
Assignment 6
DUE: Monday, April 30 at 11:59 PM

Updates:
Directions for Mem_Alloc say to return a pointer at the start of the memory space.
This means, pointer to the start of the first useful byte, after header.

1. Collaboration Policy
For this assignment, you may work in pairs (2 people). All students (whether working in a pair
or not) must individually turn in the assignment. Therefore, 2 copies of the assignment will be
turned in for those working as a pair. The grader will choose to grade only one copy of a pair's
work, and assign the same score to both students.

If one member of a pair does something unexpected with respect to turning in the assignment
(for example: bad copy of the source code, late, or perhaps not turning in portions of the
assignment), then both of the pair get the same penalty and the same score.

If working in a pair, the names and CS emails of both students must appear as comments at the
top of all files of the turned in assignment.

In addition, students who work in a pair must turn in an extra file that identifies the pair. Details
are given in the section on Handing In the Assignment.

2. Learning Goals
The purpose of this program is to help you understand the nuances of building a memory
allocator, to further increase your C programming skills by working a lot more with pointers and
to get familiar with using Makefiles.

3. Specifications
For this assignment, you will be given the structure for a simple shared library that implements
the memory allocation functions malloc() and free(). Everything is present, except for the
definitions of those two functions, called Mem_Alloc() and Mem_Free() in this library.

3.1. Memory Allocation Background
Memory allocators have two distinct tasks. First, the memory allocator asks the operating system
to expand the heap portion of the process's address space by calling either sbrk() or mmap().
Second, the memory allocator doles out this memory to the calling process. This involves
managing a free list of memory and finding a contiguous chunk of memory that is large enough
for the user's request; when the user later frees memory, it is added back to this list.

This memory allocator is usually provided as part of a standard library, and it is not part of the
OS. To be clear, the memory allocator operates entirely within the virtual address space of a
single process and knows nothing about which physical pages have been allocated to this process
or the mapping from logical addresses to physical addresses.

Every memory that we see when our C program is executed is virtual. i.e., the variable addresses
that we see in our programs and the actual physical addresses that those variables are placed in
the main memory are different. e.g., If variable x is at address 0x3004, this doesn't mean that this
variable x is at address 0x3004 in the main memory (RAM). Instead this means that the variable
x is placed at the address 0x3004 within the virtual address space of this program (i.e., the
addresses in this program starting at address zero) but the actual physical memory address of this
variable will be different. To understand more about virtual memory, you may read this.​

Classic malloc() and free() are defined as follows:

●​ void *malloc(size_t size): malloc() allocates size bytes and returns a pointer
to the allocated memory. The memory is not cleared.

●​ void free(void *ptr): free() frees the memory space pointed to by ptr, which
must have been returned by a previous call to malloc() (or calloc() or realloc()). If
free(ptr) has already been called before, undefined behavior occurs. If ptr is NULL, no
operation is performed.

3.2. Understand the code
Create a directory for this assignment. The source code files you will need are here. The
location of these files in the linux machines are shown below.

/u/g/e/gerald/public/html/cs354/Spring18/projects/p6

http://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
http://pages.cs.wisc.edu/~gerald/cs354/Spring18/projects/p6/

Copy the files Makefile, mem.c and mem.h to your own directory. In mem.c is fully working
code for two functions: Mem_Init(int sizeOfRegion, int policy) and
Mem_Dump(). Look at them, and understand what they do, as well as how they accomplish
their task. Also note the global block header pointer list_head which is the head of our free
linked list of memory chunks. Read the header comments for the block header structure provided
very carefully to understand the convention used.

Mem_Init(int sizeOfRegion, int policy):
This sets up and initializes the heap space that the module manages. sizeOfRegion is the number
of bytes that are requested to be initialized on the heap. The second argument, policy, determines
the allocation policy you would use. If it is 0 follow best fit, if it is 1 follow first fit and if it is 2
follow worst fit.

This function should be called once at the start of any program before calling any of the other
three functions. When testing your code you should call this function first to initialize enough
space so that subsequent calls to allocate space via Mem_Alloc() can be served successfully. The
test files we provide (as mentioned below) do the same.

