
Team '; drop table *; --;-), PlaidCTF 2014, challenge “ezhp”

Given was the following task together with a linux executable:

Luckily when you travel back in time, you still get to use all your knowledge from the present.
With that knowledge in hand, breaking into this service (at 54.81.149.239:9174) owned by
The Plague shouldn't be hard at all.

The service turns out to be a simple note manager - you can add notes, edit, read and delete
them. What catches our attention is that, before entering your data for a note, the service asks
for the length of the message - a dead giveaway on where to start analyzing.

Using IDA, we track down the function responsible for reading our input.

http://dl.ctftime.org/119/1070/ezhp-b502addeb274f41757555c05b08e3b05.tar.bz2

The value we added in the request for the size of our note is clearly taken at face value and not
compared to the actual size provided during the creation of the note. The new size is then
provided as a parameter in the read() function, resulting in an overflow. To get a better
understanding as to where our data is going to, we add a few notes and break at the read()
function:

It turns out our data is transferred to the heap, into simplistic heap blocks. The structure of the
blocks seems to be as follows:

Additionally, there is no randomization noticeable: if we repeat the process, the blocks always
get ordered into memory in the same way. Due to the nature of double-linked lists, once an
element elem is deleted, the following code sequence gets executed:

elem->next->prev = elem->prev;
elem->prev->next = elem->next;

Since we can overflow the data part of any block, we can overwrite both the next and the prev
pointers in the blocks following the overflown block. With this knowledge, we can finally
formulate our exploit:

First, we create three blocks in row. From the first block, we now overflow the complete second
block, as well as the blocksize and the next-ptr of the third block. The next-ptr is overwritten by
the address of the GOT-Entry for the exit()-function -8.

After that, we delete the third block. What happens next is this:

elem->next->prev = *((exit-8)+8) = *exit := prev-ptr
elem->prev->next := exit-8

The exit() function now points into our second block - which we can overwrite with our shellcode
by overflowing the first block again. We overflow the buffer with a shellcode to start meterpreter,
trigger the exploit by selecting an invalid option in the menu, and gain remote access with
metasploit.

You can view the complete exploit on pastebin.

The flag is located in a file in the user ezhp’s home directory: shitty_heap_allocators_are_shitty

http://pastebin.com/zjgRKhFX

