
Forecasting future gains due to
post-training enhancements
Eli Lifland, Joel Becker, and Simeon Campos

This work has been done in the context of SaferAI’s work on risk assessment. Equal
contribution by Eli and Joel.

Disclaimer: this writeup is context for upcoming experiments, not complete work. As such it
contains a lot of (not always well-justified) guess-work and untidy conceptual choices. We are
publishing now despite this to get feedback.

If you are interested in this work — perhaps as a future collaborator or funder, or because this
work could provide helpful input into e.g. risk assessments or RSPs — please get in touch with
us at joel@qallys.com and/or simeon@safer-ai.org.

Summary
1.​ A recent report documented how the performance of AI models can be improved after

training, via post-training enhancements (PTEs) such as external tools, scaffolding, and
fine-tuning. The gain from a PTE is measured in compute-equivalent gains (CEG): the
multiplier on training compute required to achieve equivalent performance to a model
combined with a PTE.

2.​ We are interested in understanding the contribution that PTEs make to AI system
capabilities over time.

a.​ This question in turn is motivated by SaferAI’s work on quantitative risk
assessments of frontier models. In particular, any risk assessment of
open-sourcing models or of having closed-source models stolen or leaked should
take into account PTEs. A system’s capabilities will increase over time as PTEs
are added to the system built on top of a given base model.

3.​ We extend a recent analysis of PTEs in order to understand the trend in CEG over time,
arriving at very rough estimates for the rate of improvement of PTEs. Our primary
takeaways are that current data is insufficient and experiments are needed to
better forecast the effects of PTEs, as described below.

4.​ There are serious limitations in our preliminary analysis, including: problems with the
CEG metric, many uninformed parameter estimates, and reliance on an ill-defined
“average task”.

5.​ High-priority future work includes running experiments to get more evidence on
important uncertainties for our forecasts of capability gains due to PTEs. In particular, we
think it will be important to understand how well different PTEs combine, as well as to
directly study performance on benchmarks relevant to dangerous capabilities rather than
relying on the CEG and average task abstractions.

mailto:joel@qallys.com
mailto:simeon@safer-ai.org
https://arxiv.org/pdf/2312.07413.pdf
https://arxiv.org/pdf/2312.07413.pdf

In this write-up, we will:

1.​ Outline our methodology. (More.)
2.​ Present CEG estimates for various PTEs. (More.)
3.​ Aggregate total CEG, using subjective estimates of ‘composability.’ (More.)
4.​ Note limitations of our analysis and important future work. (More.)

Methodology

Definitions
Post-training enhancements (PTEs) are methods to improve upon a model’s performance
without training a new model. For the purpose of this analysis, and consistent with prior
literature, we will operationally define a PTE as requiring a one-time cost of <=10% of training
the original model and <=100x of the inference cost.1 Examples include fine-tuning and
scaffolding.

Compute-equivalent gain (CEG) of a PTE is the training compute that a base model would
have required to improve benchmark performance by as much as the PTE, divided by the
compute used to train the base model.

The average task is the hypothetical mean task that is an important input for forecasting risk
levels.

Total CEG is the CEG due to all PTEs2 available at some point in time, relative to some base
model. See more details below.

CEG calculation
Davidson et al. uses the difference in compute between a lower-compute system with a PTE
and a higher-compute system without the PTE (that has weakly greater performance than the
lower-compute system with the PTE) to calculate CEG. (See their Figure 1 below; “the
post-training enhancement improves performance by the same amount as increasing the
training compute by 5x; so the CEG is 5.”)

2 Not literally all PTEs will be compatible (e.g. because some are substitutes, and because stacking them
would go over the compute constraints). We mean the best combination of ones that is feasible within the
compute constraints.

1 These numbers are very arbitrary, open to arguments for adjusting. For the inference ones it really
depends on the use case / threat model so it is hard to settle on a single number.

https://arxiv.org/pdf/2312.07413.pdf

Note that this is a soft lower bound for this particular evaluation; if a system with slightly less
compute than the higher-compute system would still have achieved greater performance than
the lower-compute system with the PTE, then the actual CEG value would be higher than that
estimated by this method3.

We use the above method for some of our new CEG values. For the HumanEval benchmark,
we estimate a sigmoid curve, using this curve to estimate the compute required to reach
different levels of performance. For other CEG values, we use a local approximation (log-linear)
to what we imagine is an underlying sigmoid curve of benchmark performance in log compute.

Data collection
We compile data on CEG for various PTEs studied in public research papers. We attempt to
adjust these CEG values in order to estimate values for an ‘average task,’4 rather than on the
particular benchmarks tested in research papers. The adjustment was done in an ad-hoc rather
than systematic manner due to the lack of data for most PTEs.

