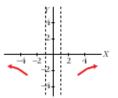
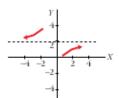

This document contains text automatically extracted from a PDF or image file. Formatting may have been lost and not all text may have been recognized.

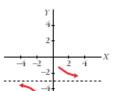
To remove this note, right-click and select "Delete table".

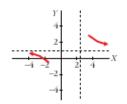


b)
$$\lim_{x \to +\infty} \frac{-2x^2}{3-x} = +\infty$$
; $\lim_{x \to -\infty} \frac{-2x^2}{3-x} = -\infty$


c)
$$\lim_{x \to +\infty} \frac{-1}{x^2 - 1} = 0$$
; $\lim_{x \to -\infty} \frac{-1}{x^2 - 1} = 0$

d)
$$\lim_{x \to +\infty} \frac{1}{(2-x)^3} = 0$$
; $\lim_{x \to -\infty} \frac{1}{(2-x)^3} = 0$


e)
$$\lim_{x \to +\infty} \frac{2x-1}{x+2} = 2$$
; $\lim_{x \to -\infty} \frac{2x-1}{x+2} = 2$


f)
$$\lim_{x \to +\infty} \frac{x^2 + 5}{1 - x} = -\infty$$
; $\lim_{x \to -\infty} \frac{x^2 + 5}{1 - x} = +\infty$

g)
$$\lim_{x \to +\infty} \frac{2-5x}{x+3} = -3;$$
 $\lim_{x \to -\infty} \frac{2-5x}{x+3} = -3$

h)
$$\lim_{x \to +\infty} \frac{3-2x}{5-2x} = 1$$
; $\lim_{x \to -\infty} \frac{3-2x}{5-2x} = 1$

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

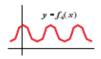
Página 156

PARA EMPEZAR, REFLEXIONA Y RESUELVE

 $2/x x \ge 1 \square \square \square \square \square \square \square \square x2 2x x + 2 \sqrt{x} < 0$

 $0 \le x < 3 \ x \ge 3$

El valor de la función $f(x) = x^2$ 2x + 4x-10-45 para x=5 no se puede obtener directa- mente porque el denominador se hace cero. Lo obtendremos por aproximaciones sucesivas, dando a x los valores 4; 4,9; 4,99; I Comprueba que: f(4) = 6.5; f(4.9) = 6.95; f(4.99) = 6.995I Calcula f(4,999); f(4,9999); f(4,99999); ... La Te parece razonable afirmar que, cuando x se aproxima a 5, el valor de f(x)2x - -10 45, entonces: f(4,999) = 6,9995; f(4,9999) = 6,99995; f(4,99999) = 6,999995 $\lim_{x \to 5} f(x) = 7 \times 5 \text{ I Calcula, analogamente, } \lim_{x \to 3} x^2 + 1 \times 10^{-1} \text{ Calcula, analogamente}$ 2x 6x $-6-27 \cdot 1 f(2) = 5.5$; f(2.9) = 5.95; f(2.99) = 5.995; f(2.999) = 5.9995; f(2,9999) = 5,99995 $lim\ f(x) = 6\ x \rightarrow 3$ Problema 1 Representa gráficamente las siguientes funciones y di, de cada una de ellas, si es continua o discontinua: a) $y = \square \square \square x2$ 5 - + 3x < 1 $x2 x \ge 1 \text{ b}) y = \square \square \square \square \square 4$ 4 - x 2x - 11 x < 00 < x < 5 x > 5c) y = d) y = x - + 3x < 1


Página 166

1. Di el límite cuando $x \to +\infty$ de las siguientes funciones dadas por sus gráficas:

$$\lim_{x \to +\infty} f_1(x) = -\infty$$

$$\lim_{x \to +\infty} f_3(x) = +\infty$$

$$\lim_{x \to +\infty} f_2(x) = -3$$

$$\lim_{x \to +\infty} f_{4}(x)$$
 no existe

Página 167

1. Di el valor del límite cuando $x \to +\infty$ de las siguientes funciones:

a)
$$f(x) = -x^2 + 3x + 5$$
 b) $f(x) = 5x^3 + 7x$ c) $f(x) = x - 3x^4$

b)
$$f(v) = 5v^3 + 7v$$

c)
$$f(x) = x - 3x^4$$

$$d) f(x) = \frac{1}{3x}$$

d)
$$f(x) = \frac{1}{3x}$$
 e) $f(x) = -\frac{1}{x^2}$ f) $f(x) = \frac{x^3 - 1}{-5}$

