right and (c) 
incorporating intuitions gained from the specific composability estimates that we gave for within 
categories above. 

CEG over time 
Using the above formula and composability constant, we estimate total CEG at different points 
in time. 
 

 

Sensitivity analysis 
The line of best fit above has a slope of 1 OOMs of CEG per year. For various reasons — 
ambiguity about the right starting point, the disconnect between information we can find in the 
literature and the objects we want to measure, the trend above not obviously being log-linear, 
and the hacky choices made in the table above — we do not want readers to take this number 
too seriously. 
 
Here are slopes for choices of composability constant that seem defensible: 
 

Composability 
constant 

.3 .45 .6 .8 

Slope (OOMs of 
CEG/year) 

0.6 0.8 1 1.6 



Qualitative considerations 
We would ideally want to estimate the rate of improvement in CEG with PTE compute held 
constant, but this is challenging without experimental data. We think that differences in PTE 
compute probably have a large effect. We are currently not adjusting for this in our quantitative 
methodology, which biases our estimates upwards for 2 reasons: 
 

1.​ Compute usage on PTEs is generally going up over time, so the rate that CEG is going 
up is an overestimate of how much it would go up holding compute fixed. 

a.​ We think this is at least an issue with the scaffolding PTEs, not as sure for the 
others. 

2.​ Our composability estimates lead to significant overestimation of the CEG gain that 
would happen with the compute level held constant. (If compute growth was paused, 
there would be further diminishing returns to new PTEs.) This is a huge deal in some 
cases, but it is a little double counting with (a) in 'Points for lower composability' above. 

 
Still, there’s value in a new method that is able to efficiently turn more compute into performance 
than was possible before. (Perhaps part of the reason more compute wasn’t poured into the 
previous method was that it would be inefficient for performance.) We should keep this in mind 
in the absence of estimates with compute held constant. 
 
We are probably missing out on many PTE improvements because their CEG can’t be 
quantified and/or we didn’t find them. While there are likely diminishing returns to combining 
more PTEs, this effect could still be very significant. 
 
We expect the above considerations to roughly cancel out. 
 
Another important factor, especially over a longer time period, is diminishing returns. This is not 
yet easy to observe, but would likely happen over time holding the base model for the PTEs 
constant. We should expect enhancements that help more on bigger models as opposed to 
smaller models being explored more over time, which hurts out ability to observe diminishing 
returns on a single model without more data and experiments. 
 
At the extreme of diminishing returns, some important tasks may have effective 'maximum' 
levels of performance you can squeeze out with PTEs, capping the CEG. As an intuition pump, 
it would be practically impossible to find post-training enhancements that would make GPT-2 do 
as well as GPT-4 at competitive programming, capping its log10(CEG) at less than 4. We would 
expect similar effects on many tasks, though it would depend a lot on the capabilities of the 
base model and how effective scaling training compute is on the task. 



Limitations and future work 

Limitations 

CEG as a measure 
Over the course of our project, we realized that CEG has serious flaws. 
 
Datasets with high CEG may just indicate that adding compute doesn’t help much with respect 
to the measured skill, rather than indicating something about the 'absolute' level of gains from 
PTE relative to other datasets. Datasets with inverse scaling could lead to infinite CEG. 
 
Some jumps in model performance enable qualitatively new capabilities that would be very hard 
to reach with a less capable base model, and vice versa for some post-training enhancements. 
This limits the usefulness of a compute-centered approach. It would probably be very hard to 
get GPT-6 with no internet access provided to do better than GPT-4 with internet access 
provided tasks requiring taking actions on the internet. 
 
Relatedly, CEG could be extremely large in domains for which scaling is less helpful. This may 
reflect real phenomena: perhaps auto-regressive LLMs at current scale can have capabilities 
they inherently lack — mathematics, advanced domain expertise, long-horizon planning — 
greatly improved by PTEs, whereas capabilities that these models are already strong at — 
translation, code, summarization, classification, fact-remembering — can only be somewhat 
improved by PTEs. It is unclear how to best incorporate this consideration into forecasts, other 
than to potentially justify a long right tail.  
 
Additionally, CEG becomes more problematic as the time horizon studied gets longer. When 
moving beyond local adjustments, it starts to be underdefined in a similar manner to the issues 
with effective compute.7 
 
These limitations make it problematic in that a very high CEG is a bit of evidence for high 
performance but also substantial evidence for scaling slowing down (broadly, or in a domain) 
and/or (if you define CEG relatively strictly) just time passing moving away from the regime of 
local adjustments. 