4 The way we thought about the ad-hoc adjustments was: we split the benchmarks from which CEG
values were derived into several clusters of categories: Math, coding, QA, Common-sense reasoning
(CSR), facts, classification, aggregations of many benchmarks, and a few others. QA, CSR, Math,
aggregations, and coding seem most important to us of the things we’re measuring in terms of datasets of
interest for forecasting risk, though the others can be proxies for the ones we care about. Let’s very
naively say that a CEG that helps for only one of these counts for ⅕ of it in the 'average', 2 -> ⅖, etc. See
below for visuals on how PTE varies by task type.

3 However, note that ,without further experiments, this method may naively overestimate results as papers
showcase tasks and settings where their method performs best. See the average task limitation section
for more.

CEG aggregation
Within each category of PTEs, we specify highly subjective estimates of ‘composability’ of
different PTEs. We use these to calculate the aggregate CEG from a given category of PTEs
when only some PTEs within the category are activated. To calculate aggregate CEG across all
PTE categories, we use an exponential weighting formula with another arbitrary composability
constant.

Using our formula for aggregating CEG across PTE categories, and our estimates for aggregate
CEG within a PTE category when only some PTEs are activated, we can estimate aggregate
CEG for different combinations of PTEs. Then, using the release date of different PTEs, we can
estimate aggregate CEG at different points in time. We adjust this historical trend in aggregate
CEG based on various qualitative considerations.

Clarifying total CEG

Figure 1: How performance changes with progress in both models and PTEs

The performance trend we care about
Since our motivation in this work is to understand how PTEs applied over time will increase
performance of open-sourced or leaked AI systems, we are concerned with the performance
trend given by combining a model released in year X with PTEs developed through years after
X. This is the blue trend in Figure 1 going from top to bottom.

What total CEG measures
Ultimately, we care about the dangerous capabilities implied by performance levels in each cell.
But since extrapolating performance for dangerous capabilities is difficult, CEG aims to anchor
performance improvements against how much performance would increase with only scaling up
compute. The idea is that if the improvement from (Model X, PTEs X) to (Model X, PTEs X+Y) is
the same as (Model X, PTEs X) vs. (Model X + N OOMs compute, PTEs X), then Y PTEs have
a total CEG of N OOMs.

This compares the blue top-to-bottom trend to a trend similar to the yellow left-to-right
trend above (except without algorithmic improvements in training included in the yellow
trend).

Note that we think there are serious issues with total CEG as a measure; see below.

Other things that would be valuable to measure
1.​ Actual progress (red trend) as a reference point for the blue trend: Arguably,

comparing against actual progress might give better intuitions regarding performance.
There might also be a case for using the yellow trend as a reference.

2.​ Actual progress (red trend) compared to the yellow trend (progress holding PTEs
fixed): This would be an important metric for understanding algorithmic progress of
PTEs, in addition to understanding the blue trend.

Issues with our measurement of total CEG
There are many gaps between total CEG and what we’ve been able to measure/forecast thus
far. Experiments will be valuable to gain insight into each of the all of the yellow/red/blue trends
as well as lessening the need for a reference trend. See also limitations and future work below.

CEG estimates
Below is a table of all the post-training enhancements considered in our analysis. We have
heavily drawn upon Davidson et al., for both which PTEs to look into and how they should be
categorized. We add some more PTEs, adjust some CEG values, break CEG values down by
dataset, order by date, and include subjective estimates of 'composability' of various PTEs in
order to produce a running total over time of the total CEG for each type of PTE.5

Our full list of CEG estimates categorized by benchmark and task type are in

. Reasoning for the CEG values by dataset are mostly in Davidson et CEGs across datasets
al.. Otherwise they are linked from the table cells. Some are unfortunately not documented well

5 For now we are just hackily averaging CEG values together in a hacky sort of logarithmic average, like
biasing toward lower ones. Should think about if this is a principled approach, really should at least apply
it consistently. Also in general all the intuitive steps in this table should be reduced as much as possible.
TODO.

https://docs.google.com/spreadsheets/d/1Y-FcO-ggslJym50x1X8YatnzfN2RGZlr2xNAWRMSiEk/edit#gid=0
https://arxiv.org/pdf/2312.07413.pdf
https://arxiv.org/pdf/2312.07413.pdf
https://arxiv.org/pdf/2312.07413.pdf

yet, especially in cases where we modified or added CEG values for PTEs considered in
Davidson et al..

You can find plots comparing these CEG values across PTEs, task types, and benchmarks in
the Plots of CEG values appendix section.

Date Technique Explanation ~CEG reasoning: very rough
estimates of CEG for
'average dataset', and
composability with prev.
PTEs

~CEG
running
total for
type

Compute
multipliers
(1-time cost,
inference
cost)

Tools

12/2021 WebGPT
Tools

Fine-tune a
model to use a
web browser to
answer factual
questions and
provide
citations.

1 *8 = 8

CEG: 8

ELI5: >15
TruthfulQA: >220

Seems much more helpful for
QA than other types of tasks,
but not only helpful for QA. So
let’s say it’s 20 CEG for QA ->
20*(⅖) = 8 for avg dataset.

8 (~0.01%, 1)

12/2021 RETRO
Tools

The model
retrieves text
that is similar to
the text it is
predicting, and
uses it to inform
its predictions.