f)
$$f(x) = \frac{x^3 - 5}{-5}$$

2. Como lím $(x^3 - 200x^2) = +\infty$, halla un valor de x para el cual $x^3 - 200x^2$ sea mayor que 1 000 000.

Por ejemplo, para x = 1000, f(x) = 800000000.

3. Como $\lim_{x \to +\infty} \frac{1}{x^2 - 10x} = 0$, halla un valor de x para el cual $\frac{1}{x^2 - 10x}$ sea menor que 0,0001.

Por ejemplo, para x = 1000, f(x) = 0.00000101.

Página 168

4. Calcula $\lim_{x \to +\infty} f(x)$ y representa sus ramas:

$$a) f(x) = \frac{1}{3x}$$

b)
$$f(x) = \frac{3}{x}$$

c)
$$f(x) = -\frac{1}{x^2}$$

d)
$$f(x) = 3x - 5$$

```
a) b)
6 6
4
2
-2 2 6 8
-2
c)
2 4 2
-4 -2 2 4
-2
6 d)
2 -4 8 4 6 4
-4 -2 2 4 6
-2
```

Las tres primeras son continuas y d) es discontinua (d) es continua en todos los puntos excepto en x = 3).

Página 157

Problema 2

-2 2 4 6

Vamos a comprobar que la gráfica de la función y = f(x) = se aproxima a la recta de ecuación y = x - 2. I x2 - 3x + 1

Completa en tu cuaderno esta representación, obteniendo los valores de f(x) para los siguientes valores de x:

5, 6, 7, 8, 9, 10 y 11

a) $\lim_{x \to +\infty} f(x) = 1 \to y = 1$ es asíntota horizontal.

b) grado de P – grado de $Q \ge 2$ $\lim_{x \to +\infty} f(x) = +\infty \to \text{rama parabólica hacia arriba}.$

Página 172

1. Halla $\lim_{x \to -\infty} f(x)$ y representa la rama correspondiente:

$$f(x) = -2x^3 + 7x^4 - 3$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 7x^4 = +\infty$$

2. Halla $\lim_{x \to -\infty} f(x)$ y traza las ramas correspondientes:

a)
$$f(x) = (x^2 + 3)/(-x^3)$$

b)
$$f(x) = -x^3/(x^2 + 3)$$

a)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{-x^3} = \lim_{x \to -\infty} \frac{1}{-x} = 0$$

b) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-x^3}{x^2} = \lim_{x \to -\infty} -x = +\infty$

Página 173

3. Halla las ramas infinitas, $x \to -\infty$ de estas funciones y sitúa la curva respecto a

a)
$$y = \frac{1}{x^2 + 1}$$

b)
$$y = \frac{x}{1 + x^2}$$

c)
$$y = \frac{x^2}{1 + x^2}$$

a)
$$y = \frac{1}{x^2 + 1}$$
 b) $y = \frac{x}{1 + x^2}$ c) $y = \frac{x^2}{1 + x^2}$ d) $y = \frac{x^3}{1 + x^2}$

Comprueba para valores muy grandes de x que la diferencia entre curva y recta llega a ser muy pequeña.

$$x 50 100 1 000 y = f(x) y = x - 2$$
 DIFERENCIA

De este modo se comprueba que la recta y = x - 2 es asintota de la función y = x2

x - 3x

-1+1 I Comprueba, mediante pasos similares a los anteriores, que la función

y = x2 x3

-2x tiene por asíntota a la recta de ecuación y = x + 2.

