
Overview 
 
Join algorithms 

●​ (Block) Nested Loop Join - two-level for-loop 
●​ Hash Join - compute a hash table of one input; probe the hash table with the other input 
●​ Sort-Merge Join - sort both tables on one of the join conditions, then merge sorted lists 

 
Indexes 

●​ B-Tree index - supports point and range lookup.  
●​ Hashtable - supports point lookup.  

Clustered indexes are the way the data is stored in the “original” table; they are almost always 
B-trees. Unclustered indexes define secondary tables that reference the main table via pointers. 
 
Cardinality estimation - the problem of estimating the number of tuples after an operation, such 
as a selection or join.  Good estimates are critical to cost modeling; the larger the cardinality; the 
larger the cost.  Here we use assumptions: that the values of a table are uniformly distributed 
among its distinct values, and that all joins are foreign key-primary key joins. 
 
Cost Modeling 

●​ B(R) - the number of blocks used to store the relation R on disk 
●​ T(R) - the number of tuples in R (also known as R's cardinality) 
●​ V(R, a) - the number of unique values of attribute a in relation R 
●​ M - the number of pages that fit in memory 

 
Cost-based Query Optimization compares plans by computing their estimated cost, then 
chooses the one with the cheapest estimated cost to execute. 
 
Query execution - we learned about the iterator method (iterator interface) of executing the 
operators in a query plan.  You may see it called the "pull-based model of query execution", 
because each operator "pulls" data from its child operators by calling next().  The three methods 
used are open(), next(), and close(). 
 

Formula guide for cardinality estimation 
In cost estimation, we assume data is uniformly distributed such that each distinct value has the 
same number of tuples.  

Selectivity factor (X), assuming table R(a, b) cartesian joined S(a,c) and constants x, x1, x2: 

-​ R.a = x =>  𝑋≅ 1
𝑉 𝑅,𝑎( )

-​ R.a < x =>  𝑋≅ 𝑥 − 𝑚𝑖𝑛(𝑅.𝑎)
𝑚𝑎𝑥(𝑅.𝑎) − 𝑚𝑖𝑛(𝑅.𝑎)

-​ R.a > x =>  𝑋≅ 𝑚𝑎𝑥(𝑅.𝑎) − 𝑥
𝑚𝑎𝑥(𝑅.𝑎) − 𝑚𝑖𝑛(𝑅.𝑎)

-​ x1 < R.a < x2 =>  𝑋≅ 𝑥2 − 𝑥1
𝑚𝑎𝑥(𝑅.𝑎) − 𝑚𝑖𝑛(𝑅.𝑎)



-​ R.a = S.a (equijoin) =>  𝑋≅ 1
𝑚𝑎𝑥(𝑉 𝑅,𝑎( ),𝑉(𝑆,𝑎))

-​ cond1 AND cond2 =>  𝑋 = 𝑋
1

* 𝑋
2

On deriving the selectivity of an equijoin: 

Why R.a = S.a (equijoin) => ? 𝑋≅ 1
𝑚𝑎𝑥(𝑉 𝑅,𝑎( ),𝑉(𝑆,𝑎))

Let say x0 a value such that R.a = S.a = x0, that means when we do selection R.a = x0 AND S.a 
= 0, the selectivity is: 

 𝑋≅ 1
𝑉 𝑅,𝑎( )*𝑉(𝑆,𝑎)

But there can be as many as min(V(R,a), V(S,a)) distinct values of x0 (for example R has 100 
value of a, S has 1000 value of a, the number of value of a after join is 100 because 100 < 1000, 
other S.a is filtered out. That means there can be 100 value of x0 such that R.a = S.a = x0)  

Therefore, we multiply the above selectivity by min(V(R,a), V(S,a)) which means the min value 
is crossed out of  the denominator, leaving the maximum value. Thus  

 𝑋≅ 1
𝑚𝑎𝑥(𝑉 𝑅,𝑎( ),𝑉(𝑆,𝑎))

Note: this is the selectivity factor. To estimate the number of tuples in a join, multiply by the T1T2, 
the number of tuples in a Cartesian product. 

 
 



X *THE NUMBER OF TUPLES IN YOUR 
AGGREGATION/TABLE 

Problems 
1. (Adapted from 414 SP 17 Final) 
Consider the relations R(e, f), S(f, g), and X(g, 
h) in the query plan depicted above.   
  - Joins are natural joins.​
  - Every attribute is integer-valued.​
  - Assume that every intermediate result is 
materialized (i.e., written to disk).​
  - Assume that we are executing queries on a 
machine that has 11 memory pages available.  ​
  - Assume uniform distributions on the 
attributes for the purpose of computing 
estimates.  ​
Consider the following statistics: 
 

Table #tuples #blocks 

R 1,000 100 

S 5,000 200 

X 100,000 10,000 

 

Attribute # distinct values Minimum value Maximum value 

R.f 100 1 1,000 

S.f 1,000 1 2,000 

S.g 5,000 1 2,000 

X.g 1,000 1 10,000 

X.h 1,000 1 500,000 

 
A. Estimate the number of tuples and blocks in the selection σh=723(X). 
Select * from X where h = 723 
 
 
 
 
 



 
B. Estimate the number of tuples in the join R ⋈ S.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. (Adapted from 414 AU 19 Final) 
 
 
Assume we have relations R and S in a database, along with statistics on their attributes as 

shown below: 

 

R(a integer,  

  b float 

  c integer) 

S(d integer,  

        e float) 

 

R 
T(R) = 1,000 
V(R, a) = 100 
V(R, b) = 1,000 
V(R, c) = 10 
minimum value of b: 0.0 
maximum value of b: 100.0 

S 
T(S) = 5,000 
V(S, d) = 500 
V(S, e) = 5,000 
minimum value of e:  50.0 
maximum value of e:  150.0 

 

T(X) is the number of tuples in a relation X. 

V(X, y) is the number of distinct values for the attribute y in the relation X. 

We assume the values of the attributes are uniformly distributed over their range. 

 

For each of the queries below, estimate the number of tuples that will be returned in the output. 

 

a)   

 

 



SELECT * 

FROM   R 

WHERE  R.b > 25.0  

 

 

 

 

 
 

​ ​ ​ ​ ​        

b)   

 

SELECT * 

FROM   S 

WHERE  S.d = 487 

 

 

 

 

c)   

SELECT * 

FROM   S 

WHERE  S.e > 70.0 AND S.e < 80.0 

 

 

 

 
​ ​ ​ ​ ​ ​ ​       

​ ​ ​ ​ ​ ​  

d)   

 

SELECT * 

FROM   R 

WHERE  R.a = 15 AND R.c = 82 

 
 ​ ​ ​ ​ ​   ​  

 

e)   

 



SELECT * 

FROM   R, S 
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