
Public

Deprecating the chrome and resource protocols

Dave Townsend, June 2023 & Gijs Kruitbosch, December 2024

(original:) Deprecating the chrome and resource protocols

Summary

The chrome and resource protocols are used to reference internal resources that ship with
Firefox such as JavaScript code, UI definitions and styles. They are an unnecessary complexity
that make it harder for developers to understand the application’s structure and for automated
tools to identify potential errors. This document proposes an alternative that we can move to
and which solves these problems. This plan intentionally does not include completely
removing the chrome and resource protocols instead just covering the bulk of uses.
After that we will have a clearer picture of whether we want to invest additional resources in
completely removing them.

The Problem

Large parts of the front-end of Firefox including JavaScript, HTML and CSS code ship as files in
an archive in the application. Internally they are referenced via URLs of a similar form to the
http/https URLs used on the web but instead use the chrome or resource protocol. For
example the main application UI is referenced as
chrome://browser/content/browser.xhtml while one of the JavaScript modules that
handles application update is at resource://gre/modules/UpdateService.sys.mjs.
These protocols are substituting protocols, that is the path to the file in the URL differs from the
path to the file in the source tree. While technically possible, it is non-trivial to determine where
in the source tree a given chrome or resource url actually refers to. For example, the update
service JavaScript module actually lives at
toolkit/mozapps/update/UpdateService.sys.mjs.

This discontinuity between the path to the file in the running application and the path in the
source tree makes it harder for developers to find the code they are looking for. When one script
references another the developer has to do an additional translation step to actually find the
referenced code. Similarly when a developer knows what script from the source tree they want
to use they again have to translate that path to the correct internal URL.

Developers have a reasonably reliable means to do this translation, we have very few filename
collisions and so searchfox can show the location in the source and example uses for existing
cases. The developer can use context to resolve any collisions. This is still a manual process
however. The problem is harder for automated tools. Our JavaScript linting tools support
resolving imported code to verify that the referenced scripts exist and export what we try to

https://docs.google.com/document/u/0/d/1dZXsWmFxQ8y_EofCrD_a5DIZUmmAjIhR1VwVTEabawE/edit

import but these checks are currently disabled as we have no automated way to perform the
translation. Code editors can also provide helpful intellisense support on imported symbols but
only if they can map the import path to the source file.

The Proposed Solution

We propose implementing a new URL protocol (obligatory xkcd) to replace chrome and
resource for many cases. Instead of being a mapped protocol, the path used in the URL will
exactly match the path to the file in the source tree. So for our update service example the URL
used would be moz-src:///toolkit/mozapps/update/UpdateService.sys.mjs. This
makes it trivial for developers and automated tools to translate between in-product URLs and
source tree paths. The protocol name could be anything but moz-src is a logical choice. Some
files contain content generated at build time either via the preprocessor or other custom build
scripts. These would be referenced at moz-src://generated/<path> where the path is the
path in the source tree to the file’s template. This still gives developers an indication of where to
look for the source code but indicates that the content is modified somehow. It also allows us to
flag moz-src://generated/* as references that shouldn’t be subject to some checks by
automated tools.

Currently various path translations are used to decide where in the build directory relevant files
are stored. All files to be referenced by this protocol would instead be stored in the omnijar
under moz-src/<path-to-source-file> for source files and
moz-src-generated/<path-in-objdir> for generated files.

With these changes and some configuration to teach ESLint and VS Code about the new
protocol we can see immediate benefits from ESLint warning about unknown imports and VS
Code being able to context click through import statements.

While in some cases files in the resource and chrome protocols can be made accessible to web
content this would not be possible for the moz-src protocol. For the time being we would
continue to use the existing protocols for that case. A future proposal could suggest an
alternative.

Implementation Plan

✅Stage 0 - Implement the moz-src protocol handler

The protocol handler itself is straightforward to implement as it behaves in a very similar fashion
to the existing resource protocol handler. We already have a prototype implementation that
appears to mostly work.

https://xkcd.com/927/
https://searchfox.org/mozilla-central/search?q=contentaccessible%3Dyes
https://searchfox.org/mozilla-central/search?q=contentaccessible%3Dyes
https://hg.mozilla.org/users/dtownsend_mozilla.com/working/unified/file/b7fb9ee4283eea6c7f8bbebb0cbc0ab35318074b/netwerk/protocol/res/MozSrcProtocolHandler.cpp

✅Stage 0.1 - Ensure the moz-src protocol handler works with

fastload/xulcache

Without this the move is likely to incur a performance penalty. We should get ahead of this so
that large commits moving all the files (which are hard to revert) don’t have us time-pressured to
figure this out.

