Контрольная работа по теме «Геометрическая и волновая оптика» 11 класс

1 вариант

- 1.Определите угол падения и скорость света в серебре, если угол преломления света равен 10⁰. Показатель преломления света для серебра 3,64.
- 2.Предмет находится на расстоянии 15 см от рассеивающей линзы с фокусным расстоянием 30 см. На каком расстоянии от линзы получается изображение предмета? Каково увеличение линзы?
- 3. При освещении тонкой плёнки параллельными монохроматическими лучами в одних местах плёнки видны светлые пятна, а в других тёмные. Чем это объяснить?
- 4. Дифракционная решётка содержит 500 штрихов на 1 мм. На решётку падает свет с длиной волны 500 нм. Под каким углом виден максимум первого порядка?
- 5. Дополните
- А) Крайнему фиолетовому лучу (λ =0,4 мкм) соответствует частота Γ ц.
- Б) Два когерентных световых луча с λ =800 нм сходятся в точке. При Δd =4мм пятно в точке выглядит .

2 вариант

- 1.Определите скорость света и угол преломления в турмалине, если угол падения света на его поверхность 53⁰. Показатель преломления света в турмалине 1,67.
- 2. Расстояние от мнимого изображения предмета до собирающей линзы, оптическая сила которой 2 дптр, равно 40 см. Определите расстояние от линзы до предмета. Каково увеличение линзы?
- 3. Как образуется радужная окраска мыльного пузыря? Почему интерференционная окраска одного и того же места поверхности мыльного пузыря непрерывно меняется?
- 4. Дифракционная решётка содержит 120 штрихов на 1 мм. Найдите длину волны монохроматического света, падающего на решётку, если максимум первого порядка наблюдается под углом 4⁰.
- 5. Дополните
- А)Оранжевому лучу (λ =0,6 мкм) соответствует частота ____ Гц.
- Б) Два когерентных световых луча с λ =450 нм сходятся в точке. При Δ d=9 мм пятно в точке выглядит .