7 Does CEG mean you literally just add GPUs and no other adjustments, even across OOMs of compute? 
If so, the CEG will probably get very high quickly. If the answer is you can’t have new “fundamental 
algorithms” but you can make other adjustments to the training process (as with the TAI training 
requirements are defined in bio-anchors), how is the classification of fundamental algorithms defined, and 
how do you account for this in your CEG metrics? [Eli is eager for comments on this footnote if anyone 
might disagree about the severity of these issues] 

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.5butqad6sph5
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.5butqad6sph5


Uninformed parameter estimates 
We make many estimates which are quick educated guesses rather than grounded in empirical 
estimates or strong qualitative understanding. We hope to make progress on this via running 
experiments. 

Average task 
The ‘average task’ is not well-defined. Further, CEG values may vary greatly across datasets; if 
researchers are more likely to publish results for benchmarks on which a PTE does unusually 
well, our methods might naively overestimate CEG on typical tasks. (E.g. Minerva on MATH has 
an especially large CEG value, which is unrepresentative of the CEG value on other 
benchmarks.) For this reason, we ultimately think that for specific domains it’s best to do as 
much analysis on specific benchmarks on that domain as possible. 

Unspecified base model compute 
The degree to which a given PTE boosts performance might depend on the pre-training 
compute of the underlying base model. For example, OpenAI has said that GPT-4 gets less 
value from fine-tuning than GPT-3.5. 

Historical trend 
The historical trend, even if it were cleanly estimated, may not be informative as to the future 
CEG. Current PTEs or domains might not be representative of future PTEs or domains. 

Further limitations 
See also the limitations section from Davidson et al. 

Future work 
The obvious and most informative next step is running experiments. This would provide 
evidence for how PTEs combine, which is crucial for our trend estimation and forecasting, and 
surprisingly absent from published research literature. Also, our experiments could keep base 
models fixed, which would aid comparison and help us forecast the right estimand. 
 
Resources (e.g. code) for many PTEs are freely available online; running these experiments 
would be as simple as looping a benchmark performance calculation over benchmarks and 
combinations of PTEs. (Although note that this conceptually simple exercise might throw up 
significant practical difficulties.) 
 
In experiments, we could more easily drop the CEG abstraction, measuring and forecasting 
trends in performance directly.  
 
While there is some value in CEG especially in very local changes, we tentatively recommend 
that future work focus mostly on the implications of raw performance trends (especially if making 

https://arxiv.org/abs/2312.07413
https://www.anthropic.com/index/evaluating-ai-systems
https://www.anthropic.com/index/evaluating-ai-systems


claims about performance changes over long time horizons) as CEG can be very hard to 
interpret and potentially misleading. 

Appendix 

Plots of CEG values 
Broken down by PTE, then task type, then benchmark. The CEG values across task types and 
benchmarks are filtered for task types that have at least 3 recorded results. 
 







 



 

Explanations for CEG estimates 

HumanEval 
See HumanEval Benchmark (Code Generation) for most of the data we gather. 

Training compute increase 

We fit a baseline sigmoid as a function of training compute as done in Extrapolating GPT-N 
performance to more accurately estimate CEG values on HumanEval. See code for fitting the 
sigmoid here, and the data below. 
 

 
 
Sigmoid params: 
 k = 1.164308904678886 
 x0 = 3.5996951849783962 
 
Compute estimates are from  Parameter, Compute and Data Trends in Machine Learning
 

https://docs.google.com/spreadsheets/d/1AAIebjNsnJj_uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/edit#gid=0
https://paperswithcode.com/sota/code-generation-on-humaneval
https://www.alignmentforum.org/s/DhqQbgsdBfpekwMTu
https://www.alignmentforum.org/s/DhqQbgsdBfpekwMTu
https://github.com/uvafan/SaferAI_risk_assessment/blob/main/sigmoid_humaneval.py


Date Model Performance 
(pass@1) 

Approx. compute 

Eval 02/2022 GPT-Neo-2.7B 6.4 6e21 

02/2023 Llama-7B 10.5 4.1e22 

Eval 02/2022 GPT-J-6B 11.6 1.5e22 

02/2023 Llama-13B 15.8 7.6e22 

02/2023 Llama-33B 21.7 2.7e23 

02/2023 Llama-65B 23.7 5.5e23 

04/2022 PaLM-540B 26.2 2.53e24 

07/2023 LLaMA 2 29.9 8.13e23 

06/2023 Inflection-1 35.4 ~1e24 (just know as 
much or less than 
PaLM-540B) 

06/2023 GPT-3.5 48.1 ~2e24 

Eval 03/2023,  
03/2023, 
08/2023, 
10/2023 

GPT-4 0-shot 
(OpenAI, 2023) 
(Bubeck et al., 2023) 
(Muennighoff et al., 
2023) 
(Shinn et al., 2023) 

Mean = 79​
67, 82, 87, 80 
(reported by 4 
papers) 

