## Практическая работа №9

**Тема**: Определение параметров цикла одноступенчатой паровой холодильной машины с помощью таблиц и диаграмм. Расчет цикла.

**Цель**: Научиться применять на практике знания по построению цикла паровой холодильной машины в i-lgp и T-s-диаграммах и приобрести навыки по определению параметров узловых и промежуточных точек; расчету рабочих циклов одноступенчатых холодильных машин.

## Методические пояснения и рекомендации

Исходными данными для построения и расчета теоретического цикла паровой компрессионной холодильной машины является вид хладагента и температурный режим работы холодильной машины, который определяется:

- -температурой кипения хладагента в испарителе;
- -температурой конденсации;
- -температурой переохлаждения жидкого хладагента перед регулирующим вентилем;
  - -температурой пара, всасываемого в цилиндр компрессора.

## Построение цикла в диаграммах

Необходимо определить параметры холодильного агента не только в узловых, но и в промежуточных точках, что позволит проконтролировать правильность определения нужных для расчета параметров.

Порядок построения цикла одноступенчатого сжатия в s-T- и i-lgp - диаграммах показан на рисунке 9.1.

Вначале на диаграмму наносят изотермы  $t_0$ ,  $t_{\rm K}$ ,  $t_{\rm II}$ ,  $t_{\rm BC}$ , определяющие режим работы установки (рис.9.1a), и находят изобары  $p_0$  и  $p_{\rm K}$ , соответствующие температурам кипения  $t_0$  и конденсации  $t_{\rm K}$  в области перегретого пара и переохлажденной жидкости.

На пересечении линий  $t_{\rm BC}$  и  $p_0$  находится точка I, характеризующая состояние всасываемого компрессором пара. Через точку I проводят линию постоянной энтропии  $s={\rm const}$  (адиабату) до пересечения с изобарой  $p_{\rm K}$  в точке 2 (рис.9.1б). Эта точка характеризует состояние пара в конце сжатия, а линия I-2 - процесс теоретического (адиабатического) сжатия в компрессоре.

Изобара  $p_{\kappa}$  от точки 2 до точки 3' характеризует процесс, происходящий в конденсаторе: 2-2' - охлаждение пара до состояния насыщения, 2'-3' - конденсацию.

При том же давлении  $p_{\kappa}$  происходит процесс переохлаждения жидкого холодильного агента (линия 3'-3 на рис.9.1~e). Точка 3 определяет состояние переохлажденной жидкости, подводящейся к регулирующему вентилю и находится на пересечении изобары  $p_{\kappa}$  и изотермы  $t_n$ . В s-T диаграмме точка 3 находится на пограничной кривой при температуре  $t_n$ , т.к. изобара в области переохлажденной жидкости расположена очень близко к линии жидкости и на диаграммах не наносятся.

Процесс дросселирования 3-4 (рис.9.1 $\varepsilon$ ) характеризуется снижением давления и температуры холодильного агента при неизменной энтальпии. Состоянию влажного пара после регулирующего вентиля соответствует точка 4, которая находится на пересечении линии энтальпии, проходящей через точку 3, с линией давления  $p_0$  (температура  $t_0$ ).

Процесс кипения 4-1' происходит при постоянном давлении  $p_0$  и температуре  $t_0$  в испарителе (рис.9.1 $\delta$ ).

Линия I'-I при давлении  $p_0$  характеризует процесс перегревания пара до температуры  $t_{\rm BC}$  в испарителе, трубопроводе и теплообменнике.

## Определение параметров

В работе нужно определить все параметры: температуру t, давление p, удельный объем v, энтальпию i, энтропию s. Для точек эти параметры можно определять по таблицам насыщенных паров для состояний насыщения (приложения K, $\Pi$ ) и по диаграммам i-lgp для R12 и R717).

По таблицам определяют параметры таких точек:

- 1' для сухого насыщенного пара при температуре кипения  $t_0$ ;
- 2',3' соответственно для сухого насыщенного пара и жидкости по температуре конденсации  $t_k$ ;
- 3 для жидкости по температуре переохлаждения  $t_{\rm n}$  (кроме давления, которое в процессе переохлаждения не изменяется и равно давлению конденсации  $p_{\rm k}$ ).