8 * 2^.2 = 9

Composability:6 .2

V. similar to WebGPT so don’t
expect much composition

CEG: 2

Varies from 0 to 43 on
next-word prediction tasks, but
the 43 is on text with very
similar text in the training
corpus and the others are
substantially lower.

9 (<3.3%, <1.1)

02/2023 Toolformer​
Tools

Fine-tune a
model to use a
calculator, a

9 * 7^.3 = 16

Composability: .3

16 (~0.01%, 1)

6 Composability is hackily defined as the exponent for the lesser number in the multiplication

https://arxiv.org/pdf/2312.07413.pdf
https://arxiv.org/abs/2112.09332
https://arxiv.org/pdf/2112.04426.pdf
https://arxiv.org/pdf/2302.04761.pdf

Q&A system, a
search engine, a
translation
system, and a
calendar.

Overlap with WebGPT, with
some added tools.

CEG: ~7

>20 in benchmarks for factual
knowledge, math, and temporal
questions. CEG = 7 for QA, ~1
for translation

Prompting enhancements

05/2020 Few-shot
prompting
Prompting
enhanceme
nts

InstructGP
T paper
also used
for data
points

Provide a few
solved
examples to the
model.

1 * 26 = 26

CEG: 26

~26 in SuperGLUE, an
aggregative benchmark. Highly
varying CEG values on other
tasks: 2 times >200 and 6
times 1-2.

26 (0, >5 and <50
in three
examples)

01/2022 Chain of
thought
Prompting
enhanceme
nts

Lanham et
al. also
used for
later data
points.

Encourage a
model to make
its reasoning
chain explicit.

3^.5 * 26 = 45

Composability: .5

We think it does combine with
few-shot some but doesn’t
stack super well.

CEG: ~3

Got >9 on many benchmarks in
the original paper, but more like
~1.5 on several tasks in a more
recent paper using less
undertrained models. It’s
debatable which of these is
more relevant for our purposes,
will take in between.

45 (0, 10)

Scaffolding enhancements. CEG calcs for HumanEval and HotpotQA

07/2022 CodeT Have a model
generate test

1 * 2 = 2

2

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2201.11903.pdf
https://arxiv.org/pdf/2201.11903.pdf
https://www-files.anthropic.com/production/files/measuring-faithfulness-in-chain-of-thought-reasoning.pdf
https://www-files.anthropic.com/production/files/measuring-faithfulness-in-chain-of-thought-reasoning.pdf
https://www-files.anthropic.com/production/files/measuring-faithfulness-in-chain-of-thought-reasoning.pdf
https://www-files.anthropic.com/production/files/measuring-faithfulness-in-chain-of-thought-reasoning.pdf
https://arxiv.org/pdf/2207.10397.pdf

Scaffolding
enhanceme
nts

cases for code
samples
generated,
choosing the
best solution.

CEG: ~4 on HumanEval
(coding). Let’s say 2 for an
average task.

10/2022 ReACT
Scaffolding
enhanceme
nts

Have a model
generate
interleaving
reasoning traces
and
task-specific
actions.

2^.7 * 2 = 3

Composability: .7

Think it adds a decent amount
on top of CodeT

CEG: ~2

~2x HumanEval, ~4x
HotpotQA. Choose lower due
to average task.

3

12/2022 Parsel
Scaffolding
enhanceme
nts

The model
decomposes a
complex task
into natural
language
function
descriptions,
generates
modular
implementations
for each, and
searches over
combinations of
these
implementations
by testing
against
constraints.

3 * 2 = 6

Composability:

Builds on top of CodeT, so
should just multiply by 4/2=2

CEG: ~4

~7 on HumanEval including
CodeT, ? on APPS. Then
adjust down some to 4 as
somewhat code-specific.

6 (0, ~32)

03/2023 Reflexion
Scaffolding
enhanceme
nts

A model makes
use of reflection,
memory, and
evaluation to
iteratively
improve its
output

6 * 5^.1

Composability: ~.1
Don’t think it combines that
well, Very similar to Parsel.

CEG: ~10

7 (0, ~32)

https://arxiv.org/pdf/2210.03629.pdf
https://arxiv.org/abs/2212.10561v3
https://arxiv.org/pdf/2303.11366.pdf

HumanEval: ~5
HotpotQA: ~86
So let’s say ~5, taking lower for
average task.

10/2023 LATS
Scaffolding
enhanceme
nts

A model assigns
sub-tasks to
copies of itself,
reads and writes
to memory, has
a chance to
learn from their
mistakes, etc.

7^.4 * 20

Composability: 0.4

We thought it wouldn’t combine
well in general but it apparently
does with ReACT, at least on
one dataset.

CEG: ~20

CEG with ReACT on one
dataset: ~80?

Compromising between
HumanEval, HotpotQA. Taking
lower again for average task.

