8th Grade Math Pacing Guide Links: Unit 1, Unit 2, Unit 3, Unit 4, Unit 5, Unit 6 (These units are currently under construction.) **Arkansas 8th Grade Math Standards** | 2 Weeks | Unit O: Setting a Positive Math Mindset/Review | |----------|--| | 2-3 days | Unit O: Setting a Positive Math Mindset Math Mindset Video & Good Group Work Mistakes are Powerful Video & Consecutive Numbers Believe in Yourself Video & Art of Patterns Visual Math Video & Messing with Pascal Desmos: Getting to Know Each Other - Editable and Customizable | | 4 days | Unit O: Review 7.NCC.6: Apply properties of operations as strategies to fluently add, subtract, multiply, and divide rational numbers. 7.NCC.7: Use addition and subtraction with rational numbers in any form to solve multi-step problems in real-world and mathematical contexts. 7.NCC.8: Use multiplication and division with rational numbers in any form to solve multi-step problems in real-world and mathematical contexts. | | 3 Weeks | Unit 1: Real Numbers & Scientific Notation | | Plan | Classifying Real Numbers Part I 8.NCC.1: Describe relationships among numbers in the real number system (rational and irrational). Number relationships include: decimal expansion for rational and irrational numbers, square roots of non-perfect squares, and cube roots of nonperfect cubes. Classifying Real Numbers Part II 8.NCC.1: Describe relationships among numbers in the real number system (rational and irrational). Number relationships include: decimal expansion for rational and irrational numbers, square roots of non-perfect squares, and cube roots of nonperfect cubes. Irrational Numbers on the Real Number Line 8.NCC.1: Describe relationships among numbers in the real number system (rational and irrational). Number relationships include: decimal expansion for rational and irrational numbers, square roots of non-perfect squares, and cube roots of nonperfect cubes. 8.NCC.2: Compare the size of irrational numbers and locate them on a number line by finding the rational approximations. Properties of Exponents, Part I 8.NCC.3: Know and apply the properties of integer exponents to generate equivalent numerical expressions. Properties of Exponents, Part II 8.NCC.3: Know and apply the properties of integer exponents to generate equivalent numerical expressions. | | | Scientific Notation Part I 8.NCC.4: Write very large and very small numbers in scientific notation using positive and negative exponents. Scientific Notation Part II 8.NCC.5: Compare numbers written in scientific notation to determine how many times larger or smaller one number is than the other, using real-world and mathematical problems. Scientific Notation Part III 8.NCC.6: Solve real-world and mathematical problems by performing operations with numbers written in standard and scientific notation. | |------------------------|--| | Learning
Objectives | Student-Friendly Objectives: I can classify real numbers as natural numbers, whole numbers, integers, rational numbers, and irrational numbers. I can approximate irrational numbers and their location on the real number line. I can write very large and very small numbers in scientific notation using positive and negative exponents. I can convert a rational number in fraction form to its decimal form and recognize that the decimal form of a rational number either terminates in zeroes or eventually repeats. I can compare numbers written in scientific notation in context and analytically. I can solve real world problems using scientific notation. | | 3 Weeks | Unit 2: Algebra | | Plan | Square Roots and Cube Roots 8.NCC.8: Evaluate square roots of perfect squares and cube roots of perfect cubes. Solve Equations by Taking Square and Cube Roots 8.NCC.7: Solve equations in the form of x² = p or x³ = p where p is a positive rational number. Solve One Variable Linear Equations 8.ALG.1: Analyze and solve one-variable linear equations with rational coefficients containing solutions with one, zero, or infinitely many solutions. Solve One Variable Linear Inequalities 8.ALG.2: Analyze and solve one-variable linear inequalities with rational coefficients. Solve Systems of Linear Equations by Substitution 8.ALG.3: Analyze and solve systems of linear equations in the form y = mx + b in real-world or mathematical contexts, graphically and algebraically. | | Learning
Objectives | Student-Friendly Objectives: I can solve equations of the form x² = p and x³ = q. I can solve one variable linear equations. I can solve one variable linear inequalities. I can solve systems of linear equations using substitution. | | | End of First 9 Weeks | |------------------------|---| | 2 Weeks | Unit 3: Pythagorean Theorem | | Plan | Establish the Pythagorean Theorem 8.GM.3: Model or explain an informal proof of the Pythagorean Theorem and its converse. Use the Pythagorean Theorem to Find Distance 8.GM.5: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. Find Missing Side Lengths in Right Triangles 8.GM.4: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles. | | Learning
Objectives | Student-Friendly Objectives: I can show why the pythagorean theorem is true. I can determine if a triangle is a right triangle when given side lengths. I can determine the length of the third side when given the length of two sides of a right triangle. I can find the distance between two points in the coordinate plane. | | 2 Weeks | Unit 4: Functions, Part I | | Plan | Graph Proportional Relationships 8.FN.1: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Slope: Rate of Change Between Two Points 8.FN.2: Explain, using similar right triangles, how the slope of a line is the same between two points on a non-vertical line or non-horizontal line. Is It a Function? 8.FN.3: Determine whether a relation is a function or not when given a function map, table, graph, equation, or set of ordered pairs. Is This Function Linear or Non-Linear? 8.FN.5: Distinguish between linear and nonlinear functions by comparing graphs and equations. | | Learning