Параметры остальных точек цикла определяются по диаграммам:

- *1* на пересечении линий  $t_{\rm BC}$  и  $p_0$ ;
- 2- линий  $s = \text{const } \text{и } p_{\text{k}}$
- 3- линий  $p_{\rm k}$  и  $t_{
  m n}$
- 4- линий  $i_3 = \text{const } \text{и } t_0$

Найденные параметры сводятся в таблицу по такой форме:

| Точки | Параметры |               |                     |                   |                     |  |  |  |
|-------|-----------|---------------|---------------------|-------------------|---------------------|--|--|--|
|       | t, °C     | <i>p</i> , Па | $v$ , $M^3/K\Gamma$ | <i>i</i> , кДж/кг | <i>s</i> ,кДж/кг∙ К |  |  |  |
| 1'    |           |               |                     |                   |                     |  |  |  |
| 1     |           |               |                     |                   |                     |  |  |  |
| 2     |           |               |                     |                   |                     |  |  |  |
| 2'    |           |               |                     |                   |                     |  |  |  |
| 3'    |           |               |                     |                   |                     |  |  |  |
| 3     |           |               |                     |                   |                     |  |  |  |
| 4     |           |               |                     |                   |                     |  |  |  |

#### Расчет цикла

Пользуясь данными таблицы расчет цикла ведем в следующей последовательности:

1. Удельная массовая холодопроизводительность холодильного агента:

$$q_0 = i_{I'} - i_4$$
 кДж/кг (для R717); 
$$q_0 = i_I - i_4$$
 кДж/кг (для R12).

2.Работа, затраченная на адиабатное сжатие 1 кг пара холодильного агента (кДж/кг):

$$l=i_1-i_4.$$

3. Теплота, отведенная от 1 кг холодильного агента в конденсаторе:

$$q_k = i_2 - i_3$$
 кДж/кг (для R717);  $q_k = i_2 - i_3$  кДж/кг (для R12).

4. Холодильный коэффициент:

$$\varepsilon = q_0/l$$

После выполнения необходимых построений, определение параметров точек и расчета холодильного цикла необходимо составить отчет, в котором должны быть приведены таблицы с параметрами узловых и промежуточных точек, расчет циклов, изображение рабочего цикла в i-lgp диаграмме.

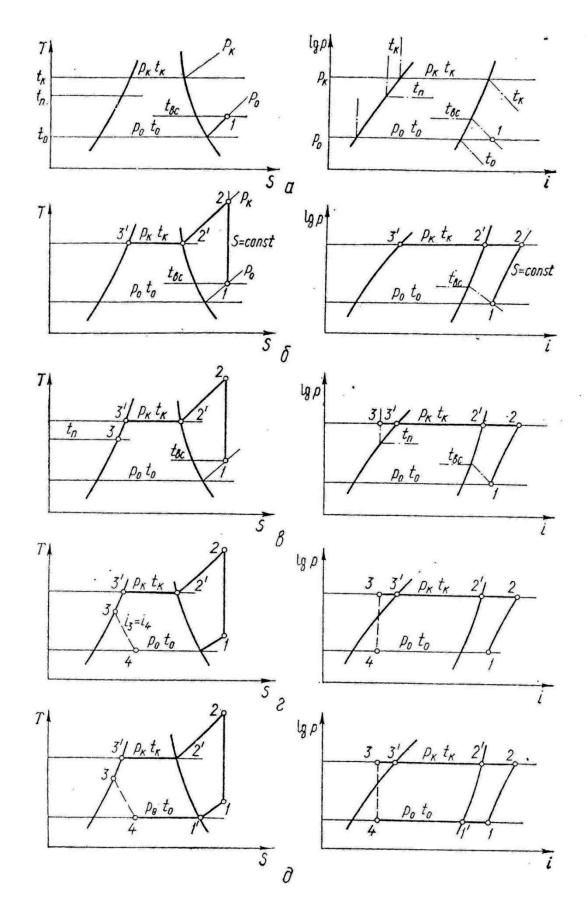



Рисунок 9.1- Построение действительного цикла в T -s, i - lg p-диаграммах

# Исходные данные (задание):

- 1. Данные для расчетов (по вариантам) взять из таблицы 9.1
- 2. Вариант принять соответственно порядковому номеру в списке группы по классному журналу. Для первой задачи принять холодильный агент R717 (аммиак), для второй задачи R12.

### Задачи 9.1 и 9.2

Вписать цикл одноступенчатой холодильной машины в i-lgp диаграмму и определить параметры холодильного агента в узловых точках на основаниях следующих данных:  $t_0$ =... °C,  $t_K$ =... °C,  $t_R$ =... °C,  $t_R$ =... °C.

