
Versioning NWB Specification Namespaces 
●​ Version: 0.3.2 
●​ Authors: 

○​ Oliver Ruebel 
○​ Ryan Ly 

●​ Last update: December 7, 2021 

Overview 

The purpose of this document is to define the requirements and strategy for versioning 
namespaces for NWB extensions. 

Definitions 

●​ The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in 
this document are to be interpreted as described in RFC 2119. 

●​ “Neurodata Extensions” (NDX) refer to extensions to the NWB data standard. 
NDX MUST be described by a formal format specification using the NWB 
specification language. 

●​ “Namespace” is a declarative region for format specifications that provides a 
scope to the identifiers (the neurodata_types, groups, datasets, links, attributes, 
etc.) inside it. Namespaces are used to organize format specifications into 
logical groups and to prevent name collisions that can occur especially when 
using multiple extensions to the core data specification. 

●​ “Sub-namespace” refers to a namespace that is being used exclusively as a 
sub-component of an extension “Namespace.” I.e., sub-namespaces are always 
included in the main namespace and released in conjunction with the main 
namespace. Sub-namespaces can be useful if separate versioning of 
sub-components of a namespace is desirable. Generally we RECOMMEND to 
organize extensions into a single “Namespace” with possible multiple extension 
source yaml files, rather than using “Sub-namespaces”. 

https://www.ietf.org/rfc/rfc2119.txt


Summary 

NWB uses semantic versioning for format specifications (schema). Versions are 
assigned on a namespace level and are stored in the “version” key of the 
corresponding namespace YAML file. A version number consists of the following 
components MAJOR.MINOR.PATCH. Version numbers SHOULD be incremented as 
follows: 

1.​ MAJOR version is incremented when adding incompatible schema changes, 
2.​ MINOR version is incremented when functionality is added in a 

backwards-compatible manner (e.g., addition of new neurodata types), 
3.​ PATCH version is incremented when backwards compatible bug fixes or other 

changes that do not affect the actual specification (e.g., correction of 
documentation). For public releases, NWB does not allow custom extensions 
(e.g., adding the suffixes “-beta”, “-rc”) to the semantic versioning. Custom 
extensions may be used internally on development branches but should be 
removed for public release. 

Further details on schema compatibility and what kinds of changes are allowed in 
major, minor, and patch versions are described in the NWB and HDMF Versioning and 
Compatibility Policy. 

Versioning rules 

1.​ Extensions to NWB MUST contain a valid and complete specification of the 
namespace and all types via YAML files compliant with the NWB specification 
language. It is further RECOMMENDED that sources for generating the 
extensions via the PyNWB/HDMF specification tools also be released in 
conjunction with the extension. 

2.​ A version number MUST take the form X.Y.Z. X, Y, and Z MUST be non-negative 
integers. X, Y, and Z MUST NOT contain leading zeroes. X identifies the major 
version, Y identifies the minor version, and Z identifies the patch version. Each 
element MUST increase numerically. For instance: 1.9.0 -> 1.10.0 -> 1.11.0. 

3.​ Any modifications to a specification MUST be released as a new version. That is, 
once a specific version of a specification has been released, the contents of that 
version MUST NOT be modified. 

4.​ Initial version numbers SHOULD be created as follows: 

https://www.nwb.org/versioning-and-compatibility/
https://www.nwb.org/versioning-and-compatibility/


1.​ For initial development, version numbers with a MAJOR version zero (i.e., 
0.y.z) SHOULD be used indicating that anything may change at any time 
and that the extensions SHOULD NOT be considered stable. 

2.​ Version 1.0.0 defines the public API. Incrementation of version numbers 
thereafter MUST follow the semantic versioning rules outlined here. 

5.​ Version numbers MUST be incremented as follows: 
1.​ PATCH version Z (x.y.Z where x > 0) MUST be incremented if only 

backwards compatible bug fixes or other changes that do not affect the 
actual specification (e.g., correction of documentation etc.) are 
introduced. Bug fix defines an internal change that does not affect the 
actual data format specification. The PATCH version MUST be reset to 0 
when the MAJOR or MINOR version is incremented. 