Objectives | Student-Friendly Objectives: I can graph proportional relationships and recognize the unit rate is the slope of the graph. I can use right triangles to show the slope between any two points on a line is the same. I can determine if a relation is a function. I can determine if a function is linear or non-linear from its graph or equation. | | 4 Weeks | Unit 5: Functions, Part II | |------------------------|--| | Plan | Determine Slope and y-Intercept of Linear Functions 8.FN.6: Determine the rate of change (slope) and y-intercept (initial value) from tables, graphs, equations, and verbal descriptions of linear relationships. Compare Slope and y-Intercept of Two Linear Functions 8.FN.4: Compare the rate of change (slope) and y-intercept (initial value) of two linear functions each represented in different forms. Interpret and Explain Slope and y-Intercept in Context 8.FN.7: Interpret and explain the meaning of the rate of change (slope) and y-intercept (initial value) of a linear relationship in a real-world context. Analyze the Graph of a Function 8.FN.8: Analyze a graph by describing the functional relationships between two quantities. Sketch a Graph Based on Description of a Function 8.FN.9: Sketch a graph that exhibits qualitative features of a function described verbally. | | Learning
Objectives | Student-Friendly Objectives: I can determine the slope and y-intercept of linear functions from multiple representations. I can compare the slopes and y-intercepts of linear functions from different representations. I can interpret the slope and y-intercept of a linear function in context. I can determine if a function is linear or nonlinear from its equation and/or graph. I can determine the intervals on which a function is increasing or decreasing. I can sketch the graph of a function from a description of its features. | | 4 Weeks | Unit 6: Transformations | | 4 vveeks | | | Plan | Identify a Transformation 8.GM.7: Identify a single transformation used to transform one figure onto another on a coordinate plane. Draw a Transformed Figure on a Coordinate Plane (Single Transformation) 8.GM.6: Given a figure, draw a congruent figure on a coordinate plane resulting from a rotation, reflection, or translation. Identify a Series of Transformations (Congruent Figures) 8.GM.8: Given two congruent figures, describe a sequence of transformations that maps one figure to another. Draw a Transformed Figure on a Coordinate Plane (Multiple Transformations) 8.GM.9: Perform a given sequence of transformations of a figure on the coordinate plane, including rotations, reflections, translations, and dilations. Describe the Effects of a Series of Transformations on Coordinates 8.GM.10: Describe the effects of rotations, reflections, translations, and dilations on two-dimensional figures using coordinates. | | Learning
Objectives | Identify a Sequence of Transformations (Similar Figures) 8.GM.11: Given two similar two-dimensional figures, describe a sequence of transformations that exhibits similarity, including rotations, reflections, translations, and dilations. Student-Friendly Objectives: I can identify a single transformation that takes one figure onto another. I can draw a figure transformed by a rigid transformation. I can identify a sequence of transformations that takes one figure onto another congruent figure. I can draw a figure transformed by a sequence of transformations, including dilations. I can describe the effects of a sequence of transformations on the coordinates of points in the coordinate plane. I can sketch the graph of a function from a description of its features. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformations that take one figure onto another similar figure. I can identify a sequence of transformation that | |------------------------|--| | 2 Weeks | Unit 7: Bivariate Data | | Plan | Construct and Interpret Relative Frequence Tables 8.SP.3: Construct and interpret a relative frequency table, using data from two categorical variables collected from the same subject. Construct and Interpret Scatter Plots 8.SP.1: Construct scatter plots using bivariate data; determine if the data displays a linear or nonlinear pattern and positive, negative, or no association. Find a Line of Best Fit 8.SP.2: Construct straight lines to approximately fit data displaying a linear association when presented in scatter plots. | | Learning
Objectives | I can construct a relative frequency table for a set of data from two categorical variables I can interpret data presented in a relative frequency table. I can construct a scatterplot from a set of bivariate data. I can determine whether a scatterplot displays a linear or nonlinear pattern, and whether or not its association is positive, negative, or there is no association. I can estimate a line of best fit to a set of data presented in a scatterplot. I can use an estimated line of best fit to predict values of one variable in a scatterplot when given the value of another. | | 2 Weeks | Unit 8: Probability | | Plan | Determine Sample Space and Theoretical Probability 8.SP.4: Determine the sample space and use the sample space to determine the theoretical probability of a given set of outcomes for compound experiments, using organized lists, tables, or tree diagrams. Determine Theoretical and Experimental Probability of Compound Experiments 8.SP.5: Determine theoretical and experimental probabilities of compound experiments. Use Theoretical Probability to Make Predictions | | | 8.SP.6: Use theoretical probability of an event in a compound experiment to predict the
number of times that event will occur for a large number of experiments. | |------------------------|---| | Learning
Objectives | I can determine the sample space for compound experiments. I can determine theoretical probability from a sample space for compound experiments. I can determine theoretical and experimental probabilities for compound experiments. I can use theoretical probability to predict the number of times an event will occur in a large number of experiments. | | | End of Third 9 Weeks | | 2 Weeks | Unit 9: 3D Geometry | | Plan | Volume of Spheres, Cylinders, and Cones 8.GM.1: Apply the formulas for the volume and surface area of cylinders, cones, and spheres to solve real-world and mathematical problems. Surface Area of Spheres, Cylinders, and Cones 8.GM.1: Apply the formulas for the volume and surface area of cylinders, cones, and spheres to solve real-world and mathematical problems. 2D Cross Sections 8.GM.2: Describe the two-dimensional figure that results from slicing a three-dimensional figure parallel and perpendicular to the base. | | Learning
Objectives | I can calculate the volume of a sphere, cylinder, and cone. I can calculate the surface area of a sphere, cylinder, and cone. I can identify the shape of the cross sections created by slicing a sphere, cylinder, or cone with a plane perpendicular or parallel to its base. | | | End of New Content | | ?? Weeks | ATLAS Review | | | ATLAS Quizzes on Google Site |