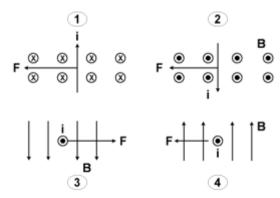
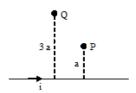

SOAL PAS FISIKA KELAS 12 SMA MA TAHUN 2021

1. Sebuah kawat berarus listrik I diletakkan diantaran dua kutub magnet utara dan selatan seperti gambar disamping.

Arah gaya Lorentz pada kawat adalah...

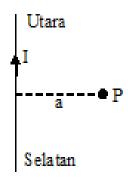

- A. masuk bidang kertas
- A. keluar bidang kertas
- B. menuju kutub utara magnet
- C. menuju kutub selatan magnet
- D. dari kutub utara menuju kutub selatan
- 0. Kawat lurus dialiri arus listrik 7 A diletakkan seperti gambar. (μ o = 4π x 10^{-7} Wb/A.m)

Besar dan arah induksi magnetik di titik Q adalah...


- A. 7,0 x 10⁵ T, tegak lurus menuju bidang kertas
- A. 7,0 x 10⁵ T, tegak lurus menjauhi bidang kertas
- B. 9,0 x 10⁵ T, tegak lurus menuju bidang kertas
- C. 9,0 x 10⁻⁵ T, tegak lurus menjauhi bidang kertas

- D. 14,0 x 10^s T, tegak lurus menuju bidang kertas
- 0. Kawat lurus berarus listrik i berada dalam medan magnet B seperti gambar!

Manakah gambar yang benar sesuai gaya magnetik pada kawat?


- A. 1 dan 2 saja
- A. 2 dan 4 saja
- B. 1, 2 dan 3 saja
- C. 2, 3 dan 4 saja
- D. 1, 2, 3 dan 4
- 0. Seutas kawat panjang berarus listrik I tampak seperti gambar.

Jika induksi magnetik di P adalah B, maka induksi magnetik dititik Q adalah...

- A. 3B
- A. 2B
- B. B
- C. ½ B
- D. 1/3 B

0. Kawat dialiri arus listrik I seperti pada gambar!

Pernyataan sesuai gambar di atas induksi magnetik di titik P akan:

- (1) sebanding kuat arus I
- (2) sebanding 1/a
- (3) tergantung arah arus listrik I

Pernyataan yang benar adalah ...

- A. 1, 2 dan 3
- A. 1 dan 2
- B. 1 dan 3
- C. hanya 1 saja
- D. hanya 2 saja
- 0. Sebuah kawat lurus panjang yang dialiri arus listik sebesar 10 A dari arah timur ke barat. Besar dan arah induksi magnetik di titik P yang berada tepat di bawah kawat tersebut pada jarak 10 cm adalah ($\mu_0 = 4\pi \cdot 10^7 \text{ Wb/A.m}$)
- A. 2 . 10-5 T ke arah selatan
- A. 4 . 10⁻⁵T kea rah timur
- B. 10 . 10⁻⁵T kea rah barat
- C. 2 . 10⁻⁶T kea rah selatan
- D. 10⁻⁵T kea rah utara
- 0. Selembar kawat berarus listrik dilengkungkan seperti gambar.

Jika jari-jari kelengkuangan sebesar 50 cm, maka besarnya induksi magnetik di pusat kelengkungan adalah

 $(\mu_0 = 4\pi \cdot 10^{-7} \text{ Wb/A.m})$

- A. $1/3 \text{ T} \cdot 10^{-7} \text{ T}$
- A. 1.10⁻⁷ T
- B. $\pi \cdot 10^{-7} \, T$
- C. 2.10⁻⁷ T
- D. $2\pi \cdot 10^{-7} \text{ T}$

0. Suatu selenoida panjang 2 meter dengan 800 lilitan dan jari-jari 2 cm. Jika selenoida itu dialiri arus sebesar 0,5 A, besar induksi magnetik di ujung selenoida adalah

$$(\mu_0 = 4\pi \cdot 10^{-7} \text{ Wb/A.m})$$

- A. $4\pi \cdot 10^5 T$
- A. 8π.10₅T
- B. $4\pi \cdot 10^{-6} T$
- C. $8\pi \cdot 10^{-6} \text{ T}$
- D. $2\pi \cdot 10^{-4} \text{ T}$

0. Suatu solenoida terdiri dari 300 lilita berarus 2 A, panjang solenoida 30 cm, induksi magnet di tengah-tengah solenoida adalah ($\mu_0 = 4\pi \cdot 10^{-7} \text{ Wb/A.m}$)