Найденные параметры следует занести в таблицу, а затем провести расчет цикла

Таблица 9.1 - Данные к задачам 9.1 - 9.2

| No | Хол.агент | t <sub>0</sub> , °C | t <sub>κ,</sub> °C | $t_{n,}$ °C | t <sub>BC,</sub> °C | Хол.агент | $N_{\underline{0}}$ |
|----|-----------|---------------------|--------------------|-------------|---------------------|-----------|---------------------|
| 1  | R717      | -20                 | +35                | +30         | -5                  | R12       | 1                   |
| 2  | R717      | -10                 | +30                | +25         | 0                   | R12       | 2                   |
| 3  | R717      | -25                 | +25                | +20         | -20                 | R12       | 3                   |
| 4  | R717      | -15                 | +30                | +25         | -10                 | R12       | 4                   |
| 5  | R717      | -5                  | +35                | +30         | 0                   | R12       | 5                   |
| 6  | R717      | +5                  | +40                | +30         | + 15                | R12       | 6                   |
| 7  | R717      | -12                 | +28                | +20         | 0                   | R12       | 7                   |
| 8  | R717      | -18                 | +30                | +20         | -10                 | R12       | 8                   |
| 9  | R717      | +5                  | +35                | +25         | + 10                | R12       | 9                   |
| 10 | R717      | -22                 | +25                | +20         | -10                 | R12       | 10                  |
| 11 | R717      | -20                 | +25                | +20         | -5                  | R12       | 11                  |
| 12 | R717      | -25                 | +25                | +20         | -5                  | R12       | 12                  |
| 13 | R717      | -8                  | +28                | +20         | -5                  | R12       | 13                  |
| 14 | R717      | -10                 | +30                | +25         | +5                  | R12       | 14                  |
| 15 | R717      | -28                 | +30                | +25         | -15                 | R12       | 15                  |
| 16 | R717      | -15                 | +30                | +25         | -10                 | R12       | 16                  |
| 17 | R717      | -20                 | +35                | +30         | -10                 | R12       | 17                  |
| 18 | R717      | -5                  | +30                | +25         | +5                  | R12       | 18                  |
| 19 | R717      | -10                 | +30                | +25         | 0                   | R12       | 19                  |
| 20 | R717      | -24                 | +25                | +20         | -12                 | R12       | 20                  |

Приложение K

Таблица параметров насыщенных паров аммиака (параметры даны с округлением)

