Team '; drop table *; --;-), PlaidCTF 2014, challenge “ezhp”

Given was the following task together with a linux executable:

Luckily when you travel back in time, you still get to use all your knowledge from the present.
With that knowledge in hand, breaking into this service (at 54.81.149.239:9174) owned by
The Plague shouldn't be hard at all.

The service turns out to be a simple note manager - you can add notes, edit, read and delete
them. What catches our attention is that, before entering your data for a note, the service asks
for the length of the message - a dead giveaway on where to start analyzing.

of the following:

an option.
give me an id.

€ @ S517€E.

Using IDA, we track down the function responsible for reading our input.

mov eax, offset abC ; "%d%=c”
lea edx, [ebp+var_C]

moy [esp+28Bh+uvar_24], edx

mov [esp+28h+param _SIZE], eax
call _ isoc99 _scanf

mov [esp+28h+param_SI2E], offset aPleaselnput¥ou ; “Flease input your da
call _puts

mou eax, ds:stdout

mov [esp+28h+param_SIZE], eax
call _fflush

mov edx, [ebp+var_C]

mouy eax, [ebp+id]

moy eax, ds:dword_B804ABGB[eax=h]
mov [esp+28h+var_208], edx

mov [esp+28h+var_ 247, eax

moy [esp+28h+param_SIZE], @
call _read

im short 1nrret ROLAROCH
m H i SUBRODUTIHNE [t

; Attributes: thunk
; int _read(int fildes,void =buf,size_t nbyte)
‘e pointers... _read proc near ; CODE XREF: id_dialog_2+

________________ jmp ds:off_884A0080
_read endp

http://dl.ctftime.org/119/1070/ezhp-b502addeb274f41757555c05b08e3b05.tar.bz2

The value we added in the request for the size of our note is clearly taken at face value and not
compared to the actual size provided during the creation of the note. The new size is then
provided as a parameter in the read () function, resulting in an overflow. To get a better
understanding as to where our data is going to, we add a few notes and break at the read ()
function:

Data Dump ®

08891000-08852000
D889:1000|0c 00 00 G0 Oc 10 89 05 00 00 00 00 19 00 00 08,

0E59: 101024 10 89 OB 00 10 89 08 41 41 41 41 41 41 41 41 (%....... ARAAAAAA
0859:1020/41 41 00 OO0 19 00 00 Q0 3c 10 89 08 Oc 10 89 0B |AA...... <, 0l
05591030 42 42 42 42 42 42 42 42 42 42 00 00 1S 00 00 OO0 BBBBEBBEEE......

08559:1040|54 10 85 0B 24 10 89 0B 43 43 43 43 43 43 43 43|T...%. . CCCCCCCC
0B89:1050(43 43 00 OO0 b8 03 00 00 00 00 GO0 00 3c 10 89 OB|CC.......... <. ..

It turns out our data is transferred to the heap, into simplistic heap blocks. The structure of the
blocks seems to be as follows:

blocksize next-ptr prev-ptr data

Additionally, there is no randomization noticeable: if we repeat the process, the blocks always
get ordered into memory in the same way. Due to the nature of double-linked lists, once an
element elem is deleted, the following code sequence gets executed:

elem->next->prev = elem->prev;
elem->prev->next = elem->next;

Since we can overflow the data part of any block, we can overwrite both the next and the prev
pointers in the blocks following the overflown block. With this knowledge, we can finally
formulate our exploit:

First, we create three blocks in row. From the first block, we now overflow the complete second
block, as well as the blocksize and the next-ptr of the third block. The next-ptr is overwritten by
the address of the GOT-Entry for the exit()-function -8.

After that, we delete the third block. What happens next is this:

elem->next->prev = *((exit-8)+8) = *exit := prev-ptr
elem->prev->next := exit-8

The exit() function now points into our second block - which we can overwrite with our shellcode
by overflowing the first block again. We overflow the buffer with a shellcode to start meterpreter,
trigger the exploit by selecting an invalid option in the menu, and gain remote access with
metasploit.

You can view the complete exploit on pastebin.

The flag is located in a file in the user ezhp’s home directory: shitty_heap_allocators_are_shitty

http://pastebin.com/zjgRKhFX