1x 5 6 7 8 9 10 11 10 f (x) 2,75 3,8 4,83 5,86 6,88 7,89 8,9 8

$$6 \times 50 \times 100 \times 1000 \times 4 = f(x) \times 47,9897,99997,999 y =$$

x – 2 48 98 998 2 DIFERENCIA 0,02 0,01 0,001 –2 2 4 6 8 10

-2

I Para y = f(x) = x3

 $x^2 - 2x = 10.8$

x 50 100 1000 6 y = f(x) 52,08 102,04 1002,004 4 y = x + 2 52 102 1002 2 DIFERENCIA 0,08 0,04 0,004 -2 2 4 6 8 -2

Página 159 1. Explica por qué la función $y = x^2 - 5$ es continua en todo Á.

Porque es polinómica.

2. Explica por qué la función $y = \sqrt{5} - x$ es continua en $(-\infty, 5]$. Porque $(-\infty, 5]$ es su dominio, y en él no hay ningún punto crítico.

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

Página 156

PARA EMPEZAR, REFLEXIONA Y RESUELVE

El valor de la función $f(x) = \frac{x^2 + 4x - 45}{2x - 10}$ para x = 5 no se puede obtener directa-

mente porque el denominador se hace cero. Lo obtendremos por aproximaciones sucesivas, dando a x los valores 4; 4,9; 4,99; ...

■ Comprueba que:

$$f(4) = 6.5$$
; $f(4.9) = 6.95$; $f(4.99) = 6.995$

- Calcula f(4,999); f(4,9999); f(4,99999); ...
- ¿Te parece razonable afirmar que, cuando x se aproxima a 5, el valor de f(x) se aproxima a 7? Lo expresamos así: $\lim_{x \to 5} f(x) = 7$
- Si $f(x) = \frac{x^2 + 4x 45}{2x 10}$, entonces:

$$f(4,999) = 6,9995$$
; $f(4,9999) = 6,99995$; $f(4,99999) = 6,999995$
 $\lim_{x \to 5} f(x) = 7$

- Calcula, análogamente, $\lim_{x\to 3} \frac{x^2 + 6x 27}{2x 6}$.
- f(2) = 5.5; f(2.9) = 5.95; f(2.99) = 5.995; f(2.999) = 5.9995; f(2.9999) = 5.99995 $\lim_{x \to 3} f(x) = 6$

Problema 1

Representa gráficamente las siguientes funciones y di, de cada una de ellas, si es continua o discontinua:

a)
$$y = \begin{cases} x^2 + 3 & x \le 1 \\ 5 - x^2 & x \ge 1 \end{cases}$$

b)
$$y = \begin{cases} 4 & x < 0 \\ 4 - x & 0 \le x \le 5 \\ 2x - 11 & x > 5 \end{cases}$$

c)
$$y = \begin{cases} \sqrt{x+3} & x \le 1 \\ 2/x & x \ge 1 \end{cases}$$

d)
$$y = \begin{cases} x^2 & x < 0 \\ 2x & 0 \le x \le 3 \\ x + 2 & x \ge 3 \end{cases}$$

puntos y qué tipo de discontinuidad presenta: a) $y = x$
x+2
-3 b) y = x2
$x - 3x$ c) $y = x^2 - 3$
x
d) $y = x2 \ 1 \ e$) $y = \Box \Box \Box 3x$
x + -4, x < 3
1, $x \ge 3$ f) $y = a$) Rama infinita en $x = 3$ (asíntota vertical). b) Discontinuidad evitable en $x = 0$ (le falta ese punto). c) Rama infinita en $x = 0$ (asíntota vertical). d) Rama infinita en $x = 0$ (asíntota vertical). e) Salto en $x = 3$. f) Salto en $x = 4$.
Página 162
1. Calcula el valor de los siguientes límites:
a) b) $(\cos x - 1)$
(a) - (b) - 2
2. Calcula estos límites:
a) b) $log \ 10 \ \square \ \square \ 3$
1 si
$\operatorname{si} x \neq 4 \ x = 4$
$\lim x \to 0$ 3
$x-2 \times lim \to 0 \ 3 \ 2$
$x \lim \to 2 \sqrt{x^2 - 3x + 5} \lim x \to 0.1 \text{ a) } \sqrt{3} \text{ b)} -1$
Página 163 3. Calcula k para que $y = \square \square x3 - 2x + k$
$7 \sin x \neq 3$
si $x = 3$ sea continua en Á. $lim(x3x → 3f(3) = 7 - 2x + k) = 21 + k$ □ □ □ □ 21 + $k = 7 → k = -14$ Página 165
4. Calcula los límites de las funciones siguientes en los puntos que se indican. Donde convenga, especifica el valor del límite a la izquierda y a la derecha del punto. Representa gráficamente los resultados. a) $f(x) = x2 x3$
-4 en -2, 0 y 2 b) f(x) = (x 4x)
2)2 12 en 2, 0 y 3 c) $f(x) = x2$
<i>x</i> 2 –
+2x
T 2.1
2x +