| Пормания                  |               | Удельный объем |                   | Удельная энтальпия |                  | Удельная энтропия |         |
|---------------------------|---------------|----------------|-------------------|--------------------|------------------|-------------------|---------|
| Темпе                     | Давление      |                |                   |                    | :!!              | жидкости          | пара    |
| ратура                    | абсолютн      | жидкости       | пара              | жидкости           | пара <i>i"</i> , | s′, кДж           | s", кДж |
| <i>t</i> , <sup>0</sup> C | oe<br>MH-     | υ', л/кг       | $v'$ , м $^3$ /кг | <i>i'</i> , кДж/кг | кДж /кг          | /(кг∙К)           | /(кг·К) |
|                           | <i>р,</i> МПа |                |                   |                    |                  |                   |         |
| 50                        | 2,03          | 1,78           | 0,064             | 659                | 1712             | 4,99              | 8,25    |
| 40                        | 1,93          | 1,77           | 0,067             | 650                | 1712             | 4,96              | 8.27    |
| 48                        | 1,83          | 1,76           | 0,071             | 639                | 1712             | 4,92              | 8,29    |
| 46                        | 1,74          | 1,75           | 0,075             | 629                | 1712             | 4,89              | 8,31    |
| 44                        | 1,64          | 1,74           | 0,079             | 618                | 1711             | 4,86              | 8,29    |
| 42                        | 1,56          | 1,73           | 0,083             | 609                | 1711             | 4,83              | 8,35    |
| 30                        | 1.51          | 1,72           | 0,086             | 604                | 1711             | 4,82              | 8,36    |
| 39                        | 1,47          | 1,72           | 0,088             | 599                | 1710             | 4,80              | 8,37    |
| 38                        | 1,43          | 1,71           | 0,091             | 593                | 1710             | 4.79              | 8,38    |
| 36                        | 1.20          | 1.7            | 0,09              | 58                 | 170              | 4,7               | 8,3     |
| 30                        | 1,39          | 1              | 3                 | 8                  | 9                | 7                 | 9       |
| 35                        | 1,35          | 1,7            | 0,09              | 58                 | 170              | 4,7               | 8,4     |
|                           | 1,55          | 0              | 6                 | 3                  | 9                | 5                 | 0       |
| 34                        | 1,31          | 1,7            | 0,09              | 57                 | 170              | 4,7               | 8,4     |
| 34                        | 1,51          | 0              | 9                 | 9                  | 8                | 4                 | 1       |
| 33                        | 1,27          | 1,6            | 0, 01             | 57                 | 170              | 4,7               | 8,4     |
|                           | 1,27          | 9              |                   | 4                  | 8                | 2                 | 2       |
| 32                        | 1,24          | 1,6            | 0,10              | 56                 | 170              | 4,7               | 8,4     |
|                           | 1,21          | 9              | 4                 | 9                  | 7                | 1                 | 3       |
| 31                        | 1,21          | 1,6            | 0,10              | 56                 | 170              | 4,6               | 8,4     |
|                           |               | 8              | 8                 | 4                  | 7                | 9                 | 5       |
| 30                        | 1,17          | 1,98           | 0, 111            | 560                | 1706             | 4,68              | 8,46    |
| 29                        | 1,13          | 1,68           | 0,114             | 555                | 1706             | 4,66              | 8,47    |
| 28                        | 1,10          | 1,67           | 0,117             | 551                | . 1705           | 4,64              | 8,48    |
| 27                        | 1,07          | 1,67           | 0, 121            | 546                | 1705             | 4,63              | 8,49    |
| 26                        | 1,03          | 1,66           | 0,125             | 541                | 1704             | 4,61              | 8,50    |
| 25                        | 1,00          | 1.66           | 0,128             | 536                | 1704             | 4,60              | 8.51    |
| 24                        | 0,97          | 1,65           | 0,142             | 531                | 1703             | 4,58              | 8.52    |
| 23                        | 0,94          | 1,65           | 0,136             | 526                | 1702             | 4,56              | 8,-53   |
| 22                        | 0,91          | 1,65           | 0,141             | 522                | 1702             | 4,55              | 8.55    |
| 21                        | 0,88          | 1,64           | 0,145             | 517                | 1701             | 4,53              | 8,56    |
| 20                        | 0,85          | 1,64           | 0,149             | 512                | 1700             | 4,52              | 8,57    |
| 18                        | 0,80          | 1,63           | 0,159             | 502                | 1699             | 4,48              | 8,59    |
| 16                        | 0,75          | 1,62           | 0, 169            | 492                | 1697             | 4,45              | 8,61    |
| 14                        | 0,71          | 1,62           | 0,181             | 483                | 1696             | 4,42              | 8,64    |
| 12                        | 0,66          | 1,61           | 0,193             | 474                | 1694             | 4,39              | 8,66    |
| 10                        | 0,62          | 1,60           | 0 206             | 465                | 1692             | 4,35              | 8.69    |
| 8                         | 0.57          | 1,59           | 0,220             | 455                | 1689             | 4,32              | 8.71    |
| 6                         | 0,54          | 1,59           | 0,235             | 446                | 1687             | 4,28              | 8.74    |
| 4                         | 0,50          | 1,58           | 0,252             | 437                | 1685             | 4,25              | 8,76    |
| 2                         | 0,46          | 1,57           | 0,270             | 428                | 1683             | 4,22              | 8,79    |