~2e258 

 

With scaffolding 

Rate of change 

See  for more complete data, including corresponding CEG calculations. HumanEval Data

All data 

 

Date Method (pass@1 
unless specified 
otherwise) 

Performance Approx. compute 
increase from base 
0-shot 

8 GPT-4 was left as 2e25 in PaLM-2 & GPT-4 in "Extrapolating GPT-N performance" so will keep that. If 
we wanted to account for fine-tuning there is a sigmoid with GPT-4 as 2e26 in the appendix. 

https://docs.google.com/spreadsheets/d/1MwnqT4eNRhBOTg-iQ8Q1HENQe5aH9toaBlw9F7kyNBg/edit#gid=0
https://paperswithcode.com/paper/gpt-4-technical-report-1
https://arxiv.org/pdf/2303.12712.pdf
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2303.11366v4
https://www.alignmentforum.org/s/DhqQbgsdBfpekwMTu/p/75o8oja43LXGAqbAR


02/2022 A bunch; GPT-Neo, 
Codex, AlphaCode at 
pass@1,10,100 

  

Release 02/2022, 
Eval 07/2022 

code-davinci-002, 
AlphaCode-C 
Pass@1 (Chen et al, 
2022) 

55.1 ~100x 

Release 02/2022, 
Eval 07/2022 

code-davinci-002, 
AlphaCode-C 
Pass@10 (Chen et 
al, 2022) 

84.4 ~100x 

Release 03/2022, 
Eval 07/2022 

code-davinci-002 
(Chen et al, 2022) 

47.0 1x 

Release 03/2022, 
Eval 07/2022 

code-davinci-002, 
Pass@10 (Chen et 
al, 2022) 

74.9 10x 

Release 03/2022, 
Eval 07/2022 

code-davinci-002, 
Pass@100 (Chen et 
al, 2022) 

92.1 100x 

07/2022 code-davinci-002 
CodeT (Chen et al, 
2022) 

65.8 ~100x 

07/2022 code-davinci-002 
CodeT, Pass@10 
(Chen et al, 2022) 

86.6 ~100x 

Eval 03/2023 GPT-3.5 0-shot 
(OpenAI, 2023) 

48.1 1x 

Eval 03/2023,  
03/2023, 
08/2023, 
10/2023 

GPT-4 0-shot 
(OpenAI, 2023) 
(Bubeck et al., 2023) 
(Muennighoff et al., 
2023) 
(Shinn et al., 2023) 

Mean = 79​
67, 82, 87, 80 
(reported by 4 
papers) 

1x 

Eval 05/2023 GPT-4 pass@64 
(Zelikman, 2023) 

82.3 64x 

Eval 05/2023 GPT-4 pass@128 
(Zelikman, 2023) 

84.1 128x 

Method 07/2022, 
Eval 05/2023 

GPT-4 CodeT 
(Zelikman, 2023) 

81.1 32x 

https://arxiv.org/pdf/2203.07814.pdf#page=46
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://paperswithcode.com/paper/gpt-4-technical-report-1
https://paperswithcode.com/paper/gpt-4-technical-report-1
https://arxiv.org/pdf/2303.12712.pdf
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2303.11366v4
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/pdf/2212.10561v3.pdf


Method 12/2022, 
GPT-4 eval 
05/28/2023 

Parsel + CodeT + 
GPT-4 (Zelikman, 
2023) 

85.1 32x 

Method 03/2023, 
Eval 10/2023 

GPT-4 Reflexion 
(Shinn et al., 2023) 

91.0 ~30x (very roughly (8 
(calls per trial) * 2 
(prompt size 
increase) + 3) * 
num_trials). 
num_trials doesn’t 
seem to be specified, 
based on the code it 
seems to be 2 

Method 10/2022, 
Eval 10/2023 

GPT-3.5 ReACT (Yao 
et al., 2022) / (Zhou 
et al., 2023) 

56.9 ? Not sure. Will email 
LATS authors 

Method 03/2023, 
Eval 10/2023 

GPT-3.5 Reflexion  
(Shinn et al., 2023) / 
(Zhou et al., 2023) 

68.1 ~30x (very roughly (8 
(calls per trial) * 2 
(prompt size 
increase) + 3) * 
num_trials). 
num_trials doesn’t 
seem to be specified, 
based on the code it 
seems to be 2 

10/2023 GPT-4 LATS (Zhou et 
al., 2023) 

94.4  Eli copy of WIP…
estimates 80x 
 
~168x (8*(4*5+1)). 
LATS authors 
confirmed ~168x 
songs right 

10/2023 GPT-3.5 LATS (Zhou 
et al., 2023) 