+ 3x2 en 0 y -3

Página 182

30 Prueba que la función $f(x) = \frac{x^2 - 4}{x^2 - 2x}$ solo tiene una asíntota vertical y otra

horizontal.

■ Alballar $\lim_{x\to 2} f(x)$ verds que no es ∞.

$$\lim_{x\to 2} f(x) = 2; \quad \lim_{x\to 0^-} f(x) = -\infty; \quad \lim_{x\to 0^+} f(x) = +\infty; \quad \lim_{x\to \pm\infty} f(x) = 1$$

Asíntota vertical: x = 0

Asíntota horizontal: y = 1

31 Calcula los siguientes límites y representa gráficamente los resultados que obtenzas:

a)
$$\lim_{x\to 0} \frac{x-1}{x}$$

b)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$$

a)
$$\lim_{x \to 0} \frac{x-1}{x}$$

$$\lim_{x \to 0^-} f(x) = +\infty; \quad \lim_{x \to 0^+} f(x) = -\infty$$

No tiene límite en x = 0

b)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x} = \lim_{x \to 1} \frac{(x+1)(x-1)}{x(x-1)} = \lim_{x \to 1} \frac{x+1}{x} = 2$$

La función no es continua en x = 1, pero tiene límite en ese punto.

32 Estudia el comportamiento de estas funciones en los puntos en los que no están definidas:

a)
$$y = \frac{1}{(1-x)^2}$$

b)
$$y = \frac{x}{x-5}$$


c)
$$y = \frac{1}{x^2 - 2x}$$

d)
$$y = \frac{1}{x^2 - 4}$$

a)
$$y = \frac{1}{(1-x)^2}$$

No definida en x = 1.

$$\lim_{x \to 1^{-}} f(x) = +\infty; \quad \lim_{x \to 1^{+}} f(x) = +\infty$$

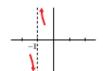
5. Calcula $\lim_{x \to +\infty} f(x)$ y representa sus ramas:

$$a) f(x) = \frac{x^3 - 1}{-5}$$

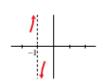
b)
$$f(x) = \frac{x^2 - 3}{x^3}$$

$$c) f(x) = \frac{x^3}{x^2 - 3}$$

d)
$$f(x) = \frac{1 - x^3}{1 + x^3}$$


Página 169

Halla las asíntotas verticales y sitúa la curva respecto a ellas:


a)
$$y = \frac{x^2 + 3x + 11}{x + 1}$$
 b) $y = \frac{x^2 + 3x}{x + 1}$

b)
$$y = \frac{x^2 + 3x}{x + 3}$$

Página 166

1. Di el límite cuando $x \to +\infty$ de las siguientes funciones dadas por sus gráficas:

 $f \circ 1 = f \circ 4 = f \circ 2 = f \circ 3 = f \circ$

Página 167

1. Di el valor del límite cuando $x \to +\infty$ de las siguientes funciones:

a)
$$f(x) = -x2 + 3x + 5$$
 b) $f(x) = 5x3 + 7x$ c) $f(x) = x - 3x4$ d) $f(x) = 3x + 1$ e) $f(x) = -x + 1$ f) $f(x) = x + 1$ f) $f(x) = x + 1$ f) $f(x) = x + 1$ f f(x) = x - 1 f f(x) = x - 1 f f(x) = x - 1 f f(x) = x - 1

d) 0 e) 0 f)
$$-\infty$$

2. Como $x \lim \to +\infty$ $(x3 - 200x2) = +\infty$, halla un valor de x para el cual x3 - 200x2 sea mayor que 1000000.

Por ejemplo, para x = 1000, f(x) = 800 000 000.