| 0   | 0,43  | 1,57 | 0,290  | 419 | 1682 | 4,19 | 8,81  |
|-----|-------|------|--------|-----|------|------|-------|
| -2  | 0.40  | 1,56 | 0,310  | 409 | 1680 | 4,15 | 8,84  |
| -4  | 0,37  | 1,55 | 0,334  | 400 | 1678 | 4,12 | 8,87  |
| -6  | 0,34  | 1,55 | 0,360  | 392 | 1675 | 4,09 | 8,89  |
| -8  | 0,31  | 1,54 | 0,388  | 382 | 1673 | 4,05 | 8,92  |
| -10 | 0,29  | 1,53 | 0,419  | 372 | 1671 | 4,02 | 8,95  |
| -11 | 0,28  | 1,53 | 0,435  | 367 | 1669 | 4,00 | 8,96  |
| -12 | 0,27  | 1,53 | 0,452  | 363 | 1668 | 3,98 | 8,98  |
| -13 | 0,26  | 1,52 | 0,470  | 358 | 1667 | 3,96 | 8,99  |
| -14 | 0,25  | 1,52 | 0,490  | 354 | 1666 | 3,95 | 9,01  |
| -15 | 0.24  | 1,52 | 0,510  | 350 | 1664 | 3,93 | 9,02  |
| -16 | 0,23  | 1,52 | 0,530  | 345 | 1663 | 3,91 | 9,04  |
| -17 | 0,22  | 1,51 | 0,550  | 340 | 1662 | 3,89 | 9,05  |
| -18 | 0,21  | 1,51 | 0,570  | 336 | 1660 | 3,88 | 9,07  |
| -19 | 0,20  | 1,51 | 0,600  | 331 | 1658 | 3,86 | 9,08  |
| -20 | 0,19  | 1,50 | 0,620  | 327 | 1657 | 3,84 | 9,10. |
| -22 | 0,17  | 1,50 | 0,680  | 318 | 1654 | 3,81 | 9,13  |
| -24 | 0,16  | 1,49 | 0,740  | 308 | 1651 | 3,77 | 9,16  |
| -26 | 0,14  | 1,49 | 0,810  | 300 | 1648 | 3,73 | 9,19  |
| -28 | 0,13  | 1,48 | 0,8130 | 290 | 1645 | 3,70 | 9,22  |
| -30 | 0,12  | 1,48 | 0,960  | 282 | 1642 | 3,66 | 9,26  |
| -32 | 0,11  | 1,47 | 1,060  | 273 | 1640 | 3,62 | 9,29  |
| -34 | 0,098 | 1,46 | 1,160  | 264 | 1636 | 3,59 | 9,33  |
| -36 | 0,088 | 1,46 | 1,280  | 255 | 1633 | 3,55 | 9,36  |
| -38 | 0,080 | 1,45 | 1,410  | 246 | 1630 | 3,51 | 9,40  |
| -40 | 0,072 | 1,45 | 1,550  | 237 | 1626 | 3,47 | 9,44  |
| -42 | 0,065 | 1,44 | 1,720  | 228 | 1623 | 3,43 | 9,47  |
| -44 | 0,058 | 1,44 | 1,900  | 219 | 1620 | 3,40 | 9,51  |
| -46 | 0,052 | 1,43 | 2,110  | 210 | 1617 | 3,36 | 9,55  |
| -48 | 0,046 | 1,43 | 2,350  | 202 | 1613 | 3,32 | 9,59  |

Приложение Л Таблица насыщенных паров хладона-12 (по данным ВНИХИ)

