

.

🛒 E-Commerce App: Full Stack Setup Guide

This guide walks you through setting up a React frontend, Node.js backend, and a local
MySQL database.

1. Project Structure

Create a parent folder for your app with separate frontend and backend directories:

Create main project folder
mkdir my-ecommerce-app
cd my-ecommerce-app
Create backend and frontend folders
mkdir backend
mkdir frontend

2. Frontend: React Application

Navigate into the frontend folder and bootstrap a React app:

cd frontend
npx create-react-app my-ecommerce-store
cd my-ecommerce-store

Install essential packages:

npm install react-router-dom axios

●​ react-router-dom: Handles navigation/routing
●​ axios: Makes HTTP requests to the backend​

Run the development server:

npm start

You should see your React app running at http://localhost:3000.

3. Backend Setup (Node.js + Express + MySQL)

Navigate to the backend folder:

cd ../../backend
npm init -y

Install required packages:

npm install express mysql2 cors dotenv

●​ express: Web server framework
●​ mysql2: Connects to your MySQL DB
●​ cors: Allows frontend to communicate with backend
●​ dotenv: Manages environment variables​

4. Local MySQL Database Setup

Open your local MySQL in a terminal:

mysql -u root -p

Enter your password (Ijse@1234) and run:

CREATE DATABASE ecommerce_db;
USE ecommerce_db;

CREATE TABLE products (
 id INT AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 price DECIMAL(10, 2) NOT NULL,
 description TEXT
);

INSERT INTO products (name, price, description) VALUES
('T-Shirt', 25.00, 'A comfortable cotton t-shirt.'),
('Jeans', 50.00, 'Classic blue jeans for everyday wear.'),
('Sneakers', 80.00, 'Stylish sneakers for a casual look.');

5. Backend Code (server.js)

Create a file server.js inside the backend folder and paste:

Run your backend:

node server.js

6. Frontend: Fetch Products with Axios

In your React app (inside src/Products.js for example):

import axios from 'axios';
import { useEffect, useState } from 'react';

function Products() {
 const [products, setProducts] = useState([]);

 useEffect(() => {
 axios.get('http://localhost:5000/api/products')
 .then(res => setProducts(res.data))
 .catch(err => console.error(err));
 }, []);

 return (
 <div>
 {products.map(p => (
 <div key={p.id}>
 <h3>{p.name}</h3>
 <p>{p.description}</p>
 ${p.price}
 </div>
))}
 </div>
);
}

export default Products;

Import <Products /> somewhere in your React app and you’ll see data from MySQL.

7. Verify Database from Terminal

Check your data anytime:

mysql -u root -p
USE ecommerce_db;
SHOW TABLES;

SELECT * FROM products;

📝 Special Note: Prisma (Optional ORM Layer)

Right now your backend uses mysql2 directly and writes raw SQL queries.​
 That’s totally fine for small projects, but as your app grows, writing and maintaining raw SQL
becomes harder.

Prisma is an ORM (Object–Relational Mapper) that gives you:

●​ Auto-generated database client – you write JavaScript/TypeScript instead of SQL.
●​ Type safety & autocompletion in VS Code.
●​ Migrations – Prisma can create/update your DB schema automatically.
●​ Clean & maintainable code – easier to read than SQL strings.​

🔹 How Prisma Fits in Your App

Instead of:

pool.query('SELECT * FROM products', ...)

You’d do:

const { PrismaClient } = require('@prisma/client')
const prisma = new PrismaClient()
const products = await prisma.product.findMany()

Prisma automatically maps your Product model to the products table in the database.

🔹 Setting up Prisma in Your Backend

1.​ Install Prisma CLI and Client

From your backend folder:

npm install prisma --save-dev
npm install @prisma/client

2.​ Initialize Prisma

npx prisma init

This creates:

●​ .env (holds your DB connection string)
●​ prisma/schema.prisma (define your models here)​

3.​ Update .env for your local MySQL

DATABASE_URL="mysql://root:Ijse@1234@localhost:3306/ecommerce_db"

4.​ Edit prisma/schema.prisma

Replace the default content with something like:

datasource db {
 provider = "mysql"
 url = env("DATABASE_URL")
}

generator client {
 provider = "prisma-client-js"
}

model Product {
 id Int @id @default(autoincrement())
 name String
 price Float
 description String?
}

5.​ Run Migrations

npx prisma migrate dev --name init

This will:

●​ Create the products table if it doesn’t exist.
●​ Generate the Prisma client code.

6.​ Generate Client (if you change the schema)

npx prisma generate

7.​ Use Prisma in Your Server

Replace your SQL query with Prisma:

const { PrismaClient } = require('@prisma/client');
const prisma = new PrismaClient();

// Example API route
app.get('/api/products', async (req, res) => {
 try {
 const products = await prisma.product.findMany();
 res.json(products);
 } catch (err) {
 console.error(err);
 res.status(500).json({ error: 'Failed to fetch products' });
 }
});

Now you’re fully using Prisma instead of mysql2.

🔹 Bottom Line

●​ You don’t have to use Prisma; your current code works fine.
●​ But Prisma gives you a cleaner API, migrations, type safety, and a built-in GUI.
●​ It’s especially helpful if your project grows beyond a few tables or if you’re using

TypeScript.​

 📝 End of the Special Note

🐳 8. Containerizing Your App with Docker

So far you have a React frontend, Node.js backend, and local MySQL running directly on your
machine.​
 Now you can containerize the frontend and backend using Docker and orchestrate them with
Docker Compose.