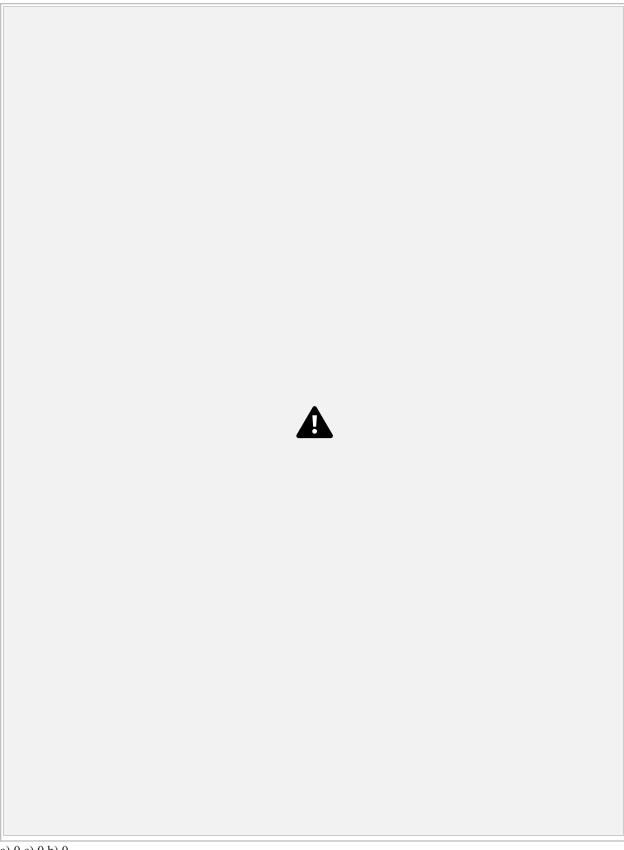
3. Como lím $x \rightarrow +\infty x^2 - 1$

10x = 0, halla un valor de x para el cual $x^2 - 1$

10x sea menor que 0,0001. Por

ejemplo, para x = 1000, f(x) = 0,00000101.

Página 168


4. Calcula *lim* f(x) y representa sus ramas: $x \to +\infty$

a)
$$f(x) = 1$$

$$3x \text{ b}) f(x) = 3 x \text{ c}) f(x) = -x2 \text{ 1 d}) f(x) = 3x - 5$$

Unidad 7. Límites de funciones. Continuidad y ramas infinitas

Α

$$d) +\infty$$

5. Calcula $x \lim \to +\infty f(x)$ y representa sus ramas:

$$a) f(x) = x3$$

$$-5 - 1$$
 b) $f(x) = x2$

$$x3 - 3$$
 c) $f(x) = x2 x3$

$$-3 d) f(x) = 11$$

$$+-x3x3$$

a)
$$-\infty$$
 b) 0

c)
$$+\infty$$
 d) -1

-1

Página 169

1. Halla las asíntotas verticales y sitúa la curva respecto a ellas:

a)
$$y = x^2 +$$

x 3x

$$+1+11$$
 b) $y = x^2 + 3x$

$$x + 1$$

a)
$$x \lim_{x \to -1} -f(x) = -\infty$$

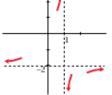
$$x \lim \to -1+f(x) = +\infty$$
 \square \square \square \square \square $x = -1$ es asíntota vertical b) $f(x) = +\infty$

$$x \ lim \rightarrow -1 + f(x) = -\infty \square -1 \ x \ lim \rightarrow -1 - \square \square \square \square x = -1$$
 es asíntota vertical

-1

13 Dada la función $y = \frac{2x}{1-x}$, halla:

a)
$$\lim_{x \to 1^-} \frac{2x}{1-x}$$


b)
$$\lim_{x \to 1^+} \frac{2x}{1-x}$$

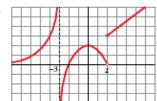
c)
$$\lim_{x \to +\infty} \frac{2x}{1-x}$$

d)
$$\lim_{x \to -\infty} \frac{2x}{1-x}$$

Representa gráficamente los resultados obtenidos.

$$d) -2$$

Estas son, respectivamente, las gráficas de las funciones:


$$f_1(x) = \frac{1}{(x+2)^2}$$
 y $f_2(x) = \frac{-1}{x+2}$

¿Cuál es el límite de cada una de estas funciones cuando $x \rightarrow -2$?