~20 CEG on HumanEval,
~400x on HotpotQA by itself
vs. ~1800x with ReACT

44 (0, ~160 (for
LATS at
HumanEval))

10/2023 FireAct
Fine-tuning
+
Scaffolding

 Will leave the same as above
for now since it requires a
bigger model, and also is really
a data point on how CEG
aggregates.

~5 CEG on HotpotQA on top of
ReACT

44

Solution choice enhancements

10/2021 Verification
Solution
choice
enhanceme
nts

A verifier rates
100 candidate
solutions and
submits the one
with the highest
rating.

CEG: ~20

>26 on GS8MK benchmark,
but adjusting down a little bit
because it seems somewhat
dataset-specific

20 (~0.05%, 200)

https://arxiv.org/abs/2310.04406v1
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2110.14168.pdf

02/2022 AlphaCode
sample
selection
Solution
choice
enhanceme
nts

Six techniques
for choosing
which coding
solutions to
submit out of
1000s of
candidates.

20 * 3^.1

Composability: 0.1

Doesn’t seem that composable

CEG: ~3

~6 on Codeforces problems,
adjust down some since not
that transferrable

22 (~0.45%, <2)

03/2022 Self-consist
ency /
majority
voting
Solution
choice
enhanceme
nts

Sample multiple
times then take
the answer that
is most common

1.5^.9 * 22

Composability: .9

It is pretty orthogonal to the
other enhancements

CEG: ~1.5

1.5-2 on various math/CSR
benchmarks

CEG calcs here.

32

05/2023 Verification
with
process-ba
sed
feedback
Solution
choice
enhanceme
nts

Improves on a
“outcomes
based” verifier
baseline by
fine-tuning a
verifier with
“process based”
feedback.

3^.1 * 1.5^.9 * 20 * 5

Composability: 0.1
with AlphaCode /
self-consistency, .9 with
self-consistency

CEG: ~5

8 for MATH, on top of
verification. Adjusting down to
5 for the same reason as
verification above.

161 (~0.001%, ~1)

Data enhancements

03/2022 Instruct
GPT
Data
enhanceme
nts

Finetune a
model on
examples of
humans
following
instructions;
finetune against
a reward model

CEG: ~30

>3900 at instruction following;
>130 on some other NLP
benchmarks;
no gain on many NLP
benchmarks.

30 (~0.3%, 1)

https://arxiv.org/pdf/2203.07814.pdf
https://arxiv.org/pdf/2203.07814.pdf
https://arxiv.org/pdf/2203.07814.pdf
https://arxiv.org/pdf/2203.11171.pdf
https://arxiv.org/pdf/2203.11171.pdf
https://arxiv.org/pdf/2203.11171.pdf
https://arxiv.org/pdf/2203.11171.pdf
https://cdn.openai.com/improving-mathematical-reasoning-with-process-supervision/Lets_Verify_Step_by_Step.pdf
https://cdn.openai.com/improving-mathematical-reasoning-with-process-supervision/Lets_Verify_Step_by_Step.pdf
https://cdn.openai.com/improving-mathematical-reasoning-with-process-supervision/Lets_Verify_Step_by_Step.pdf
https://cdn.openai.com/improving-mathematical-reasoning-with-process-supervision/Lets_Verify_Step_by_Step.pdf
https://cdn.openai.com/improving-mathematical-reasoning-with-process-supervision/Lets_Verify_Step_by_Step.pdf
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155

trained to
predict human
preferences.

Chatbotting is the thing it was
optimized for. It also gains a
bunch on summarization and
TruthfulQA, but little on
commonsense reasoning.

Overall it seems roughly fair to
say average of 30x

07/22 Generating
your own
fine-tuning
data
Data
enhanceme
nts

Models write
coding puzzles
and solutions;
solutions are
automatically
checked;
fine-tune on
correct solutions

Composability: 0

Some of the things above are
~strictly better if you put in the
effort and compute, this is a
way to do it cheaply. We’re not
really capturing that in our
framework well right now.

CEG: ~5

Requires automatic checking
so reducing some, but could
perhaps be done okay with
verifiers.

>22 in a coding benchmark,
compared to a baseline with no
finetuning for coding

134 (~0.04% , 1)

06/2023 Learning
from a
teacher
model
Data
enhanceme
nts

Fine-tune a
small model on
detailed
explanations
produced by a
larger model

Composability: 0

Not as relevant since it can't be
used without a substantially
bigger model.

CEG: ~10

~10 on a range of benchmarks

134 (~2.5%, 1)

08/2023 OctoPack
Data
enhanceme
nts

Fine-tune
models on a
large number of
filtered git
commits and
multi-turn
dialogues
containing
natural
language and
some code.

134 * 10^.1

Composability: 0.1

This doesn’t really stack on top
of SFT, we think. So we will set
composability low

CEG: ~10

Varied between ~4x and ~80x

169 (?, 1)

https://arxiv.org/pdf/2207.14502.pdf
https://arxiv.org/pdf/2207.14502.pdf
https://arxiv.org/pdf/2207.14502.pdf
https://arxiv.org/pdf/2207.14502.pdf
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2308.07124

for models on HumanEval. It is
fairly code-specific so will
adjust down but could be
applicable to some other stuff.
CEG calcs here.