| Давление    |                | Удельнь           | ій объем               | Удельна            | ая энтальпия        | Удельная энтропия |          |
|-------------|----------------|-------------------|------------------------|--------------------|---------------------|-------------------|----------|
| Темпер      | абсолютн       | жидкости          | пара                   | жидкости           | пара                | жидкости          | пара     |
| атура $t$ , | oe             | <i>v'</i> , л/кг  | υ", м <sup>3</sup> /кг | <i>i'</i> , кДж/кг | <i>i"</i> , кДж /кг | s', кДж           | s'', кДж |
| ${}^{0}C$   | <i>p</i> , МПа | <i>U</i> , JI/ KI | U, M/KI                | <i>ι</i> , κχικι   | ι , кдж/кі          | /(кг·К)           | /(кг·К)  |
|             | p, wiiia       |                   |                        |                    |                     |                   |          |
| -48         | 0,043          | 0,65              | 0,348                  | 356                | 530                 | 3,82              | 4,60     |
| -46         | 0,048          | 0,65              | 0,317                  | 358                | 531                 | 3,83              | 4,59     |
| -44         | 0,053          | 0,65              | 0,2?9                  | 360                | 532                 | 3,84              | 4,59     |
| -42         | 0,058          | 0,66              | 0,264                  | 362                | 533                 | 3,85              | 4,59     |
| -40         | 0,064          | 0,66              | 0,242                  | 363                | 534                 | 3,86              | 4,59     |
| -38         | 0,071          | 0,66              | 0,222                  | 365                | 535                 | 3,86              | 4,58     |
| -36         | 0,077          | 0,66              | 0,204                  | 367                | 535                 | 3,87              | 4,58     |
| -34         | 0,085          | 0,67              | 0,188                  | 369                | 536                 | 3, 88             | 4,58     |
| -32         | 0,092          | 0,67              | 0,173                  | 370                | 537                 | 3,29              | 4,58     |
| -30         | 0,101          | 0,67              | 0,160                  | 372                | 538                 | 2,89              | 4,58     |
| -28         | 0,110          | 0,67              | 0,147                  | 374                | 539                 | 3,90              | 4,57     |
| -26         | 0,119          | 0,67              | 0,137                  | 375                | 510                 | 3,91              | 4,57     |
| -24         | 0,129          | 0,68              | 0,127                  | 378                | 541                 | 3,92              | 4,57     |
| -22         | 0,140          | 0,68              | 0,117                  | 380                | 542                 | 3,92              | 4,57     |
| -20         | 0,151          | 0,69              | 0,109                  | 381                | 543                 | 3,93              | 4,57     |
| -18         | 0,163          | 0,69              | 0,102                  | 383                | 544                 | 3,94              | 4,57     |
| -16         | 0,176          | 0,69              | 0,095                  | 385                | 544                 | 3,94              | 4,57     |
| -14         | 0,190          | 0,69              | 0,088                  | 387                | 546                 | 3,95              | 4,56     |
| -12         | 0,204 '        | 0,70              | 0,082                  | 389                | 547                 | 3,96              | 4,56     |
| -10         | 0,220          | 0,70              | 0,077                  | 391                | 548                 | 3,97              | 4,56     |
| -8          | 0,236          | 0,70              | 0,072                  | 392                | 548                 | 3,97              | 4,56     |
| -6          | 0,253          | 0,71              | 0,067                  | 394                | 549                 | 3,98              | 4,56     |
| -4          | 0,271          | 0,71              | 0,063                  | 396                | 550                 | 3,99              | 4,56     |
| -2          | 0,289          | 0,71              | 0,059                  | 398                | 551                 | 3,99              | 4,56     |
| 0           | 0,309          | 0,72              | 0,056                  | 400                | 552                 | 4,00              | 4,56     |
| 2           | 0,33           | 0,72              | 0,052                  | 402                | 553                 | 4,01              | 4,56     |
| 4           | 0,35           | 0,72              | 0,049                  | 404                | 554                 | 4,01              | 4,56     |
| 6           | 0,37           | 0,73              | 0,046                  | 406                | 555                 | 4,02              | 4,55     |
| 8           | 0,40           | 0,73              | 0,044                  | 408                | 556                 | 4,03              | 4,55     |
| 10          | 0,42           | 0,73              | 0,041                  | 410                | 556                 | 4,03              | 4,55     |
| 12          | 0,45           | 0,74              | 0,039                  | 411                | 557                 | 4,04              | 4,55     |
| 14          | 0,48           | 0,74              | 0,037                  | 413                | 558                 | 4,05              | 4,55     |
| 16          | 0,51           | 0,75              | 0,035                  | 415                | 559                 | 4,05              | 4,55     |
| 18          | 0,54           | 0,75              | 0,033                  | 417                | 560                 | 4,06              | 4,55     |
| 20          | 0,57           | 0,75              | 0,031                  | 419                | 561                 | 4,07              | 4,55     |
| 22          | 0,60           | 0.76              | 0,029                  | 421                | 562                 | 4,07              | 4,55     |
| 24          | 0,63           | 0,76              | 0,028                  | 423                | 562                 | 4,08              | 4,55     |
| 26          | 0,67           | 0,77              | 0,026                  | 425                | 563                 | 4,09              | 4,55     |
| 28          | 0,70           | 0,77              | 0,025                  | 427                | 564                 | 4,09              | 4,55     |
| 30          | 0,74           | 0,77              | 0,024                  | 429                | 565                 | 4,10              | 4,55     |
| 32          | 0,78           | 0,78              | 0,023                  | 431                | 565                 | 4,11              | 4,55     |
| 34          | 0,82           | 0,78              | 0,021                  | 433                | 566                 | 4,11              | 4,55     |

| 36 | 0,87 | 0,79 | 0,020 | 435 | 567 | 4,12 | 4,55 |
|----|------|------|-------|-----|-----|------|------|
| 38 | 0,91 | 0,79 | 0,019 | 437 | 568 | 4,13 | 4,55 |
| 40 | 0,96 | 0,80 | 0,018 | 439 | 568 | 4,13 | 4,55 |
| 42 | 1,00 | 0,80 | 0,018 | 441 | 569 | 4,13 | 4,54 |
| 44 | 1,06 | 0,81 | 0,017 | 443 | 570 | 4,14 | 4,54 |
| 46 | 1,11 | 0,81 | U,U16 | 445 | 571 | 4,15 | 4,54 |
| 48 | 1,16 | 0,82 | 0,015 | 447 | 571 | 4,16 | 4,54 |
| 50 | 1,21 | 0,83 | 0,014 | 449 | 572 | 4,16 | 4,54 |