Observa la función cuando x → -2 por la izquierda y por la derecha.

$$\left. \begin{array}{l} \lim\limits_{x \to -2^-} f_1(x) = +\infty \\ \lim\limits_{x \to -2^+} f_1(x) = +\infty \end{array} \right\} \ \lim\limits_{x \to -2} f_1(x) = +\infty$$

$$\begin{cases} \lim_{x \to -2} f_2(x) = +\infty \\ \lim_{x \to -2^+} f_2(x) = -\infty \end{cases}$$
 No existe
$$\lim_{x \to -2} f_2(x)$$

Sobre la gráfica de la función f(x), halla:

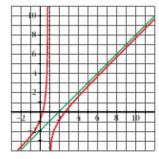
a)
$$\lim_{x \to -3^-} f(x)$$

b)
$$\lim_{x \to -3^+} f(x)$$

c)
$$\lim_{x \to 0} f(x)$$

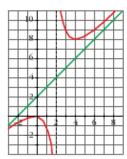
c)
$$\lim_{x\to 0} f(x)$$
 d) $\lim_{x\to -\infty} f(x)$

2. Halla las asíntotas verticales y sitúa la curva respecto a ellas: a) $y = x^2 + 2$ $x^2 - 2x$ b) $y = x^2 x^2$ -2x + 2+1 a) $x \lim_{x \to 0} f(x) = +\infty$ $x \lim \to 0 + f(x) = -\infty \square \square \square \square x = 0$ es asíntota vertical $x \lim_{x \to 0} f(x) = -\infty x \lim_{x \to 0} f(x) = +\infty \square \square \square \square \square x = 2$ es asíntota vertical b) $x \lim_{x \to 0} f(x) = +\infty$ $f(x) = +\infty \square \square \square \square \square x = 1$ es asíntota vertical $x \ lim \rightarrow 1+1$ Página 171 3. Halla las ramas infinitas, cuando $x \to +\infty$, de estas funciones. Sitúa la curva respecto a su asíntota: a) y = 1 + xx2 b) y = 1 x3+x2a) $\lim_{x \to +\infty} f(x) = 0 \to y = 0$ es asíntota horizontal. $x \to +\infty$ b) y = x + -x $1 + x2 \rightarrow y = x$ es asíntota oblicua. 1 4. Halla las ramas infinitas, $x \to +\infty$, de estas funciones. Sitúa la curva respecto a sus asíntotas, si las hay: a) y = x2 x2_+ $2x \ 2 \ b) \ y = 2x3 - 3x2 + 7$ x Unidad 7. Límites de funciones. Continuidad y ramas infinitas


iN A Comprueba para valores muy grandes de x que la diferencia entre curva y recta llega a ser muy pequeña.

æ	50	100	1 000
y = f(x)			
y = x - 2			
DIFERENCIA			

De este modo se comprueba que la recta y=x-2 es asintota de la función $y=\frac{x^2-3x+1}{x-1}$


- Comprueba, mediante pasos similares a los anteriores, que la función $y = \frac{x^3}{x^2 2x}$ tiene por asíntota a la recta de ecuación y = x + 2.
- x 5 6 7 8 9 10 11 f(x) 2,75 3,8 4,83 5,86 6,88 7,89 8,9

x	50	100	1 000
y = f(x)	47,98	97,99	997,999
y = x - 2	48	98	998
DIFERENCIA	0,02	0,01	0,001

Para $y = f(x) = \frac{x^3}{x^2 - 2x}$

x	50	100	1 000
y = f(x)	52,08	102,04	1002,004
y = x + 2	52	102	1002
DIFERENCIA	0,08	0,04	0,004

Página 159

- Explica por qué la función y = x² 5 es continua en todo R.
 Porque es polinómica.
- Explica por qué la función y = √5 x es continua en (-∞, 5].
 Porque (-∞, 5] es su dominio, y en él no hay ningún punto crítico.