Stage 1 - JS Modules and Actors

✅JavaScript modules and actors are currently just copied to the appropriate place in the build
directory and then referred to via existing substitutions in the resource protocol handler. It is
straightforward to instead copy them to the location targeted by the moz-src protocol. We have
a prototype implementation that adjusts the build system to do this for modules, actors can be
handled similarly. Straightforward scripts can be used to automatically replace existing in-tree
references to the modules.

❌Note that Firefox on iOS re-uses some of Firefox’s JavaScript modules (e.g.) and in their
code bundling replaces the resource URIs with the correct paths. This would have to be
adjusted to take account of the new protocol, but otherwise will continue to work.

✅Note also that there is a small number of sys.mjs modules where we rely on the resource
mappings to provide a different implementation in different applications, see e.g. the Android
implementation of BrowserUsageTelemetry vs the Desktop one. This is an attempt at a
complete list based on multiple copies of modules with the same file name existing:

●​ BrowserUsageTelemetry.sys.mjs
●​ ExtensionBrowsingData.sys.mjs - android and desktop
●​ PromptCollection.sys.mjs - android and desktop - but these get packaged at different

paths and are relying on XPCOM to obtain the service, not the module path.
●​ SessionStoreFunctions.sys.mjs - android and desktop - but these get packaged at

different paths and are relying on XPCOM to obtain the service, not the module path.
●​ FormAutofillPrompter.sys.mjs - android and desktop but sourced via conditional JAR

packaging and a custom resource prefix (see below) so probably OK for this stage?
●​ FormAutofillStorage.sys.mjs (see previous item)
●​ AboutCompat.sys.mjs - seems both android and desktop have copies of the web compat

extension. This is probably fine?

✅Effectively this is using resource URIs as a dependency injection mechanism. Ideally we
should probably evaluate an alternative. It looks like the solution for SessionStoreFunctions and
PromptCollection (where C++ consumers simply do_getService and the mapping is provided
via the moz.build file’s esModule property, without the compiled code having to rely on a
resource URI at all, only the contract ID and interface) could be used for the other cases. In
the short term, we can continue accessing these files using resource: URIs and packaging
them in the previous/existing locations by using FINAL_TARGET_FILES.modules (or similar)
instead of EXTRA_JS_MODULES.

https://hg.mozilla.org/users/dtownsend_mozilla.com/working/unified/rev/fe05bc343c835d13d2d12bfb7171e20ac6450f5f
https://github.com/mozilla-mobile/firefox-ios/blob/d8f33bafa3b9f32320fb6dcfe8c19779a417bac7/Client/Assets/CC_Script/FormAutofillHandler.sys.mjs#L5-L19
https://github.com/mozilla-mobile/firefox-ios/blob/main/webpack.config.js#L48
https://github.com/mozilla-mobile/firefox-ios/blob/main/webpack.config.js#L48
https://searchfox.org/mozilla-central/source/mobile/shared/modules/geckoview/BrowserUsageTelemetry.sys.mjs
https://searchfox.org/mozilla-central/source/mobile/shared/modules/geckoview/BrowserUsageTelemetry.sys.mjs
https://searchfox.org/mozilla-central/source/browser/modules/BrowserUsageTelemetry.sys.mjs
https://searchfox.org/mozilla-central/source/mobile/shared/components/extensions/ExtensionBrowsingData.sys.mjs
https://searchfox.org/mozilla-central/source/browser/components/extensions/ExtensionBrowsingData.sys.mjs
https://searchfox.org/mozilla-central/source/mobile/shared/components/geckoview/PromptCollection.sys.mjs
https://searchfox.org/mozilla-central/source/browser/components/prompts/PromptCollection.sys.mjs
https://searchfox.org/mozilla-central/source/mobile/shared/components/geckoview/SessionStoreFunctions.sys.mjs
https://searchfox.org/mozilla-central/source/browser/components/sessionstore/SessionStoreFunctions.sys.mjs
https://searchfox.org/mozilla-central/source/toolkit/components/formautofill/android/FormAutofillPrompter.sys.mjs
https://searchfox.org/mozilla-central/source/toolkit/components/formautofill/default/FormAutofillPrompter.sys.mjs

✅bug to update BrowserUsageTelemetry and ExtensionBrowsingData

✅ https://bugzilla.mozilla.org/show_bug.cgi?id=1951644

✅https://bugzilla.mozilla.org/show_bug.cgi?id=1950727 - Note also that Background tasks rely
on resource registration right now. This may need to change, or we may keep using
resource for these modules for now.