2.​ MINOR version Y (x.Y.z where x > 0) MUST be incremented if new, 
backwards compatible functionality is introduced to the public 
specification. It MUST be incremented if any public API functionality is 
marked as deprecated and if new functionality or improvements are 
introduced. It MAY include patch level changes. The PATCH version 
MUST be reset to 0 when MINOR version is incremented. The MINOR 
version MUST be reset to 0 when the MAJOR version is incremented. 

3.​ MAJOR version X (X.y.z where X > 0) MUST be incremented if any 
backwards incompatible changes are introduced to the public format 
specification. It MAY include minor and patch level changes. The PATCH 
and MINOR version MUST be reset to 0 when the major version is 
incremented. 

6.​ Public releases of the format specification MUST NOT contain custom 
extensions to the semantic versioning. Custom extensions (e.g., adding the 
suffixes “-beta”, “-rc”) MAY be used internally on development branches but 
MUST be removed for full public release. For internal releases, addition of a 
hyphen followed by lowercase alphabetic identifiers (a-z) SHOULD be used. 
Internal release additions SHOULD be comparable via standard alphabet 
ordering (e.g,. 1.0.0a < 1.0.0b). Typically, not the full spectrum of available 
alphabet characters are used for internal pre-releases, e.g., in the case of the 
following SUGGESTED internal versioning scheme: 

1.​ The postfix “-alpha” (e.g., 2.0.1-alpha) may be used to indicate internal 
alpha releases. Internal alpha releases are considered not stable and 
under development. 



2.​ The postfix “-beta” (e.g., 2.0.1-beta) may be used to indicate internal beta 
releases. Internal beta releases are considered usable but still under 
development. 

3.​ The postfix “-rc” (e.g., 2.0.1-rc) may be used to indicate internal release 
candidates. Internal release candidates are considered usable and stable, 
expecting only minor changes for full public release. 

7.​ To support versioning of subcomponents of an extension, an extension MAY 
contain sub-namespaces that are included in the main extension namespace. 
Sub-namespaces MUST follow the same versioning rules outlined above. In 
addition the version of the main namespace (and any sub-namespaces that 
include a corresponding sub-namespace) MUST update their version numbers 
accordingly when the version of a sub-namespace is incremented. 

Determining version precedence 

Version precedence refers to how versions are compared to each other when ordered. 
Precedence MUST be calculated by separating the version into MAJOR, MINOR, and 
PATCH (and for internal pre-release, additional alphabetic identifiers) in that order. 
Precedence is determined by the first difference when comparing each of these 
identifiers from left to right as follows: MAJOR, MINOR, and PATCH versions are 
always compared numerically. For example: 1.0.1 < 2.1.0 < 2.2.0 < 2.3.1. Versions with 
identical MAJOR and MINOR versions are considered backwards compatible, i.e., a file 
generated with version 2.0.x MUST be able to be read using all versions 2.0.y (y >= x). 
Internal release additions to the versioning schema are considered to have lower 
precedence than regular versions (e.g., 2.0.0-alpha < 2.0.0, i.e., pre-release versions 
are considered lower than the same regular release version). Precedence for two 
pre-release versions with the same MAJOR, MINOR, and PATCH version SHOULD be 
determined by lexical comparison in ASCII sort order (i.e., comparison left-to-right in 
alphabetic order). E.g. 1.0.0-a < 1.0.0-b and for internal pre-release additions 
consisting of multiple letters 1.0.0-a < 1.0.0c < 1.0.0-ca < 1.0.0-cb < 1.0.0-d. 

References 

The rules outlined in this document have been derived from Semantic Versioning 2.0.0 
(https://semver.org). 

https://semver.org/

	Versioning NWB Specification Namespaces 
	Overview 
	Definitions 
	Summary 
	Versioning rules 
	Determining version precedence 
	References 