1

b) grado de P – grado de $Q \ge 2$

 $\lim f(x) = +\infty \rightarrow \text{rama parabólica hacia arriba. } x \rightarrow +\infty$

Página 172

1. Halla $x \lim \to -\infty f(x)$ y representa la rama correspondiente:

$$f(x) = -2x3 + 7x4 - 3$$

$$\lim f(x) = \lim 7x4 = +\infty \ x \to -\infty \ x \to -\infty$$

2. Halla $x \lim \to -\infty f(x)$ y traza las ramas correspondientes:

a)
$$f(x) = (x2 + 3)/(-x3)$$
 b) $f(x) = -x3/(x2 + 3)$

a)
$$x \lim \to -\infty f(x) = x \lim \to -\infty x^2$$

$$-x3 = x \ lim \rightarrow -\infty \ 1$$

$$-x = 0$$

b)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x \to -\infty -x3$$

$$x2 = lim -x = +\infty x \rightarrow -\infty$$

Página 173

3. Halla las ramas infinitas, $x \to -\infty$ de estas funciones y sitúa la curva respecto a

las asíntotas: a)
$$y = b$$
) $y = c$) $y = 1 x^2$

$$+ x2 d) y = 1 1 x x3 x2 + 1 1 + x2 + x2$$

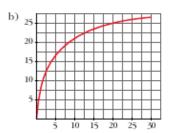
Unidad 7. Límites de funciones. Continuidad y ramas infinitas

/

A

40 Calcula a para que las siguientes funciones sean continuas en x = 1:

a)
$$f(x) = \begin{cases} x+1 & \text{si } x \le 1\\ 4-ax^2 & \text{si } x \ge 1 \end{cases}$$


a)
$$f(x) =\begin{cases} x+1 & \text{si } x \le 1 \\ 4-ax^2 & \text{si } x \ge 1 \end{cases}$$
 b) $f(x) =\begin{cases} (x^2-1)/(x-1) & \text{si } x \ne 1 \\ a & \text{si } x = 1 \end{cases}$

b)
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)} = 2$$

$$f(1) = a$$

- 41 En una empresa se hacen montajes en cadena. El número de montajes realizados por un trabajador sin experiencia depende de los días de entrenamiento según la función $M(t) = \frac{30t}{t+4}$ (t en días).
 - a) ¿Cuántos montajes realiza el primer día? ¿Y el décimo?
 - b) Representa la función sabiendo que el periodo de entrenamiento es de un
 - c) ¿Qué ocurriría con el número de montajes si nunca acabara el entrena-
 - a) M(1) = 6 montajes el primer día.

$$M(10) = 21,43 \rightarrow 21$$
 montajes el décimo día.

c) Se aproxima a 30 (pues $\lim_{t \to +\infty} \frac{30t}{t+4} = 30$).

Página 183

42 El gasto mensual en alimentación de una familia depende de su renta, x. Así:

$$g(x) = \begin{cases} 0.6x + 200 & \text{si } 0 \le x \le 1000 \\ 1000x/(x + 250) & \text{si } x > 1000 \end{cases}$$

b)
$$\lim_{x \to \infty} f(x) = 0 \to y = 0$$
 es asíntota horizontal. $x \to -\infty$

c)
$$\lim_{x \to \infty} f(x) = 1 \to y = 1$$
 es asíntota horizontal. $x \to -\infty 1$

d)
$$y = x + 1 - x$$

$$+x2 \rightarrow y = x$$
 es asíntota oblicua. 1

4. Halla las ramas infinitas, cuando $x \to -\infty$, y si tienen asíntotas, sitúa la curva

respecto a ellas: a) y = x2 x4

$$+ 1 b) y = x2 x2$$

-+

$$2x \ 2 \ c) y = x2$$

x +

+3x

1 d)
$$y = 2x3 - 3x2$$

 \boldsymbol{x}

a) grado
$$P$$
 – grado $Q \ge 2$

$$x \lim -\infty f(x) = +\infty \rightarrow \text{rama parabólica}.$$

b)
$$\lim_{x \to \infty} f(x) = 1 \to y = 1$$
 es asíntota horizontal. $x \to -\infty 1$

c)
$$y = x + 2 + -2$$

$$x + 1 \rightarrow y = x + 2$$
 es asíntota oblicua. 2

-2

d)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (2x^2 - 3x) = +\infty \quad x \to -\infty$$