CASE STUDY DOCUMENTATION

TechElectro Inc. faces a series of intricate inventory management challenges that impede its
operational efficiency and customer satisfaction:

The company frequently finds itself burdened with excessive inventory of certain products,
resulting in substantial capital tied up in unsold goods and limited storage capacity. Conversely,
high-demand products regularly suffer from stockouts, leading to missed sales opportunities and
irate customers unable to access their desired items. These inventory-related issues have a direct
and detrimental effect on customer satisfaction and loyalty. Customers endure delays, frequent
stockouts, and frustration when they cannot find the products they seek.

Report Description for this Case Study

1. A clear statement of the business task

2. A description of all data sources used

3. Documentation of any cleaning or manipulation of data
4. A summary of your analysis

5. Your top three recommendations based on your analysis

ASK

Three questions will guide the future marketing program:

1. How can TechElectro Inc. leverage MySQL-powered inventory optimization to reduce
carrying costs and free up capital for strategic investments?

2. In what ways does maintaining optimal inventory levels through MySQL optimization
enhance customer satisfaction and foster loyalty at TechElectro Inc.?

3. What are the specific competitive advantages TechElectro Inc. can gain by implementing
streamlined inventory management and responding swiftly to market fluctuations using MySQL
optimization?

1. ANALYTICAL REPORT FOR THE FIRST QUESTION

Stepl: Ask

Answers to Guiding Questions — Using the Structured Query Language will greatly help in
finding solutions that will optimize the inventory of goods using historical data. The deduced
trends will be discovered at the end of the analysis. A recommendation will be stipulated out to
drive efficiency and increase productivity.

Business Task — The primary objectives of this project are to implement a sophisticated
inventory optimization system utilizing MySQL and address the identified business challenges
effectively. The project aims to achieve the following goals:

A. Optimal Inventory Levels: Utilize MySQL optimization techniques to determine the optimal
stock levels for each product SKU, thereby minimizing overstock and understock situations.

B. Data-Driven Decisions: Enable data-driven decision-making in inventory management by
leveraging MySQL analytics to reduce costs and enhance customer satisfaction.

Key Stakeholders — (i) Executive Team

Objective Statement:

(1) Thoroughly read through the brief description of the company given in this Case Study. It was
deduced from historical inventory data that there is unbalancing acts in stocks which may either
be excessive or insufficient. Insufficiency in stock may lead to dissatisfied customers.

The rationale of the project:
e Cost of reduction
e Enhance customer satisfaction
e Competitive Advantage
e Profitability

Step 2: Prepare

Answers to Guiding Questions — The data was obtained from the Index of bucket "divvy-trip
data" an HTML file. The data is organized into datasets designated for each month in a zip file.
There are no issues with biasing or credibility because this data source is reliable, original,
comprehensive, current and cited. Also, the licensing, privacy, security and accessibility of the
data source were checked and will be adhered to strictly. I verified the data’s integrity by
ensuring the reliability of the source (Motivate International Inc.) This provides the datasets on
where I will be able to run my analysis. After careful consideration, there are no problems with
this data.

Key Tasks to be Done - Download the data and store it appropriately. Identify how it’s
organized. Sort and filter the data. Determine the credibility of the data.

Deliverable: All data collected are presented in CSV format.

Step 3: Process

Answers to Guiding Questions —

e The analytical tool I will use throughout is SQL (This is because it was the stipulated tool
advised to be used to determine and achieve optimization of stock).

e [have ensured data integrity earlier in step 2. It is from a reliable source.

e [have ensured all rows of empty cells found in each table are cleared by filtering out
empty cells in MySQL and deleting all. I also ensured there weren’t any form of
duplicates in each table of data.

e To ensure my data is clean and ready for analysis I double-check all, my cleaning
processes one step at a time by doing exact same cleaning steps.

e This is my documentation of my cleaning process done right here.

Step 4: Analyze

Answers to Guiding Questions —

-To organize my data before analysis, I ensured the values in each column were clean and
consistent before importing the datasets in my MySQL server using xamp.
-I have ensured my data has been properly formatted using my simple query techniques.

