
Belt Installation Instructions

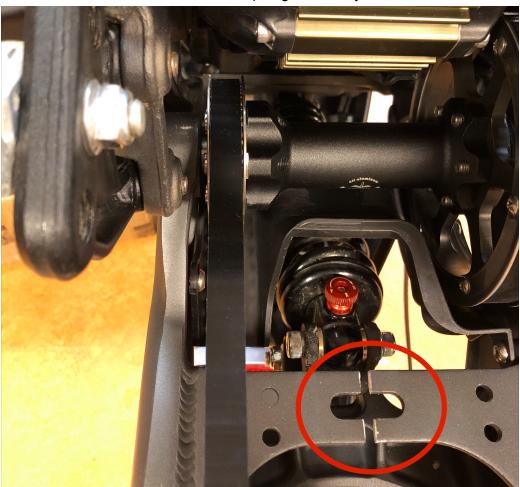
- 1. Easiest to do this upgrade is to turn your bike upside down and by removing the rear wheel.
 - 2. Remove two screws that hold the swingarm links, wiggle the swingarm up and down for easier removal of those.

3. Remove the belt dust cover. **Take note of the belt tension so you know how it should be when you will reinstall it again.** Loosen the lower motor screw and remove the upper motor screw completely.

Do the same on the other side of the motor.

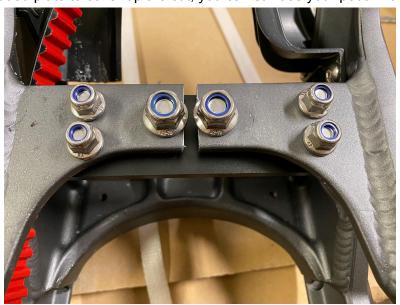
4. You should be able to remove the belt from the pulley

5. Now you are ready to take out the swingarm from the bike by removing the swingarm axle



You usually don't need any special tool to remove the swing arm axle. If this nut starts to rotate you can just hold it with pliers.

6. Make a cut in the lower swingarm pedal plate, around 5mm just so the belt can slide in.


Make sure to remove all the sharp edges before you tuck the belt in.

7. Drill two additional holes in the reinforcement plate

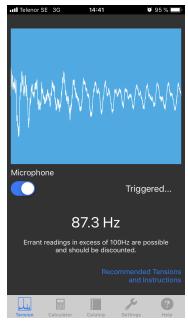
8. Install the included plate to cover up the cut, you can still use your pedal kit if you have one.

9. Remove the sprocket, remove the rubber seal from it and put it on the pulley. For optimal performance, make sure to re-lube rubber seals.

Almost there! You can now put the swing arm back onto the bike.

10. Proper belt alignment is essential for a long life. It is very important that you align the rear wheel axle strictly in parallel to the front hub where the small pulley is installed. Turn the wheel and If you hear the belt rubbing on the guide flange of the big or small pulley you probably need to re-adjust the axle alignment.

Usually, if the distance is the same on both sides of the swingarm like in the picture below you should be fine.


11. Proper belt tension is essential for optimum operation of the drive system. Lack of belt tension can lead to "ratcheting." The teeth of the belt slide over the teeth of the rear sprocket. This causes an unpleasant sound; the ratcheting can also cause damage to the carbon tensile cords. Too much tension can increase the wear of your drive system and the system can drag.

The drive belt tension can be checked by using the Gates® Carbon Drive™ Smartphone application, which measures belt tension frequency. The application is available for free to download at both the Apple iTunes® store and Google Play® store.

Perform belt frequency measurement on the lower belt span, close to the center (between the sprockets). Note: The application works best in a quiet environment.

Hold the phone, so the microphone is as close to the drive belt as possible (without touching the belt). Pluck the belt with your thumb or a wrench (as shown) so that it vibrates like a guitar string Rotate the rear wheel a quarter-turn and repeat the frequency measurement. Compare your belt's frequency readings to the recommended range values (80-100Hz). 9. Adjust drive belt tension if the frequency is outside the recommended range. If you use a different controller with more power you may need to have a higher tension! Currently we are running ~80Hz on ours with stock power without issues.

