
SHPE-UF-Mobile-Kotlin Onboarding 
Overview 

This document outlines the information required to get up-to-speed with the SHPE UF 
Android App including proper use of Git/GitHub, Android Studio, and project structure. 

Running the app on your local device 

1)​ If you haven’t already, set up your Android Studio environment 
a)​ Follow the Android Studio Setup guide  

2)​ Once you have access to the GitHub repo, copy the https link under “<> Code”. 

 

3)​ Go to your desired directory in your local device and run the git clone command 
with the copied link in cmd:

 
4)​ Open SHPE-UF-Mobile-Kotlin in Android Studio. 

a)​ Alternatively, you can open the project directly from Android Studio by 
going to File->New->Project from Version Control and adding the link (you 
must have your GitHub account linked to Android Studio) 

https://docs.google.com/presentation/d/1iU2fH6aBEpNJN4qnBDZYuV31eMTANEjR/edit?usp=drive_link&ouid=106367878597630897397&rtpof=true&sd=true
https://github.com/shpe-uf/SHPE-UF-Mobile-Kotlin/tree/main


 

5)​ Run the application in your emulator by clicking on the  button located on the 
top bar of your Android Studio window. You should be able to see the app on 
your emulator. 

How it works 

 



Data Layer 

The entry point of the data layer is repositories.The data layer is made of repositories 
that each can contain zero to many data sources. A single repository class should 
represent each different type of data handled in an app. For example, a 
MoviesRepository class for data related to movies, or a PaymentsRepository 
class for data related to payments. 

Repository classes are mainly responsible for exposing data to the rest of the app, 
among other things. State Holder classes such as ViewModels (found in the UI Layer) 
should use repository classes as the only entry point to the data layer. 

What’s a DAO (Data Access Object)? 
A Database Access Object (DAO) is a design pattern used to abstract and 
encapsulate the interaction with a database. 
Translation: it’s an object that will handle communication with the 
database. 

The repository class will expose the data to the UI layer via the ViewModel. The 
repository class will call the DAO, and the DAO will then perform the call to the 
database. 

To learn more about the Data layer, visit this codelab (Building a Data Layer) 

UI Layer 

The UI layer is responsible for reflecting and handling the UI state. UI state is the data 
that the user should see at a given moment. For example, if a user clicks a Read 
Movie Description button on a Movie App, the user should see the description for 
that movie. This is UI State. 

The UI layer is broken down into UI elements and State holders. UI elements are 
activities that display the data (buttons, lists, cards, text boxes). State holders are 
responsible for the production of UI state and contain the necessary logic for that task. 

To learn more about the UI layer, visit this codelab (ViewModel and State in Compose) 

Here is a quick walkthrough of the main folders in our UI: 

●​ /navigation 
○​ Contains the navigation controller, used to switch between screens in the 

app 

https://developer.android.com/codelabs/building-a-data-layer?hl=en#0
https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmodel-and-state?authuser=1&continue=https%3A%2F%2Fdeveloper.android.com%2Fcourses%2Fpathways%2Fandroid-basics-compose-unit-4-pathway-1%3Fauthuser%3D1%23codelab-https%3A%2F%2Fdeveloper.android.com%2Fcodelabs%2Fbasic-android-kotlin-compose-viewmodel-and-state#0


●​ /pages 
○​ Contains all the screens in the app as well as their respective ViewModels 

(Sign In, Register, Home, Points) 
●​ /sharedComponents 

○​ Contains common UI elements such as buttons, cards, forms, etc. 
●​ /theme 

○​ Contains color, shape and type files for application theming 
●​ /java/res 

○​ This folder contains all the images, strings, and other static assets 

Testing 

Testing files are found in the following folders: 

Instrumented tests (UI) - app -> java -> com.example.shpe_uf_mobile_kotlin 
(androidTest) 

 

Unit test - app -> java -> com.example.shpe_uf_mobile_kotlin (test) 

 

Making changes to the frontend 

If you add any new files, make sure everything stays organized and follows the proper 
file structure. Try to create reusable components and only create new components 



when needed. Additionally, if you are styling a component, do not hardcode colors or 
shapes. Use the Color.kt, Theme.kt, and Type.kt. This will allow us to maintain a 
consistent theme throughout the app.  