CEG aggregation

Methodology
We gathered the data from the overall table above into , which tracks the CEG over time
aggregated CEG values for each category at each timestep.

To compose the aggregated CEG values for each category into a total CEG value at each
timestep:

1.​ For each point in time, the aggregated CEG for each category (ad-hoc, using numbers
from the above table) are sorted from highest to lowest as C_0, C_1, … C_4

2.​ Define an arbitrary composability constant M=.6
3.​ The overall CEG is (C_0 ^ (M^0)) * (C_1 ^ (M^1)) … * (C_4 ^ (M^4))

The motivation for this is that the overall CEG should always be at least as high as the highest
category CEG, but there should of course be some diminishing returns for the rest.

Setting the composability constant
These points apply not only to the composability constant for across PTE groups, but also the
composability values within PTE groups as in the overall table above.

1.​ Points for lower composability
a.​ Even if some methods can theoretically be combined it might be too expensive to

do so, at least for actors without access to huge amounts of compute. In practice,
there aren’t that many papers reporting results that combine many PTEs together
in a way such that the CEG is easily measurable.

b.​ CEG values appearing in published literature are selected for usefulness on the
tasks/datasets they are tested on, and may not be as useful or even be able to
be combined for use on other datasets (in some cases, this is very obvious; in
other cases, less clear).

2.​ Points for higher composability
a.​ We were quite pessimistic about the composability of LATS/ReACT and thought

that LATS had basically just usurped ReACT, but in fact they seem to compose
very well on HotpotQA i.e. it would have a constant of close to 1. This is just one
data point but the first sample gives the most information.

https://docs.google.com/spreadsheets/d/13XrINepNR-p_ybK6nItbZ0l1d45u3j6OuKKmvrErcKE/edit#gid=0

We chose an estimate of .6 by (a) subjectively weighing these considerations (b) trying a few
CEG combination spot checks and picking the median of what seems roughly right and (c)
incorporating intuitions gained from the specific composability estimates that we gave for within
categories above.

CEG over time
Using the above formula and composability constant, we estimate total CEG at different points
in time.

Sensitivity analysis
The line of best fit above has a slope of 1 OOMs of CEG per year. For various reasons —
ambiguity about the right starting point, the disconnect between information we can find in the
literature and the objects we want to measure, the trend above not obviously being log-linear,
and the hacky choices made in the table above — we do not want readers to take this number
too seriously.

Here are slopes for choices of composability constant that seem defensible:

Composability
constant

.3 .45 .6 .8

Slope (OOMs of
CEG/year)

0.6 0.8 1 1.6

Qualitative considerations
We would ideally want to estimate the rate of improvement in CEG with PTE compute held
constant, but this is challenging without experimental data. We think that differences in PTE
compute probably have a large effect. We are currently not adjusting for this in our quantitative
methodology, which biases our estimates upwards for 2 reasons:

1.​ Compute usage on PTEs is generally going up over time, so the rate that CEG is going
up is an overestimate of how much it would go up holding compute fixed.

a.​ We think this is at least an issue with the scaffolding PTEs, not as sure for the
others.

2.​ Our composability estimates lead to significant overestimation of the CEG gain that
would happen with the compute level held constant. (If compute growth was paused,
there would be further diminishing returns to new PTEs.) This is a huge deal in some
cases, but it is a little double counting with (a) in 'Points for lower composability' above.

Still, there’s value in a new method that is able to efficiently turn more compute into performance
than was possible before. (Perhaps part of the reason more compute wasn’t poured into the
previous method was that it would be inefficient for performance.) We should keep this in mind
in the absence of estimates with compute held constant.

We are probably missing out on many PTE improvements because their CEG can’t be
quantified and/or we didn’t find them. While there are likely diminishing returns to combining
more PTEs, this effect could still be very significant.

We expect the above considerations to roughly cancel out.

Another important factor, especially over a longer time period, is diminishing returns. This is not
yet easy to observe, but would likely happen over time holding the base model for the PTEs
constant. We should expect enhancements that help more on bigger models as opposed to
smaller models being explored more over time, which hurts out ability to observe diminishing
returns on a single model without more data and experiments.

At the extreme of diminishing returns, some important tasks may have effective 'maximum'
levels of performance you can squeeze out with PTEs, capping the CEG. As an intuition pump,
it would be practically impossible to find post-training enhancements that would make GPT-2 do
as well as GPT-4 at competitive programming, capping its log10(CEG) at less than 4. We would
expect similar effects on many tasks, though it would depend a lot on the capabilities of the
base model and how effective scaling training compute is on the task.

Limitations and future work

Limitations

CEG as a measure
Over the course of our project, we realized that CEG has serious flaws.

Datasets with high CEG may just indicate that adding compute doesn’t help much with respect
to the measured skill, rather than indicating something about the 'absolute' level of gains from
PTE relative to other datasets. Datasets with inverse scaling could lead to infinite CEG.