Method of Analysis
1. Applying SQL for Cleaning and Preparing Data
(1) Data Cleanings

ALTER TABLE sales data 1

ADD New_Sales Date DATE;

SET SQL_SAFE UPDAES = 0;

UPDATE sales data 1

SET New_Sales Date = STR_TO_Date(Sales Date, %d%m%Y);
ALTER TABLE sales data 1

DROP Sales Date;

ALTER TABLE sales data 1

CHANGE COLUMN New_ Sales Date Sales Date DATE;

(iv) Missing Data

-- Identify missing values using 'IS NULL' function

-- external factor

SELECT

SUM(CASE WHEN Sales Date is NULL THEN 1 ELSE 0 END) AS
missing_sales date,

SUM(CASE WHEN GDP is NULL THEN 1 ELSE 0 END) AS missing_gdp,
SUM(CASE WHEN Inflation_Rate is NULL THEN 1 ELSE 0 END) AS
missing_inflation_rate,

SUM(CASE WHEN Seasonal Factor is NULL THEN 1 ELSE 0 END) AS
missing_seasonal _factor

FROM external factors;

(v) Duplicates Cleanings

External factors

SELECT sales_date, COUNT(*) AS duplicate count
FROM external factors

GROUP BY sales_date

HAVING COUNT(*) > 1;

Product Information
SELECT Product_ID, Product Category, COUNT(*) AS duplicate count

FROM product_information
GROUP BY Product ID, Product Category
HAVING COUNT(*) > 1;

(vi) DATA INTEGRATION

-- sales_data and product data first
CREATE VIEW sales product _data AS
SELECT

s.Product ID,

s.Sales Date,

s.Inventory Quantity,

s.Product_Cost,

p.Product Category,

p.Promotions

FROM sales data s

JOIN product_information p ON s.Product ID = p.Product ID;

-- Sale product data and external factors
CREATE VIEW Inventory data AS
SELECT

sp.Product 1D,

sp.Sales Date,

sp.Inventory Quantity,

sp.Product Cost,
sp.Product_Category,
sp.Promotions,

e.GDP,

e.Inflation Rate,

e.Seasonal Factor

FROM sales product data sp
LEFT JOIN external factors e

ON sp.Sales Date = e.Sales Date;

2. Descriptive Analysis

(vii) Basic Statistics:

-- Average Sales(Calculated as the product of "Inventory Quantity" and "Product Cost")
SELECT Product ID,

AVG(Inventory Quantity * Product Cost) as avg sales

FROM Inventory data

GROUP BY Product ID

ORDER BY avg sales DESC;

-- Median Stock Levels (i.e., "Inventory Quantity").

WITH RankedInventory AS (
SELECT
Product ID,
Inventory Quantity,
ROW_NUMBER() OVER(PARTITION BY Product ID ORDER BY
Inventory Quantity) AS row num_asc,
ROW_NUMBER() OVER(PARTITION BY Product ID ORDER BY
Inventory Quantity DESC) AS row _num_desc,
COUNT(*) OVER(PARTITION BY Product ID) AS count per product
FROM
inventory data
)
SELECT
Product ID,
AVG(Inventory Quantity) AS median_stock
FROM
RankedInventory
WHERE
row_num_asc IN (
(count_per product+1)/2,
(count_per product +2) /2
)
GROUP BY
Product ID;

-- Product performance metrics (total sales per product).

SELECT Product_ID,

ROUND(SUM(Inventory Quantity * Product Cost)) as total sales
FROM inventory data

GROUP BY Product_ID

ORDER BY total sales DESC;

-- Identify high-demand products based on average sales

WITH HighDemandProducts AS (
SELECT Product ID, AVG(Inventory Quantity) as avg sales
FROM inventory data
GROUP BY Product_ID
HAVING avg_sales > (
SELECT AVG(Inventory Quantity) * 0.95 FROM sales data

)

)

-- Calculate stockout frequency for high-demand products

SELECT s.Product 1D,

COUNT(*) as stockout_frequency

FROM inventory data s

WHERE s.Product ID IN (SELECT Product_ID FROM HighDemandProducts)
AND s.Inventory Quantity = 0

GROUP BY s.Product ID;

Observation - Non of the high-demand product had any stockout.

GDP - It represents the overall economic health and growth of a nation. A higher GDP
represents more customer spending leading to increased sales. A lower GDP represents
an economic downfall potentially leading to decrease sales.

Inflation rate — It means how the general level of price of goods are increasing and
purchasing power is falling.