✅Note also that the about:sync add-on relies on sync module resource URIs and that and
other add-ons in the mozilla-extensions org will need updating.

Stage 1.5 - Optionally allow relative references via ChromeUtils

Currently when lazily loading JavaScript modules via ChromeUtils relative URLs do not work.
One small downside of the new protocol is that URLs tend to be longer. In some cases we can
reduce the length by using a relative URL so we may choose to fix this issue in ChromeUtils. ES
module import syntax already supports relative URLs.

✅Stage 2 - Import Resolvers for ESLint and VS Code

We have a prototype implementation of import resolvers for ESLint and VS Code that allows
them to understand the moz-src protocol.

❌Stage 3 - JS Module Special Cases

There are a few cases where JS modules are being referenced with custom resource protocol
substitutions. For example resource://services-common/kinto-http-client.js and
resource://featuregates/FeatureGate.sys.mjs. There may need to be some manual
work to move these to the moz-src protocol.

There are also some uses of resource from “extension” code (e.g. formautofill).
Nominally we want to be able to dynamically replace this code for users by updating the builtin
extension out-of-band. This will need more thinking; for the work in this document we do not
intend to touch this.

❌Stage 4 - move chrome content files

Files currently referenced under chrome://<ns>/content/* can be moved to the moz-src
protocol. The existing jar.mn files that control these files would need to be converted into
entries in moz.build files however this can likely be done in an automated fashion for 95% of
the cases. Updating in-tree references should also be scriptable.

This is split up because there are more interactions with these files than with modules, and they
vary based on the type of file. The following chunks are parallelizable and/or splittable, and are
ordered here purely by ease of reading (not complexity! So we may not want to start with 1.)

https://bugzilla.mozilla.org/show_bug.cgi?id=1950892
https://bugzilla.mozilla.org/show_bug.cgi?id=1950728
https://bugzilla.mozilla.org/show_bug.cgi?id=1951644
https://bugzilla.mozilla.org/show_bug.cgi?id=1950727
https://searchfox.org/mozilla-central/rev/7bf5ed3b5364da0bee109bdcac3ab8c96df5a972/toolkit/components/backgroundtasks/BackgroundTasksManager.sys.mjs#75-90
https://searchfox.org/mozilla-central/rev/7bf5ed3b5364da0bee109bdcac3ab8c96df5a972/toolkit/components/backgroundtasks/BackgroundTasksManager.sys.mjs#75-90
https://bugzilla.mozilla.org/show_bug.cgi?id=1609269#c8
https://hg.mozilla.org/users/dtownsend_mozilla.com/working/unified/rev/d2bba92d3d49c617ef7769995c1016a30a1d1713

For all things other than toplevel pages, we will likely need to adjust CSPs so the resources
continue to load (ie add moz-src in addition to chrome to CSPs of about: pages and similar
documents).

1 - Move chrome .xhtml/.html (toplevel pages)

More migration is needed:

1.​ We’ll need to migrate/map XUL store entries (likely in BrowserGlue’s _migrateUI)
2.​ There is more docshell/windowing code that relies on these being chrome:// URIs that

will complain once we swap this (that won’t complain for e.g. image or script loads)

2 - Move files that are overridden

There are surprisingly few of these inside mozilla-central, but a few more in comm-central.
That includes overrides of browser files with Thunderbird or related files. We will need to
work with the Thunderbird team to keep this mechanism working in some way. This may mean
keeping them on chrome:// for now.

At the time of writing, the list of comm-central overridden mozilla-central files is about 65 lines
long. The vast majority are icons. The icons could likely be fixed in Thunderbird with custom
CSS. Other files are:

●​ commonDialog.xhtml (alert/prompt/confirm etc.)
●​ utilityOverlay.js (loaded directly by devtools so comm-central has had to create a copy.