86.9  Eli copy of WIP…
estimates 80x 
 
~168x (8*(4*5+1)). 
LATS authors 
confirmed ~168x 
songs right 

 

HotpotQA: Scaffolding + fine-tuning 
Note that HotpotQA perhaps benefits an unusually large amount from scaffolding due to its 
multihop nature. 
 

https://docs.google.com/document/d/1cAu5pU6vNVW7-duvYdgkVYXEARqe82IVANQuLgXE4nI/edit#heading=h.uqy23v5vzpyy
https://docs.google.com/document/d/1cAu5pU6vNVW7-duvYdgkVYXEARqe82IVANQuLgXE4nI/edit#heading=h.uqy23v5vzpyy
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/abs/2303.11366v4
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2303.11366v4
https://arxiv.org/abs/2310.04406v1
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1


Date Method (pass@1 
unless specified 
otherwise) 

Estimated CEG Approx. compute 
increase from base 
0-shot 

 GPT-3.5 CoT 
(https://arxiv.org/pdf/2
310.05915.pdf) Table 
1 

10^(5.6/14.8)=2.4x  

10/2022 GPT-3.5 ReACT 
(https://arxiv.org/pdf/2
310.05915.pdf) Table 
1 

10^(9/15)=4x ? 

03/2023 Reflexion (Zhou et 
al., 2023) Table 2 

10^(29/15)=~86x, 
~22x over ReACT 

 

10/2023 GPT-3.5 LATS (Zhou 
et al., 2023) Table 2 

10^(39/15)=~400x 
~5x over Reflexion 

 

10/2023 GPT-3.5 LATS + 
ReACT (Zhou et al., 
2023) Table 2 

10^(49/15)=~1848x 
Approx 
 
Would have expected 
*4*400=1600x with 
full complements. 
 
So ReACT somehow 
slightly more on top 
of LATS than it added 
by itself, if we are 
interpreting correctly 

80x 
 
~168x (8*(4*5+1)) 

10/2023 GPT-3.5 FireAct 
(https://arxiv.org/pdf/2
310.05915.pdf) 

On top of react:  
10^(10/15)*4=19x 
total, ~5x relative to 
ReACT 

Same at inference 
time as ReACT? Not 
sure otherwise 

 

Fine-tuning 

OctoPack (HumanEval) 

OctoPack: Instruction Tuning Code Large Language Models 
 

 [Data] OctoPack: Instruction Tuning Code LLMs
We looked at data from the OctoPack paper and were able to extract a few CEG data points, as 
in the above sheet. 

https://docs.google.com/spreadsheets/d/1mfl9V_kCxNx_OC6bYiq5AzVYq9z7HICpNLyGD4wN63s/edit?usp=sharing
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/abs/2308.07124v1


MetaMATH (MATH and GSM8K) 

MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models 
 

 has data and CEG calcluations [Data] MetaMATH

Majority voting 
Table 2: 
 
LAMDA-173B = 3.55e23 compute 
PALM-540B = 2.53e24 compute  
7x compute 
ASDiv -> 7^(9/25) = 2 
SVAMP -> 7^(14.4/39.9)=2 
GS8MK -> 7^(10.6/39.4)=1.7 
ARC-e -> 7^(4/20)=1.48 
ARC-c -> 7^(4.7/30.1)=1.36 
 
Extracting stuff from Table 5 would need to be too nice but would need to look into scaling laws 
for those tasks. 
 

https://docs.google.com/spreadsheets/d/1nPRDTvu0AMaPz5yWQybw_68oCdYvSlCRBCuxTq2TNOM/edit?usp=sharing
https://arxiv.org/abs/2309.12284
https://arxiv.org/pdf/2203.11171.pdf

	Forecasting future gains due to post-training enhancements 
	Summary 
	Methodology 
	Definitions 
	CEG calculation 
	Data collection 
	CEG aggregation 
	Clarifying total CEG 
	The performance trend we care about 
	What total CEG measures 
	Other things that would be valuable to measure 
	Issues with our measurement of total CEG 


	CEG estimates 
	CEG aggregation 
	Methodology 
	Setting the composability constant 
	CEG over time 
	Sensitivity analysis 
	Qualitative considerations 

	Limitations and future work 
	Limitations 
	CEG as a measure 
	Uninformed parameter estimates 
	Average task 
	Unspecified base model compute 
	Historical trend 
	Further limitations 

	Future work 

	Appendix 
	Plots of CEG values 
	Explanations for CEG estimates 
	HumanEval 
	Training compute increase 
	With scaffolding 
	Rate of change 
	All data 

	HotpotQA: Scaffolding + fine-tuning 
	Fine-tuning 
	OctoPack (HumanEval) 
	MetaMATH (MATH and GSM8K) 

	Majority voting 