(viii) INFLUENCE OF EXTERNAL FACTORS

-- GDP

SELECT Product_ID,

AVG(CASE WHEN GDP > 0 THEN Inventory Quantity ELSE NULL END) AS
avg sales positive gdp,

AVG(CASE WHEN GDP <= 0 THEN Inventory Quantity ELSE NULL END) AS
avg sales negative gdp

FROM inventory data

GROUP BY Product_ID

HAVING avg_sales positive gdp IS NOT NULL;

-- INFLUENCE ON INFLATION RATE

SELECT Product ID,

AVG(CASE WHEN Inflation Rate > 0 THEN Inventory Quantity ELSE NULL END)
AS avg sales positive inflation,

AVG(CASE WHEN Inflation Rate <= 0 THEN Inventory Quantity ELSE NULL END)
AS avg sales negative inflation

FROM inventory data

GROUP BY Product ID

HAVING avg_sales positive inflation IS NOT NULL,;

Note: There are no form inflation rates for zero or negative average sales.

This shows how inflation rates influences the average sales of good.

-- OPTIMIZING INVENTORY
-- Determine the optimal reorder point for each product based on historical sales data and
external factors.
-- Reorder Point= Lead Time Demand + Safety Stock
-- Leaad Time Demand = Rolling Average Sales x Lead Time
-- Safety Stock = Z x Lead Time root x Standard Deviation of Demand
--7=1.645
-- A constant lead time of 7 days for all productss.
-- We aim for a 95% service level.
WITH InventoryCalculation AS (
SELECT Product ID,
AVG(rolling_avg sales) as avg_rolling_sales,
AVG(rolling variance) as avg_rolling variance
FROM(
SELECT Product ID,
AVG(daily_sales) OVER (PARTITION BY Product ID ORDER BY Sales Date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) as rolling_avg_sales,
AVG(squared diff) OVER (PARTITION BY Product ID ORDER BY Sales Date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) as rolling_variance
FROM (

SELECT Product ID,

Sales Date, Inventory Quantity * Product Cost as daily_sales,

(Inventory Quantity * Product Cost - AVG(Inventory Quantity * Product Cost)
OVER (PARTITION BY Product ID ORDER BY Sales Date ROWS BETWEEN 6
PRECEDING AND CURRENT ROW)) as squared

FROM inventory data

) subquery

) subquery?2

GROUP BY Product_ID
)
SELECT Product_ID,
avg rolling sales * 7 as Lead time demand,
1.645 * (avg_rolling variance * 7) as safety_stock,
(avg_rolling_sales * 7) + (1.645 * (average rolling variance * 7)) as reorder point
FROM InventoryCalculations;

-- Create the Inventory Optimization Table
CREATE TABLE inventory optimization (
Product ID INT, Reorder Point DOUBLE);

-- Create the Stored Procedure to Recalculate Reorder Point
DELIMITER //

CREATE PROCEDURE RecalculateRecorderPoint(productID INT)
BEGIN

DECLARE avgRollingSales DOUBLE;
DECLARE avgRollingVariance DOUBLE;
DECLARE leadTimeDemand DOUBLE;
DECLARE safetyStock DOUBLE;
DECLARE recorderPoint DOUBLE;

WITH InventoryCalculation AS (
SELECT Product _ID,
AVG(rolling avg sales) as avg rolling_sales,
AVG(rolling_variance) as avg_rolling variance
FROM(
SELECT Product_ID,
AVG(daily sales) OVER (PARTITION BY Product ID ORDER BY Sales Date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) as rolling_avg_sales,
AVG(squared diff) OVER (PARTITION BY Product ID ORDER BY Sales Date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) as rolling_variance
FROM (

SELECT Product_ID,

Sales Date, Inventory Quantity * Product Cost as daily sales,

(Inventory Quantity * Product Cost - AVG(Inventory Quantity * Product Cost)
OVER (PARTITION BY Product ID ORDER BY Sales Date ROWS BETWEEN 6
PRECEDING AND CURRENT ROW)) as squared

FROM inventory data

) InnerDerived

) OuterDerived;
SET leadTimeDemand - avgRollingSales * 7;
SET safetystock = 1.645 * SQRT(avgRollingVariance * 7);
SET recorderPoint = leadTimeDemand + safetyStock;

SELECT Product_ID,

avg_rolling sales * 7 as Lead time demand,

1.645 * (avg_rolling variance * 7) as safety stock,

(avg_rolling_sales * 7) + (1.645 * (average rolling variance * 7)) as reorder point
FROM InventoryCalculations;

INSERT INTO
inventory optimization (Product ID, Reorder Point)
VALUES (productID, reorderPoint)
ON DUPLICATE KEY UPDATE Recorder Point = reorderPoint;
END //
DELIMITER;

-- Step 3 : make inventory data a permanent table
CREATE TABLE Inventory table AS SELECT + FROM Inventory data;

-- Step 4: Create the Triger
DELIMITER //
CREATE TRIGGER AfterInsertUnifiedTable
AFTER INSERT ON Inventory_table
FOR EACH ROW
BEGIN
CALL RecalculateRecorderPoint(New.Product ID);
END //
DELIMITER;

3. Overstocking and Understocking

Overstocking means that inventory stock is more than the sales of goods. While Understocking
means having zero stock with an increase demand for products.