We should fix devtools.)
●​ (more here)

3 - Chrome stylesheets

Stylesheets represent a harder problem as in many cases different source files are used for
different platforms. For instance chrome://browser/skin/browser.css references
browser/themes/osx/browser.css on macOS but
browser/themes/windows/browser.css on Windows. For these cases the proposal is to
either use multiple <link> elements in the source document with the -moz-platform media
query to select which is actually loaded or define a shared stylesheet with common styles for all
platforms and in that use @import syntax with the media query to include platform specific
styles where needed.

It would likely make sense to do the work to change the loading mechanism while continuing to
use chrome:// URIs, and then swap over the protocol as a second step. This would derisk
things and make it easier to trace regressions.

https://searchfox.org/mozilla-central/search?q=%25+overr&path=jar*.mn&case=false®exp=false
https://searchfox.org/comm-central/search?q=%25+overr&path=jar*.mn&case=false®exp=false
https://searchfox.org/comm-central/search?q=%25+override+chrome%3A%2F%2F%28browser%7Cglobal%7Cdevtools%7Cmozapps%7Cextensions%29&path=%5E%7Bmail%2Cbrowser%2Cmobile%2Ctoolkit%7D**jar*.mn&case=false®exp=true

4 - Move images

Images themselves are straightforward to move but there are likely imglib
optimizations/conditions (e.g. for -moz-context-properties or things like caching) that are
conditional on images being loaded over chrome:// that may need adjusting.

5 - Move other chrome content files

This includes script and JSON files, and potentially any other filetypes used via fetch or
similar. Given that we moved modules in step (2) this should be reasonably hitch-free.

Stage 5 - consider moving other resource URIs (e.g. read via fetch/XHR)

In principle this should be straightforward, though it may not be worth automating as there are
likely not many of them.

Given web access requirements, this won’t be possible for e.g. the UA sheets.

Open Questions

(crossed out means these have been integrated in the respective steps above where they
are best addressed)

Xulstore uses chrome urls to store the persisted DOM settings. If we change the urls used we
may need to perform some kind of migration step.

There are some dynamic resource://testing-common registrations in our test harness that aren’t
easily accommodated here. These will remain as resource registrations for the time being until
we decide whether to do anything with them.

Firefox on iOS re-uses some of Firefox’s JavaScript modules (e.g.) and in their code bundling
replaces the resource URIs with the correct paths. This would have to be adjusted to take
account of the new protocol.

The -moz-context-properties CSS rule may need updating to work with the new protocol.

Localization files (.ftl, .properties) use chrome and resource URIs, which need to be mapped
to source locations matching the current locale. Will these also be able to use the moz-src
protocol?

We need to verify that Thunderbird isn't attempting to use chrome overrides for Gecko files.

Thunderbird add-ons are privileged and so unless we perform complicated mapping to provide
backwards compatibility this could break many add-ons. There are additionally Mozilla
privileged add-ons in the same boat but presumably we have control to update those. Some of
these are equally impacted by the ESM modules work. Thunderbird add-ons appear to use
webextensions now.

https://searchfox.org/mozilla-central/rev/27e4816536c891d85d63695025f2549fd7976392/toolkit/components/backgroundtasks/BackgroundTasksTestUtils.sys.mjs#45-52
https://github.com/mozilla-mobile/firefox-ios/blob/d8f33bafa3b9f32320fb6dcfe8c19779a417bac7/Client/Assets/CC_Script/FormAutofillHandler.sys.mjs#L5-L19
https://github.com/mozilla-mobile/firefox-ios/blob/main/webpack.config.js#L48

	Deprecating the chrome and resource protocols
	Summary
	The Problem
	The Proposed Solution
	Implementation Plan
	✅Stage 0 - Implement the moz-src protocol handler
	✅Stage 0.1 - Ensure the moz-src protocol handler works with fastload/xulcache
	Stage 1 - JS Modules and Actors
	Stage 1.5 - Optionally allow relative references via ChromeUtils
	✅Stage 2 - Import Resolvers for ESLint and VS Code
	❌Stage 3 - JS Module Special Cases
	❌Stage 4 - move chrome content files
	1 - Move chrome .xhtml/.html (toplevel pages)
	2 - Move files that are overridden
	3 - Chrome stylesheets
	4 - Move images
	5 - Move other chrome content files

	Stage 5 - consider moving other resource URIs (e.g. read via fetch/XHR)

	Open Questions