 When a process asks memory for the heap from the operating system, the operating system
allocates memory in terms of pages. A page is the smallest unit of data for memory management
in a virtual memory operating system. It is a fixed-length contiguous block of virtual memory.
Read more about pages here. Note that Mem_Init rounds up the amount of memory requested in
units of this page size. Because of rounding up, the amount of memory initialized may be more
than sizeOfRegion. You may use all of this initialized space for allocating memory to the
user.

Once Mem_Init has been successfully called, list_head will be initialized as the first and only
header in the free list which points to a single free chunk of memory. You will use this list to
allocate space to the user via Mem_Alloc() calls.
Mem_Init uses the mmap() system call to initialize space on the heap. If you are interested, read
the man pages to see how that works.

Mem_Dump():
This is used for debugging; it prints a list of all the memory blocks (both free and allocated). It
will be incredibly useful when you are trying to determine if your code works properly. As a
future programming note: take notice of this function. When you are working on implementing a
complex program, a function like this that produces lots of useful information about a data
structure can be well worth the time you might spend implementing it.

https://en.wikipedia.org/wiki/Page_(computer_memory)

3.3. Implement malloc and free

Note: Do not change the interface. Do not change anything within file mem.h. Do not
change any part of functions Mem_Init() or Mem_Dump().

Write the code to implement Mem_Alloc() and Mem_Free(). Use a best/worst/first fit
algorithm when allocating blocks with Mem_Alloc(). When freeing memory, always coalesce
with the adjacent memory blocks if they are free. list_head is the free list structure as
defined and described in mem.c. It is based on the model described in your textbook in
section 9.9.6 (except our implementation has an additional next pointer in the header in
order to make it easier to traverse through the free list structure). Here are definitions for
the functions:

void *Mem_Alloc(int size):
Mem_Alloc() is similar to the library function malloc(). Mem_Alloc takes as an input parameter
the size in bytes of the memory space to be allocated, and it returns a pointer to the start of that
memory space. (i.e, This means, pointer to the start of the first useful byte, after header.)The
function returns NULL if there is not enough contiguous free space within sizeOfRegion
allocated by Mem_Init() to satisfy this request. For better performance, Mem_Alloc() is to
return 4-byte aligned chunks of memory. For example, if a user requests 1 byte of memory, the
Mem_Alloc() implementation should return 4 bytes of memory, so that the next free block will
also be 4-byte aligned. To debug whether you return 4-byte aligned pointers, you could print the
pointer this way:

●​ printf("%08x", ptr)
●​ The last digit should be a multiple of 4 (that is, 0, 4, 8, or C). For example, 0xb7b2c04c is

okay, and 0xb7b2c043 is not okay.
Once the appropriate free block is located we could use the entire block for the allocation. The
disadvantage is that it causes internal fragmentation and wastes space. So we will split the block
into two. The first part becomes the allocated block, and the remainder becomes a new free
block. Before splitting the block there should be enough space left over for a new free block. i.e.,
the header and its minimum payload of 4 bytes, otherwise we don't split the block.

The size of a block does NOT include the size of the header. Note that this is different than the
allocator blocks we saw in the lecture which includes the size of the header in the block size.

int Mem_Free(void *ptr):
Mem_Free() frees the memory object that ptr points to. Just like with the standard free(), if
ptr is NULL, then no operation is performed. The function returns 0 on success and -1 if the ptr

was not allocated by Mem_Alloc(). If ptr is NULL, also return -1. For the block being freed,
always coalesce with its adjacent blocks if either or both of them are free.

3.4. Test the Code
You have a provided Makefile that compiles your code in mem.c and mem.h into a shared library
called libmem.so. To do the compilation, the command is
 make mem​

With this shared library, it is time to test if your Mem_Alloc() and Mem_Free()
implementations work. This implies that you will need to write a separate program that links in
your shared library, and makes calls to the functions within this shared library. We've already
written a bunch of small programs that do this, to help you get started. You may find them here.
The location of these tests (and Makefile) in the linux machines are shown below.​

