Newton's Law of Gravitation Practice Problems

LA, MA, HA

- 1. Two spherical objects have masses of 200 kg and 500 kg. Their centers are separated by a distance of 25 m. Find the gravitational attraction between them.
- 2. Two spherical objects have masses of 1.5 x 10⁵ kg and 8.5 x 10² kg. Their centers are separated by a distance of 2500 m. Find the gravitational attraction between them.
- 3. Two spherical objects have masses of 3.1 x 10⁵ kg and 6.5 x 10³ kg. The gravitational attraction between them is 65 N. How far apart are their centers?
- 4. Two spherical objects have equal masses and experience a gravitational force of 25 N towards one another. Their centers are 36 cm apart. Determine each of their masses.
- 5. A 1 kg object is located at a distance of 6.4 x10⁶ m from the center of a larger object whose mass is 6.0 x 10²⁴ kg.
 - a. What is the size of the force acting on the smaller object?
 - b. What is the size of the force acting on the larger object?
 - c. What is the acceleration of the smaller object when it is released?
 - d. What is the acceleration of the larger object when it is released?
- 6. Two spherical objects have masses of 8000 kg and 1500 kg. Their centers are separated by a distance of 1.5 m. Find the gravitational attraction between them.
- 7. Two spherical objects have masses of 7.5 x 10⁵ kg and 9.2 x 10⁷ kg. Their centers are separated by a distance of 2.5 x 10³ m. Find the gravitational attraction between them.
- 8. Two spherical objects have masses of 8.1 x 10² kg and 4.5 x 10⁸ kg. The gravitational attraction between them is 1.9 x 10⁻³ N. How far apart are their centers?
- 9. Two spherical objects have equal masses and experience a gravitational force of 85 N towards one another. Their centers are 36mm apart. Determine each of their masses.
- 10. A 1 kg object is located at a distance of 7.0 x10⁸ m from the center of a larger object whose mass is 2.0 x 10³⁰ kg.
 - a. What is the size of the force acting on the smaller object?
 - b. What is the size of the force acting on the larger object?
 - c. What is the acceleration of the smaller object when it is released?
 - d. What is the acceleration of the larger object when it is released?
- 11. Two spherical objects have masses of 8000 kg and 5.0 kg. Their centers are separated by a distance of 1.5 m. Find the gravitational attraction between them.

- 12. Two spherical objects have masses of 9.5×10^8 kg and 2.5 kg. Their centers are separated by a distance of 2.5×10^8 m. Find the gravitational attraction between them.
- 13. Two spherical objects have masses of 6.3×10^3 kg and 3.5×10^4 kg. The gravitational attraction between them is 6.5×10^{-3} N. How far apart are their centers?
- 14. Two spherical objects have equal masses and experience a gravitational force of 25 N towards one another. Their centers are 36 cm apart. Determine each of their masses.
- 15. A 1 kg object is located at a distance of 1.7 x10⁶ m from the center of a larger object whose mass is 7.4 x 10²² kg.
 - a. What is the size of the force acting on the smaller object?
 - b. What is the size of the force acting on the larger object?
 - c. What is the acceleration of the smaller object when it is released?
 - d. What is the acceleration of the larger object when it is released?
- 16. Compute g at a distance of 4.5×10^7 m from the center of a spherical object whose mass is 3.0×10^{23} kg.
- 17. Compute g for the surface of the moon. Its radius is 1.7 x10⁶ m and its mass is 7.4 x 10²² kg.
- 18. Compute g for the surface of a planet whose radius is twice that of the Earth and whose mass is the same as that of the Earth.
- 19. Compute g for the surface of the sun. Its radius is 7.0×10^8 m and its mass is 2.0×10^{30} kg.
- 20. Compute g for the surface of Mars. Its radius is 3.4 x10⁶ m and its mass is 6.4 x 10²³ kg.
- 21. Compute g at a height of 6.4 x 10⁶ m (R_E) above the surface of Earth.
- 22. Compute g at a height of 2 R_E above the surface of Earth.
- 23. Compute g for the surface of a planet whose radius is half that of the Earth and whose mass is double that of the Earth.
- 24. Compute g at a distance of $8.5 \times 10^9 \text{m}$ from the center of a spherical object whose mass is 5.0×10^{28} kg.
- 25. Compute g at a distance of 7.3×10^8 m from the center of a spherical object whose mass is 3.0×10^{27} kg.
- 26. Compute g for the surface of Mercury. Its radius is 2.4 x10⁶ m and its mass is 3.3 x 10²³ kg.

- 27. Compute g for the surface of Venus. Its radius is 6.0×10^6 m and its mass is 4.9×10^{24} kg.
- 28. Compute g for the surface of Jupiter. Its radius of is 7.1×10^7 m and its mass is 1.9×10^{27} kg.
- 29. Compute g at a height of 4 RE above the surface of Earth.
- 30.Compute g at a height of 5 R_E above the surface of Earth.
- 31. Compute g for the surface of a planet whose radius is double that of the Earth and whose mass is also double that of the Earth.