Some jumps in model performance enable qualitatively new capabilities that would be very hard
to reach with a less capable base model, and vice versa for some post-training enhancements.
This limits the usefulness of a compute-centered approach. It would probably be very hard to
get GPT-6 with no internet access provided to do better than GPT-4 with internet access
provided tasks requiring taking actions on the internet.

Relatedly, CEG could be extremely large in domains for which scaling is less helpful. This may
reflect real phenomena: perhaps auto-regressive LLMs at current scale can have capabilities
they inherently lack — mathematics, advanced domain expertise, long-horizon planning —
greatly improved by PTEs, whereas capabilities that these models are already strong at —
translation, code, summarization, classification, fact-remembering — can only be somewhat
improved by PTEs. It is unclear how to best incorporate this consideration into forecasts, other
than to potentially justify a long right tail.

Additionally, CEG becomes more problematic as the time horizon studied gets longer. When
moving beyond local adjustments, it starts to be underdefined in a similar manner to the issues
with effective compute.7

These limitations make it problematic in that a very high CEG is a bit of evidence for high
performance but also substantial evidence for scaling slowing down (broadly, or in a domain)
and/or (if you define CEG relatively strictly) just time passing moving away from the regime of
local adjustments.

7 Does CEG mean you literally just add GPUs and no other adjustments, even across OOMs of compute?
If so, the CEG will probably get very high quickly. If the answer is you can’t have new “fundamental
algorithms” but you can make other adjustments to the training process (as with the TAI training
requirements are defined in bio-anchors), how is the classification of fundamental algorithms defined, and
how do you account for this in your CEG metrics? [Eli is eager for comments on this footnote if anyone
might disagree about the severity of these issues]

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.5butqad6sph5
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.5butqad6sph5

Uninformed parameter estimates
We make many estimates which are quick educated guesses rather than grounded in empirical
estimates or strong qualitative understanding. We hope to make progress on this via running
experiments.

Average task
The ‘average task’ is not well-defined. Further, CEG values may vary greatly across datasets; if
researchers are more likely to publish results for benchmarks on which a PTE does unusually
well, our methods might naively overestimate CEG on typical tasks. (E.g. Minerva on MATH has
an especially large CEG value, which is unrepresentative of the CEG value on other
benchmarks.) For this reason, we ultimately think that for specific domains it’s best to do as
much analysis on specific benchmarks on that domain as possible.

Unspecified base model compute
The degree to which a given PTE boosts performance might depend on the pre-training
compute of the underlying base model. For example, OpenAI has said that GPT-4 gets less
value from fine-tuning than GPT-3.5.

Historical trend
The historical trend, even if it were cleanly estimated, may not be informative as to the future
CEG. Current PTEs or domains might not be representative of future PTEs or domains.

Further limitations
See also the limitations section from Davidson et al.

Future work
The obvious and most informative next step is running experiments. This would provide
evidence for how PTEs combine, which is crucial for our trend estimation and forecasting, and
surprisingly absent from published research literature. Also, our experiments could keep base
models fixed, which would aid comparison and help us forecast the right estimand.

Resources (e.g. code) for many PTEs are freely available online; running these experiments
would be as simple as looping a benchmark performance calculation over benchmarks and
combinations of PTEs. (Although note that this conceptually simple exercise might throw up
significant practical difficulties.)

In experiments, we could more easily drop the CEG abstraction, measuring and forecasting
trends in performance directly.

While there is some value in CEG especially in very local changes, we tentatively recommend
that future work focus mostly on the implications of raw performance trends (especially if making

https://arxiv.org/abs/2312.07413
https://www.anthropic.com/index/evaluating-ai-systems
https://www.anthropic.com/index/evaluating-ai-systems

claims about performance changes over long time horizons) as CEG can be very hard to
interpret and potentially misleading.

Appendix

Plots of CEG values
Broken down by PTE, then task type, then benchmark. The CEG values across task types and
benchmarks are filtered for task types that have at least 3 recorded results.

Explanations for CEG estimates

HumanEval
See HumanEval Benchmark (Code Generation) for most of the data we gather.

Training compute increase

We fit a baseline sigmoid as a function of training compute as done in Extrapolating GPT-N
performance to more accurately estimate CEG values on HumanEval. See code for fitting the
sigmoid here, and the data below.