- A. $8\pi \cdot 10^{4}$ T
- A. $16\pi \cdot 10^{4}$ T
- B. $5\pi \times 10^{-5} \text{ T}$
- C. $8\pi \times 10^{-5} \text{ T}$
- D. $16\pi \times 10^{-5}$ T

0. Sebuah toroida memiliki jari-jari 50 cm dialiri arus sebesar 1 A. Jika toroida tersebut memiliki 60 lilitan, besar induksi magnetik pada sumbunya adalah.... $(\mu_{\scriptscriptstyle 0} = 4\pi \ . \\ 10^{\scriptscriptstyle .7} \ Wb/A.m)$

- A. 2 x 10-5T
- A. $2.4 \times 10^{-5} \text{ T}$
- B. 4×10^{-5} T

- C. 2 x 10-6T
- D. 9 x 10-5T
- 0. Ketika ke dalam solenoid yang dialiri listrik dimasukkan sebatang logam, maka energi magnetiknya bertambah. Manakah pernyataan berikut yang benar?
- A. energi magnetik berada dalam batang logam
- A. permeabilitas batang logam lebih kecil daripada vakum
- B. kuat medan magnet solenoid tetap
- C. energi mekanik pada solenoid tidak bergantung pada jenis logam
- D. energi mekanik pada solenoid bertambah karena batang logam mempengaruhi arus listrik
- 0. Dua kawat sejajar / dan m masing-masing panjangnya 2 m dan terpisah pada jarak 2 cm. Pada kawat m yang kuat arusnya 1,5 A mengalami gaya magnetik dari kuat arus kawat / sebesar 6 . 10° N (μ 0 = 4π . 10° Wb/A.m). kuat arus pada kawat / adalah...
- A. 1,2 A
- A. 1,5 A
- B. 2,0 A
- C. 2,4 A
- D. 3,0 A
- 0. Dua kawat sejajar yang berjarak 1 m satu sama lain dialiri arus listrik masing-masing 1 A dengan arah yang sama. Diantara kedua kawat akan terjadi.... ($\mu_0 = 4\pi \cdot 10^{-7}$ Wb/A.m)
- A. Gaya tarik menarik sebesar 4 . 10⁷ N/m
- A. Gaya tolak menolak sebesar 2 . 10⁷ N/m
- B. Gaya tarik menarik sebesar 2 . 10⁻⁷ N/m
- C. Gaya tarik menarik sebesar 2 . 10° N/m
- D. Gaya tolak menolak sebesar 2 . 10⁸ N/m
- 0. Dua kawat panjang sejajar dipisahkan sejauh d yang dialiri arus sama besar yakni / sehingga timbul gaya magnet antara kedua kawat sebesar F. Pernyataan berikut yang benar antara dua kawat sejajar tersebut agar gaya magnet antara kedua kawat tetap sebesar F adalah
 - A. kuat arus diubah menjadi 31 dan jaraknya diubah menjadi 3d
 - A. kuat arus diubah menjadi 31 dan jaraknya diubah menjadi 9d
 - B. kuat arus diubah menjadi 31 dan jaraknya diubah menjadi 6d
 - C. kuat arus diubah menjadi 61 dan jaraknya diubah menjadi 3d
 - D. kuat arus diubah menjadi 91 dan jaraknya diubah menjadi 3d
- 0. Sebuah kawat penghantar berarus listrik 5 A arahnya keluar bidang gambar, memotong tegak lurus garis-garis gaya magnet dengan besar induksi magnet B = 2 x 10⁴T. Bila panjang kawat yang terpengaruh B adalah 4 cm, besar gaya magnetic yang timbul pada kawat adalah
- A. 4 x 10-5 Newton
- A. 4 x 10⁻⁶Newton
- B. 13 x 10⁻⁵Newton

- C. 2 x 10⁻⁵Newton
- D. 4,2 x 10-5 Newton
- 0. Sebuah elektron berkecepatan 2 x 10^{7} m/s masuk dalam medan magnet yang induksi magnetnya 1,5 wb/m³ secara tegak lurus terhadap garis medan. Gaya magnetic yang dialami elektron adalah(q =1,6 x 10^{-10} C)
- A. 4.8×10^{-12}
- A. 48×10^{-12}
- B. 4,8 x 10⁻¹⁰
- C. $2,4 \times 10^{-12}$
- D. 8,8 x 10⁻¹²
- 0. Di antara pernyataan di bawah ini:
 - (1) banyaknya lilitan
 - (2) kuat arus yang melalui kumparan
 - (3) luas bidang kumparan
 - (4) hambatan kumparan