Working with GitHub 

High level walkthrough:  

1)​ Once you are satisfied with your code, you will push your code and open a pull 
request. In your pull request, make sure to add a brief description of your 
code/implementation and link it to your task (more about this below). 

2)​ Once your pull request passes all the tests and is approved by a technical officer, 
it is ready to be merged with the master branch. 

 
Making branches, commits with Android Studio 
 
Branches 
When you are working on adding a new feature or fixing a bug in your source code, 
group all related changes in a separate branch. This way, you can manage everything 
related to that particular task in one place. For example, if you decide not to add a new 
feature after building it without using source control, it can be a significant effort to undo 
the work. If you organize your work in a branch, you can decide not to merge the branch 
and avoid having to undo work.  
 
In Android Studio, you can look at all the local branches(those on your device) and 
remote branches (those on the online repository) on the Git tab.  

 
Additionally, you can create a branch by clicking “New Branch…” below “Branches…”. 
Once you are ready to create your new branch, make sure it follows the naming 
standard of INITIALS_brief_description, and make sure “Checkout branch” is checked if 
you want to work on that branch right after creating it. 



 
 
Commits 
Commiting is like saving a snapshot of your project’s current state, allowing you to 
document changes, save a version of the code, and revert back to it when needed.  
 
As you make changes to your source code in a source control repository, Android 
Studio tracks those changes and highlights them in the Project navigator on the left side 
panel. While you’re working on a change, look at the Project navigator to see your 
changes in the current branch. 

 
 
 
 
When you’re done making changes, commit them to save them permanently in your 
source control repository. Choose Git > Commit, and review your changes.  



 
 

Document your changes with a commit message that describes what your commit 
accomplishes. Click the “Commit” button to commit your changes, or click the “-” to 
continue working without committing to the repository. 

 

If you want to push your code to GitHub as well, click the “Commit and Push” button. 
Alternatively, you can click “Push” on the Git tab (Git > Push >Push) 

 

 
Sending a pull request 

●​ Make sure your branch has the naming standard of INITIALS_brief_description. 
That is, a brief description of what you are working on. 

●​ Make sure your code passes all the tests before sending the pull request. As our 
application grows, we will be creating new tests to ensure the reliability of the 
app.  

●​ Make sure to follow the template the file pull_request_template.md here 
 

https://github.com/shpe-uf/SHPE-UF-Mobile-Kotlin/blob/main/.github/pull_request_template.md


After committing and pushing your changes, go to Github to open a pull request, it will 
be labeled as “Compare & pull request”. 

 
 

Once you create your pull request, add a brief description and link it to your Asana task. 
In Asana, right-click that task you were assigned and click “copy task link”. Paste in the 
pull request description. 

 
 

To get new changes from the remote repository you can click source Git > Pull. In the 
dialog that appears, select the branch with the changes you want to apply to your local 
repository, and click Pull. 

 

For using Git/GitHub without Android Studio, watch this video (Git and GitHub for 
Beginners - Crash Course) 

 

 

https://www.youtube.com/watch?v=RGOj5yH7evk
https://www.youtube.com/watch?v=RGOj5yH7evk


What’s Next? 

You are finally ready to contribute to the SHPE UF Android App. Lastly, make sure you 
are in the SHPE UF Tech Cabinet Discord as well as the SHPE-UF Mobile (Kotlin) 
Asana project.  

If you haven’t, go over the Development Process doc to learn how to assign and 
complete tasks using Asana, and what to expect from meetings. 

https://docs.google.com/document/d/1vojNhvCJHWI_xff321BoiirCZa3ZFyrKSDcxOoZUbL8/edit