Sigmoid params:
 k = 1.164308904678886
 x0 = 3.5996951849783962

Compute estimates are from Parameter, Compute and Data Trends in Machine Learning

https://docs.google.com/spreadsheets/d/1AAIebjNsnJj_uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/edit#gid=0
https://paperswithcode.com/sota/code-generation-on-humaneval
https://www.alignmentforum.org/s/DhqQbgsdBfpekwMTu
https://www.alignmentforum.org/s/DhqQbgsdBfpekwMTu
https://github.com/uvafan/SaferAI_risk_assessment/blob/main/sigmoid_humaneval.py

Date Model Performance
(pass@1)

Approx. compute

Eval 02/2022 GPT-Neo-2.7B 6.4 6e21

02/2023 Llama-7B 10.5 4.1e22

Eval 02/2022 GPT-J-6B 11.6 1.5e22

02/2023 Llama-13B 15.8 7.6e22

02/2023 Llama-33B 21.7 2.7e23

02/2023 Llama-65B 23.7 5.5e23

04/2022 PaLM-540B 26.2 2.53e24

07/2023 LLaMA 2 29.9 8.13e23

06/2023 Inflection-1 35.4 ~1e24 (just know as
much or less than
PaLM-540B)

06/2023 GPT-3.5 48.1 ~2e24

Eval 03/2023,
03/2023,
08/2023,
10/2023

GPT-4 0-shot
(OpenAI, 2023)
(Bubeck et al., 2023)
(Muennighoff et al.,
2023)
(Shinn et al., 2023)

Mean = 79​
67, 82, 87, 80
(reported by 4
papers)

~2e258

With scaffolding

Rate of change

See for more complete data, including corresponding CEG calculations. HumanEval Data

All data

Date Method (pass@1
unless specified
otherwise)

Performance Approx. compute
increase from base
0-shot

8 GPT-4 was left as 2e25 in PaLM-2 & GPT-4 in "Extrapolating GPT-N performance" so will keep that. If
we wanted to account for fine-tuning there is a sigmoid with GPT-4 as 2e26 in the appendix.

https://docs.google.com/spreadsheets/d/1MwnqT4eNRhBOTg-iQ8Q1HENQe5aH9toaBlw9F7kyNBg/edit#gid=0
https://paperswithcode.com/paper/gpt-4-technical-report-1
https://arxiv.org/pdf/2303.12712.pdf
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2303.11366v4
https://www.alignmentforum.org/s/DhqQbgsdBfpekwMTu/p/75o8oja43LXGAqbAR

02/2022 A bunch; GPT-Neo,
Codex, AlphaCode at
pass@1,10,100

Release 02/2022,
Eval 07/2022

code-davinci-002,
AlphaCode-C
Pass@1 (Chen et al,
2022)

55.1 ~100x

Release 02/2022,
Eval 07/2022

code-davinci-002,
AlphaCode-C
Pass@10 (Chen et
al, 2022)

84.4 ~100x

Release 03/2022,
Eval 07/2022

code-davinci-002
(Chen et al, 2022)

47.0 1x

Release 03/2022,
Eval 07/2022

code-davinci-002,
Pass@10 (Chen et
al, 2022)

74.9 10x

Release 03/2022,
Eval 07/2022

code-davinci-002,
Pass@100 (Chen et
al, 2022)

92.1 100x

07/2022 code-davinci-002
CodeT (Chen et al,
2022)

65.8 ~100x

07/2022 code-davinci-002
CodeT, Pass@10
(Chen et al, 2022)

86.6 ~100x

Eval 03/2023 GPT-3.5 0-shot
(OpenAI, 2023)

48.1 1x

Eval 03/2023,
03/2023,
08/2023,
10/2023

GPT-4 0-shot
(OpenAI, 2023)
(Bubeck et al., 2023)
(Muennighoff et al.,
2023)
(Shinn et al., 2023)

Mean = 79​
67, 82, 87, 80
(reported by 4
papers)

1x

Eval 05/2023 GPT-4 pass@64
(Zelikman, 2023)

82.3 64x

Eval 05/2023 GPT-4 pass@128
(Zelikman, 2023)

84.1 128x

Method 07/2022,
Eval 05/2023

GPT-4 CodeT
(Zelikman, 2023)

81.1 32x

https://arxiv.org/pdf/2203.07814.pdf#page=46
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://arxiv.org/pdf/2207.10397v2.pdf
https://paperswithcode.com/paper/gpt-4-technical-report-1
https://paperswithcode.com/paper/gpt-4-technical-report-1
https://arxiv.org/pdf/2303.12712.pdf
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2308.07124v1
https://arxiv.org/abs/2303.11366v4
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/pdf/2212.10561v3.pdf

Method 12/2022,
GPT-4 eval
05/28/2023

Parsel + CodeT +
GPT-4 (Zelikman,
2023)

85.1 32x

Method 03/2023,
Eval 10/2023

GPT-4 Reflexion
(Shinn et al., 2023)

91.0 ~30x (very roughly (8
(calls per trial) * 2
(prompt size
increase) + 3) *
num_trials).
num_trials doesn’t
seem to be specified,
based on the code it
seems to be 2

Method 10/2022,
Eval 10/2023

GPT-3.5 ReACT (Yao
et al., 2022) / (Zhou
et al., 2023)

56.9 ? Not sure. Will email
LATS authors

Method 03/2023,
Eval 10/2023

GPT-3.5 Reflexion
(Shinn et al., 2023) /
(Zhou et al., 2023)

68.1 ~30x (very roughly (8
(calls per trial) * 2
(prompt size
increase) + 3) *
num_trials).
num_trials doesn’t
seem to be specified,
based on the code it
seems to be 2