Faktor-faktor yang memengaruhi besarnya GGL induksi generator adalah

- A. (1), (2), (3), dan (4)
- A. (1), (2), dan (4)
- B. (1) dan (3) saja
- C. (2) dan (4) saja
- D. (4) saja
- 0. Sebuah generator menghasilkan tegangan GGL induksi sebesar \mathcal{E} . Jika generator tersebut kumparannya dirubah sehingga jumlah lilitannya menjadi dua kali lipat dari semula, dan laju fluksnya menjadi tiga kali semula, besar perbandingan GGL sekarang dan GGL mula-mula adalah....
- A. 1:6
- A. 1:3
- B. 2:3
- C. 3:2
- D. 6:1
- 0. Sebuah kumparan diletakkan pada medan magnetik homogen. Dalam waktu 30 detik terjadi perubahan fluks sehingga GGL menjadi ε_1 . Jika dalam waktu 20 sekon terjadi perubahan fluks yang sama sehingga GGL yang dihasilkan adalah ε_2 , maka perbandingan ε_1 dan ε_2 adalah
- A. 1:2

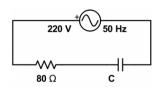
A.	1:3
В.	2:3
C.	2:5
D.	3:4

0. Pada keadaan awal (1) fluks magnetik berubah sebesar 5 Wb selama 2 detik pada sebuah kumparan yang mempunyai 20 lilitan. Pada keadaan (2) untuk perubahan fluks yang sama dibutuhkan waktu 8 detik. Perbandingan GGL induksi keadaan (1) dan (2) adalah...

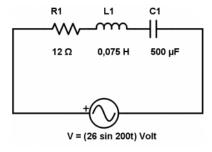
A.	1:1
A.	2:1
B.	3:1
C.	4:1
D.	4:3

- 0. Kumparan kawat luasnya A terdiri dari N lilitan. Kumparan tersebut berputar dengan kecepatan sudut ω dalam medan magnet homogen yang rapat fluks magnetnya B sehingga menghasilkan GGL induksi maksimum ϵ . Apabila ingin memperbesar GGL maksimum menjadi 6 kali semula maka
- A. kecepatan sudut diperbesar 2 kali dan luas penampang diperbesar 3 kali
- A. lilitan diperbanyak 3 kali dan kecepatan sudutnya diperbesar 3 kali
- B. luas kumparan dan kecepatan sudutnya diperbesar 2 kali
- C. luas kumparan diperkecil 1/3 kali dan kecepatan sudutnya diperbesar 4 kali
- D. jumlah lilitan dan luas kumparan diperkecil 1/6 kali.
- 0. Sebuah kumparan dengan induktansi 5 mH mengalami perubahan kuat arus yang mengalir dari 0,2 A menjadi 1,0 A dalam waktu 0,01 sekon. Besarnya tegangan yang timbul akibat peristiwa tersebut adalah
- A. 0,1 V A. 0,2 V B. 0,3 V C. 0,4 V D. 0,5 V
- 0. Sebuah transformator mempunyai kumparan primer dan sekunder dengan jumlah lilitan masing-masing 500 dan 5000, dihubungkan dengan jaringan bertegangan arus bolak-balik 220 V. Berapakah tegangan keluarannya?
- A. 220 volt A. 1.100 volt
- B. 2.200 volt
- C. 22.000 volt

- D. 110.000 Volt
- 0. Ketika merancang sebuah transformator, agar dihasilkan tegangan sekunder 220 Volt dari tegangan primer 110 volt, maka perbandingan jumlah lilitan sekunder dengan lilitan primer adalah ...
- A. 2:3
- A. 3:2
- B. 1:2
- C. 2:1
- D. 4:1
- 0. Sebuah transformator memiliki tegangan primer 220 volt. Jika transformator menghasilkan tegangan sekunder 8 V, efisiensi trafo 80%, dan kuat arus sekundernya 2 A maka kuat arus primernya adalah
- A. 1/2 A
- A. 1/3 A
- B. 1/5 A
- C. 1/7 A
- D. 1/11 A
- 0. tabel berikut adalah data dua buah transformator!

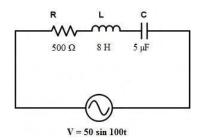

Transformator	Np (lilitan)	Ns (lilitan)	Vp (volt)	Vs (volt)	Ip (A)	Is (A)
1	1000	100	120	12	Q	2
2	80	P	20	2	0,25	1

Jika efisiensi transformator 1 dan 2 sama besar, sebesar 40% . maka besar P dan Q adalah ...