/u/g/e/gerald/public/html/cs354/Spring18/projects/p6/tests​

Copy all the files within this directory into a new directory within the one containing your shared
library. Name your new directory tests.
In this directory, file testlist.txt contains a list of the tests we are giving you to help you
start testing your code. The tests are ordered by difficulty. Please note that these tests are not
comprehensive for testing your code;. Though they cover a wide range of test cases, there will
be additional test cases that your code will be tested against.​

When you run make within the tests directory, it will make executables of all the C programs in
this directory. The linking step needs to use your library, libmem.so. So, you need to tell the
linker where to find this file. Before you run any of the created dynamically linked executables,
you will need to set the environment variable, LD_LIBRARY_PATH, so that the system can find
your library at run time. Assuming you always run a testing executable from (your copy of) this
same tests/ directory, and the dynamically linked library (libmem.so) is one level up, that
directory (to a Linux shell) is '../', so you can use the command (inside the tests directory):
export LD_LIBRARY_PATH=../​

Or, if you use a *csh shell:
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:../​

If the setenv command returns an error "LD_LIBRARY_PATH: Undefined variable", do not
panic. The error implies that your shell has not defined the environment variable. In this case,
run: setenv LD_LIBRARY_PATH ../

http://pages.cs.wisc.edu/~gerald/cs354/Spring18/projects/p6/

3.4. Design a New Test
Create a new C program that tests whether simple Mem_Free() calls work. The test should
determine if a single allocation, followed by a call to Mem_Free() does the right thing. After
you have debugged enough to know that it works correctly, add to this same C program a test
case to make sure that Mem_Free() does the right thing if passed a bad pointer. A bad pointer
is one with the NULL value or an address of memory space not allocated by Mem_Alloc().
Name this testing program freetests.c. The main purpose of this part is to help you get
started with writing your own tests for testing your memory allocator.

5. Hints
●​ Always keep in mind that the value of size_status (in the block_header) excludes the

space for the header block.
●​ It is highly recommended that you write small helper functions(test them first) for

common operations and checks such as: isFree(), setFree(),
setAllocated() etc.

●​ Double check your pointer arithmetic. (int*)+1 changes the address by 4, (void*)+1 or
(char*)+1 changes it by 1. What does (block_header*)+1 change it by?

●​ For any tests that you write, make sure you call Mem_init() first to allocate sufficient
space.

●​ Check return values for all function calls to make sure you don't get unexpected
behaviour.

6. Handing in the Assignment
Turn in files mem.c and freetests.c. Copy these files into your handin directory. Your handin
directory for this project is
/p/course/cs354-gerald/public/handin/<yourloginID>/p6
where <yourloginID> is the username of your CS account.
Your Handin Folder should have the following files:

1.​ mem.c
2.​ freetests.c

If you are working as part of a pair, you must turn in an extra file. This file will contain the
names and email of both students in the pair. As an example, if Gerald worked with Ancy on this
assignment, the contents of the extra file for both Gerald and Ancy would be
Adalbert Gerald Soosai Raj, gerald@cs.wisc.edu​
Ancy Philip, aphilip@cs.wisc.edu

The name of this file is specialized to help the 354 automated grading tools identify who worked
together. This file name is composed of the CS logins of the partners separated by a period. The
file name is of the form <login1>.<login2>. Gerald's CS login is gerald, and Ancy's CS login is
aphilip. The file name that both use will be gerald.aphilip. Please have both partners use the
same file name. It does not matter which partner's name is first within this file name.

7. Requirements
1.​ Within the comment block at the top of mem.c, add a new line of the form:

 * MODIFIED BY: name, CS email, partnername, CS email of partner
2.​ Your program is to continue the style of the code already in the file. Use the same types

of comments, and use tabs/spaces as the existing code does.
3.​ Document your added functions with inline comments!
4.​ Your programs must compile on the CS Linux lab machines as indicated in this

specification without warnings or errors.
5.​ Do not use any stdlib allocate or free functions in this program! The penalty for using

malloc(), free() (or friends) will be no credit for this assignment.

	Assignment 6
	1. Collaboration Policy
	2. Learning Goals
	3. Specifications
	3.1. Memory Allocation Background
	3.2. Understand the code
	3.3. Implement malloc and free
	3.4. Test the Code
	3.4. Design a New Test

	5. Hints
	6. Handing in the Assignment
	7. Requirements