10/2023 GPT-4 LATS (Zhou et
al., 2023)

94.4 Eli copy of WIP…
estimates 80x

~168x (8*(4*5+1)).
LATS authors
confirmed ~168x
songs right

10/2023 GPT-3.5 LATS (Zhou
et al., 2023)

86.9 Eli copy of WIP…
estimates 80x

~168x (8*(4*5+1)).
LATS authors
confirmed ~168x
songs right

HotpotQA: Scaffolding + fine-tuning
Note that HotpotQA perhaps benefits an unusually large amount from scaffolding due to its
multihop nature.

https://docs.google.com/document/d/1cAu5pU6vNVW7-duvYdgkVYXEARqe82IVANQuLgXE4nI/edit#heading=h.uqy23v5vzpyy
https://docs.google.com/document/d/1cAu5pU6vNVW7-duvYdgkVYXEARqe82IVANQuLgXE4nI/edit#heading=h.uqy23v5vzpyy
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/pdf/2212.10561v3.pdf
https://arxiv.org/abs/2303.11366v4
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2303.11366v4
https://arxiv.org/abs/2310.04406v1
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://github.com/noahshinn024/reflexion/blob/main/programming_runs/run_reflexion.sh
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1

Date Method (pass@1
unless specified
otherwise)

Estimated CEG Approx. compute
increase from base
0-shot

 GPT-3.5 CoT
(https://arxiv.org/pdf/2
310.05915.pdf) Table
1

10^(5.6/14.8)=2.4x

10/2022 GPT-3.5 ReACT
(https://arxiv.org/pdf/2
310.05915.pdf) Table
1

10^(9/15)=4x ?

03/2023 Reflexion (Zhou et
al., 2023) Table 2

10^(29/15)=~86x,
~22x over ReACT

10/2023 GPT-3.5 LATS (Zhou
et al., 2023) Table 2

10^(39/15)=~400x
~5x over Reflexion

10/2023 GPT-3.5 LATS +
ReACT (Zhou et al.,
2023) Table 2

10^(49/15)=~1848x
Approx

Would have expected
*4*400=1600x with
full complements.

So ReACT somehow
slightly more on top
of LATS than it added
by itself, if we are
interpreting correctly

80x

~168x (8*(4*5+1))

10/2023 GPT-3.5 FireAct
(https://arxiv.org/pdf/2
310.05915.pdf)

On top of react:
10^(10/15)*4=19x
total, ~5x relative to
ReACT

Same at inference
time as ReACT? Not
sure otherwise

Fine-tuning

OctoPack (HumanEval)

OctoPack: Instruction Tuning Code Large Language Models

 [Data] OctoPack: Instruction Tuning Code LLMs
We looked at data from the OctoPack paper and were able to extract a few CEG data points, as
in the above sheet.

https://docs.google.com/spreadsheets/d/1mfl9V_kCxNx_OC6bYiq5AzVYq9z7HICpNLyGD4wN63s/edit?usp=sharing
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/abs/2310.04406v1
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/pdf/2310.05915.pdf
https://arxiv.org/abs/2308.07124v1

MetaMATH (MATH and GSM8K)

MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models

 has data and CEG calcluations [Data] MetaMATH

Majority voting
Table 2:

LAMDA-173B = 3.55e23 compute
PALM-540B = 2.53e24 compute
7x compute
ASDiv -> 7^(9/25) = 2
SVAMP -> 7^(14.4/39.9)=2
GS8MK -> 7^(10.6/39.4)=1.7
ARC-e -> 7^(4/20)=1.48
ARC-c -> 7^(4.7/30.1)=1.36

Extracting stuff from Table 5 would need to be too nice but would need to look into scaling laws
for those tasks.

https://docs.google.com/spreadsheets/d/1nPRDTvu0AMaPz5yWQybw_68oCdYvSlCRBCuxTq2TNOM/edit?usp=sharing
https://arxiv.org/abs/2309.12284
https://arxiv.org/pdf/2203.11171.pdf

	Forecasting future gains due to post-training enhancements
	Summary
	Methodology
	Definitions
	CEG calculation
	Data collection
	CEG aggregation
	Clarifying total CEG
	The performance trend we care about
	What total CEG measures
	Other things that would be valuable to measure
	Issues with our measurement of total CEG

	CEG estimates
	CEG aggregation
	Methodology
	Setting the composability constant
	CEG over time
	Sensitivity analysis
	Qualitative considerations

	Limitations and future work
	Limitations
	CEG as a measure
	Uninformed parameter estimates
	Average task
	Unspecified base model compute
	Historical trend
	Further limitations

	Future work

	Appendix
	Plots of CEG values
	Explanations for CEG estimates
	HumanEval
	Training compute increase
	With scaffolding
	Rate of change
	All data

	HotpotQA: Scaffolding + fine-tuning
	Fine-tuning
	OctoPack (HumanEval)
	MetaMATH (MATH and GSM8K)

	Majority voting