8.1 Backend Dockerfile (Node.js API)
Use a Node.js base image

FROM node:18-alpine

Set the working directory

WORKDIR /app

Copy package.json and package-lock.json

COPY package*.json ./

Install dependencies

RUN npm install

Copy the rest of your application code

COPY . .

Expose the port your app runs on

EXPOSE 5000

Start the application

CMD ["node", "server.js"]

Explanation:

●​ Uses a lightweight Node.js base image.
●​ Copies only package*.json first for efficient caching.
●​ Installs dependencies, then copies your code.
●​ Exposes port 5000 for the backend API.
●​ Starts the app with node server.js.

This Dockerfile lives inside your backend/ folder.

8.2 Frontend Dockerfile (React Build)
Build stage

FROM node:18-alpine as builder

WORKDIR /app

COPY package*.json ./

RUN npm install

COPY . .

RUN npm run build

Server stage

FROM node:18-alpine

WORKDIR /app

Copy the build output from the builder stage

COPY --from=builder /app/build ./build

Install a simple web server (e.g., serve)

RUN npm install -g serve

Expose the port for the frontend

EXPOSE 3000

Command to serve the static files

CMD ["serve", "-s", "build"]

Explanation:

●​ Uses a multi-stage build: first builds your React app, then copies the optimized build
folder to a clean image.

●​ Installs the serve package globally to serve the built static files.
●​ Exposes port 3000 for the frontend.

This Dockerfile lives inside your frontend/my-ecommerce-store/ folder.

8.3 Docker Compose File
version: '3.8'

services:

 backend:

 build: ./backend

 ports:

 - "5000:5000"

 environment:

 # These values must match the credentials in your server.js

 DB_HOST: host.docker.internal

 DB_USER: root

 DB_PASSWORD: Ijse@1234 # <-- Corrected password

 DB_NAME: ecommerce_db

 DB_PORT: 3306

 volumes:

 - ./backend:/app

 frontend:

 build: ./frontend/my-ecommerce-store

 ports:

 - "3000:3000"

 volumes:

 - ./frontend:/app

 depends_on:

 - backend

Explanation:

●​ backend service:
○​ Builds from the backend Dockerfile.
○​ Exposes port 5000.
○​ Passes DB credentials as environment variables.

■​ host.docker.internal is used so the container can connect to your
local MySQL.

○​ Mounts your backend folder as a volume for live code changes.​

●​ frontend service:
○​ Builds from the frontend Dockerfile.
○​ Exposes port 3000.
○​ Mounts your frontend folder as a volume.
○​ Depends on the backend so Docker starts the backend first.​

8.4 Running the Containers

From the root of your project (where docker-compose.yml lives):

docker-compose build
docker-compose up

You’ll see:

●​ Backend API at http://localhost:5000/api/products.
●​ Frontend React app at http://localhost:3000.​

💡 Tip:​
 You can speed this up:

docker-compose up --build

This rebuilds and starts everything in one go.

8.5 How the Stack Works Now

●​ MySQL still runs locally on your machine (not inside Docker).​

●​ Backend container connects to host.docker.internal which resolves to the host
machine’s IP inside Docker.​

●​ Frontend container calls the backend via
http://localhost:5000/api/products.​

💻 After a Restart (your scenario)

When you shut down and later boot up your computer:

You don’t run npm start or node server.js manually anymore — Docker runs those
commands inside the containers for you (because of the CMD you wrote in each Dockerfile).

1.​ Docker Desktop or the Docker service starts (make sure it’s running).
2.​ In your project root (where docker-compose.yml lives), run:​

docker-compose up

That’s it ✅​
 It will start the backend and frontend containers with the commands specified in their
Dockerfiles. You don’t have to run npm start or node server.js yourself.

1️⃣ When you run in foreground

If you run:

docker-compose up

you’ll see all the container logs in your terminal.

http://localhost:5000/api/products

●​ To stop them: press Ctrl + C in that terminal.
●​ Docker Compose will then gracefully stop all the containers it started.​

2️⃣ When you run in detached mode

If you run:

docker-compose up -d

(the -d = “detached”), your containers keep running in the background even if you close the
terminal.

●​ To stop them later, in any terminal in the same project folder run:

docker-compose down

This stops and removes the containers that docker-compose up created.

3️⃣ When to rebuild

You only need --build again if:

●​ You changed a Dockerfile,
●​ You changed the package.json (new deps),
●​ Or you changed any file that’s part of the image build context that would affect the

build stage.

	🛒 E-Commerce App: Full Stack Setup Guide
	1. Project Structure
	2. Frontend: React Application
	3. Backend Setup (Node.js + Express + MySQL)
	4. Local MySQL Database Setup
	5. Backend Code (server.js)
	6. Frontend: Fetch Products with Axios
	7. Verify Database from Terminal

	📝 Special Note: Prisma (Optional ORM Layer)
	🔹 How Prisma Fits in Your App
	🔹 Setting up Prisma in Your Backend
	🔹 Bottom Line

	 📝 End of the Special Note
	🐳 8. Containerizing Your App with Docker
	8.1 Backend Dockerfile (Node.js API)
	8.2 Frontend Dockerfile (React Build)
	8.3 Docker Compose File
	8.4 Running the Containers
	8.5 How the Stack Works Now
	💻 After a Restart (your scenario)
	1️⃣ When you run in foreground
	2️⃣ When you run in detached mode
	3️⃣ When to rebuild
	You only need --build again if:
	●​You changed a Dockerfile,
	●​You changed the package.json (new deps),
	●​Or you changed any file that’s part of the image build context that would affect the build stage.