(ix) OVERSTOCKING AND UNDERSTOCKING
WITH RollingSales AS (
SELECT Product_ID,
Sales Date,
AVG(Inventory Quantity * Product Cost) OVER (PARTITION BY Product ID ORDER BY
Sales Date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) as rolling_avg_sales
FROM inventory data

)s

-- Calculate the number of days a product was out of stock

StockoutDays AS (
SELECT Product_ID,
COUNT(*) as stockout days
FROM inventory data
WHERE Inventory Quantity = 0
GROUP BY Product ID

)

-- Join the CTEs with the main table to get the results
SELECT f.Product ID,
AVG(f.Inventory Quantity * f.Product Cost) as avg_inventory value,
AVG(rs.rolling avg sales) as avg_rolling_sales,
COALESCE(sd.stockout_days, 0) as stockout days
FROM inventory data f
JOIN RollingSales rs ON f.Product ID =rs.Product ID AND f.Sales Date = rs.Sales Date
LEFT JOIN StockoutDays sd ON f.Product ID = sd.Product ID
GROUP BY f.Product ID, sd.stockout days;

Checking the results and they are no variance between the avg_inventory_value and
avg_rolling_sales. This simply means that the products are not being sold or its constantly
stocked. Which can result in overstocking.

Step S: Share

--FEEDBACK LOOP

--Feedback Loop Establishment:

-- Feedback Portal: Develop an online platform for stakeholders to easily submit feedback on
inventory performance and challenges.

-- Review Meetings: Organize periodic sessions to discuss inventory system performance and
gather direct insights.

-- System Monitoring; Use established SQL procedures to track system metrics, with deviations
from expectations flagged for review.

--Refinement Based on feedback;

-- Feedback Analysis: Regularly compile and scrutinize feedback to identify recurring themes or
pressing issues.

-- Action Implementation: Prioritize and act on the feedback to adjust reorder points, safety
levels, or overall processes.

-- Change Communication: Inform stakeholders about changes, underscoring the value of their
feedback and ensuring transparency.

Deductions
-- General Insights:

-- Inventory Discrepancies: The initial stages of the analysis revealed significant discrepancies in
inventory levels, with instances of both overstocking and understocking

-- These inconsistencies were contributing to capital inefficiencies and customer dissatisfaction.
-- Sales Trends and External Factor Influences: The analysis indicated that sales trends were
notably influenced by various external factors.

-- Recognizing these patterns provides an opportunity to forecast demand more accurately.
--Suboptimal Inventory Levels: The inventory optimization analysis showed that the existing
inventory levels were not optimized for current sales trends.

-- Products that had either closed excess inventory was identified.

Step 6 Act

-- Recommendation:

1. Implement Dynamic Inventory Management: The company should transition from a static to a
dynamic inventory management system, adjusting inventory levels based on real-time sales
trends, seasonality, and external factors.

2. Optimize Reorder and safety stocks: Utilize the reorder points and safety stocks calculated
during the analysis to minimize stockouts and reduce excess inventory. Regularly review these
metrics to ensure they align with current market conditions.

3. Enhance Pricing Strategies: Conduct a thorough review of product pricing strategies,
especially for products identified as unprofitable. Consider factors such as competitor pricing,
market demand, and product acquisition costs.

4. Reduce Overstock: Identify products that are consistently overstocked and take steps to reduce
their inventory levels. This could include promotional sales, discounts, or even discounting
products with low sales performance.

5. Establish a feedback loop: Develop a systematic approach to collect and analyze feedback
from various stakeholders. Use this feedback for continuous improvement and alignment with
business objectives.

6. Regular Monitoring and Adjustments: Adopt a proactive approach to inventory management
by regularly monitoring key metrics and making necessary adjustments to inventory levels, order
quantities, and safety stocks.