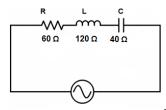

- A. P = 8 lilitan dan Q = 0.5 A
- A. P = 8 lilitan dan Q = 0.2 A
- B. P = 16 lilitan dan Q = 0.5 A
- C. P = 16 lilitan dan Q = 1 A
- D. P = 16 lilitan dan Q = 2 A
- 0. Arus bolak-balik yang mengalir melalui hambatan 10 ohm mempunyai tegangan maksimum 100 $\sqrt{2}$ V. Besar arus efektif yang melalui hambatan adalah
- A. 10 A
- A. 10√2 A
- B. 5 A

C.	5√2 A
D.	√2 A
0.	Perhatikan pernyataan berikut! 1. Memperbesar arus dalam rangkaian 2. Memperbesar induktansi diri 3. Memperbesar frekuensi arus listrik 4. Memperkecil tegangan pada ujung-ujung induktor Pernyataan yang benar untuk memperbesar reaktansi induktif adalah
A.	1) dan 2)
A.	1), 2), dan 4)
B.	2) dan 3)
C.	2), 3), dan 4)
D.	2) dan 4)
	Sebuah sumber tegangan AC yang mempunyai frekuensi angular 100 rad/s dan tegangan dihubungkan dengan sebuah induktor yang mempunyai induktansi diri 0,2 H. Besar si induktifnya adalah
A.	10 ohm
A.	20 ohm
B.	30 ohm
C.	35 ohm
D.	38 ohm
0. Hz, ter	Sebuah kapasitor dirangkai pada sumber tegangan bolak-balik 250 Volt yang frekuensi 50 nyata reaktansi kapasitifnya 5000/ π ohm. Kapasitas dari kapasitor itu adalah
A.	2 μF
A.	5 μF
B.	10 μF
C.	20 μF
D.	50 μF
0. Volt. N	Sebuah kapasitor 800 µF dipasang pada sumber arus bolak balik V = 120 $\sqrt{2}$ sin 125t ilai reaktansi kapasitifnya adalah
A.	3 ohm
A.	4 ohm
B.	5 ohm
C.	8 ohm

- D. 10 ohm
- 0. Resistor 30 ohm dirangkai seri dengan sebuah inductor yang memiliki reaktansi induktif 100 ohm dan sebuah kapasitor dengan reaktansi kapasitif 60 ohm. Impedansi rangkaian adalah
- A. 40 ohm
- A. 50 ohm
- B. 60 ohm
- C. 80 ohm
- D. 100 ohm
- 0. Perhatikan gambar rangkaian listrik di bawah ini! Jika kuat arus yang melalui rangkaian listrik dengan I = 2,2 A, maka reaktansi kapasitif besarnya adalah...


- A. 20 ohm
- A. 40 ohm
- B. 50 ohm
- C. 60 ohm
- D. 100 ohm
- 0. Perhatikan diagram rangkaian RLC berikut ini!

Nilai kuat arus maksimum rangkaian di samping adalah \dots


- A. 1 A
- B. 2 A

- C. 3 A
- D. 4 A
- E. 5 A
- 0. Pada suatu rangkaian seri RLC, diketahui R = 300 ohm, L = 0,25 H, dan C = 8 μ F. Impedansi rangkaian jika frekuensi sudutnya 500 rad/s adalah
- A. 125 ohm
- A. 225 ohm
- B. 325 ohm
- C. 375 ohm
- D. 400 ohm
- 0. Perhatikan Gambar rangkaian seri RLC berikut!

Besar impedansi pada rangkaian tersebut adalah...

- A. 1600 Ω
- A. 1500 Ω
- B. 1300 Ω
- C. 800Ω
- D. 600 Ω
- 0. Perhatikan gambar rangkaian listrik berikut!

Jika tegangan maksimum sumber arus bolak-balik = 200 V, maka besar kuat arus maksimum yang mengalir pada rangkaian adalah....

- A. 1,5 A
- A. 2,0 A
- B. 3,5 A

- C. 4,0 AD. 5,0 A
- 0. Frekuensi resonansi dari sebuah rangkaian dengan induktansi 60 mH dan kapasitansi 600 μF adalah \ldots
- A. 26,5 kHz
- A. 30 kHz
- B. 35,5 kHz
- C. 44 kHz
- D. 45 kHz
- 0. Pada rangkaian seri RLC, frekuensi resonansi dapat diperkecil dengan
- A. Memperkecil R
- A. Memperbesar L
- B. Memperbesar tegangan
- C. Memperkecil C
- D. Memperkecil arus
- 0. Suatu rangkaian seri resistor 20 ohm dan kapasitor $1\mu F$ dihubungkan ke sumber tegangan AC dengan frekuensi angular 250 rad/s. Besar induktansi induktor yang harus dipasang seri dengan rangkaian agar terjadi resonansi adalah
- A. 4 H
- A. 8 H
- B. 16 H
- C. 18 H
- D. 20 H