
Best Practices for building and using SpaDES
modules (a live document)

(Please provide feedback or changes via comments)

These suggestions are derived from 4 years of experience with creating modules that are
extremely modular and reproducible. Clearly, there are many ways to get to a working module,
but these steps are designed by the SpaDES developers to work well to get to a higher
standard of re-usability. The entries are in no particular order of importance.

Module development

Metadata
- Scan module visually for every place that there is a `sim$...` used in the module code on

the right hand side of an assignment operator (<- or =). These are inputs and should
be included as expectsInputs

- Scan module visually for every place that there is a sim$... used in the module code on
the left hand side of an assignment operator (<- or =). These are outputs.

- Scan module visually for sneaky objects that are being pulled from the user’s
.GlobalEnv. I.e., there is no source inside the function arguments. These should be
converted to inputs, i.e., use sim and expectsInputs.

- Add information on expectsInputs (i.e. description) about where would real data come
from (i.e. another module, private repository, etc) and if the defaults provided in the
module are dummy or real.

Data
- Put any data used as inputs in the cloud. To use `prepInputs` to get these, `googledrive`

or `ftp` or several options are available currently.
- Have your module download the data, rather than do it manually outside of the module

Inputs
- Don’t use objects in the `.GlobalEnv` as they will be lost if `Cache` is used or if given to

another person/computer

.inputObjects
- Use this section (it is at the bottom of the module template code when newModule() is

run) to create a modular module, i.e,. Works stand alone and also with other modules.
- In our experience, a module is not particularly useful when data dependencies are left

unfilled. See next point.
- The objective of this section is to create a “default” value for every expectsInputs

object
- This can be of various sorts:

- “dummy” data, or
- a specific (small) study area, or

- This allows a new user to “be up and running” with at least
- Do each expectsInputs object, one at a time, using an if block as such as this:

If (!suppliedElsewhere("theObjectName")) {

theObjectName <- prepInputs(url = ...)

}

- Two key components to this block: suppliedElsewhere and prepInputs.
suppliedElsewhere is a way to avoid taking the default if the user has provided a
non-default. prepInputs is a way to have a reproducible way to get the data. It is built to
do many things that are very general.

Saving objects to disk
- Always schedule any saving of objects with .saveInitialTime and .saveInterval

- This way module user can opt not to save at the spades call
- Do create and use a save event with key objects that are likely to be of interest. But this

is not very important as the user can use outputs at module initiation

Plotting
- Always schedule any plotting with .plotInitialTime and .plotInterval. These allow

user to turn them off easily with .plotInitialTime = NA (in spades call or as a module
parameter)

Functions
- Avoid using sim as an argument in a user defined function → be more precise and

specify the actual objects. The exception to this are doEvent.moduleName . The module
template includes several (e.g., Init(sim)), but these are likely to be removed in the
future. Any others should avoid using entire sim

Instead of:

randomPointsInRaster <- function(sim, numPts) {

sample(ncell(sim$raster), numPts)

}

use

randomPointsInRaster <- function(ras, numPts) {

sample(ncell(ras), numPts)

}

- Put functions at the top level of the moduleName.R file or in a sub-folder called R inside
the module. In general, don’t define functions inside other functions as there are
potentially heavy RAM costs to doing this (for explanation, see
?SpaDES.core::restartR). Every file that ends in .r or .R that exists in the R sub-folder
will be sourced into the simList object and will be available for the module, and only the
module, to use.

- If functions are to be “shared” amongst modules, make an R package, make one
version of the file and list that package in pkgDeps of the module metadata of every
package that uses it. The module will then have access to these functions. Note this can
be a non-published, non-public package, hosted on github.com, and it can be listed as
“githubUser/repositoryName@branch” in pkgDeps. Try to never copy and paste a
function so there is more than one copy -- causes headaches later.

Caching -- omitArgs is important
While using Cache, think of each argument being passed to Cache and determine what
happens if it changes: would you like the Cache to rerun or recover a previous Cache call.
Some questions: which of the following pairs is likely correct:

landscapeLCC <- Cache(postProcess, BigRaster, destinationPath = tempdir(),

studyArea = SmallPolygon, useSAcrs = TRUE)

landscapeLCC <- Cache(postProcess, BigRaster, destinationPath = tempdir(),

studyArea = SmallPolygon, useSAcrs = TRUE,

omitArgs = "destinationPath")

Most likely the 2nd one because the destinationPath is just an unimportant place to save a file
temporarily. So, if that changes, which it will every R session (because tempdir() is different
every time), then this will recalculate in the first version, but not the second which “ignores”
destinationPath during assessment of Cache.

Meta-modeling

