231 KNEC BIOLOGY SYLLABUS

FORM 1

1. Introduction to Biology

- 1. Definition of Biology
- 2. Branches of Biology
- 3. Importance of Biology
- 4. Characteristics of living organisms
- 5. Comparison between plants and animals

2. CLASSIFICATION 1

- 1. Review and use of magnifying lens
- 2. External features of plants and animals
- 3. Necessity and significance of classification
- 4. Major units of classification(naming)
- 1. Kingdoms
- 5. Discussion of Binomial nomenclature

3. THE CELL

- 1. Definition of cell
- 2. Structure and functions of parts of a light microscope
- 3. Use and care of the light microscope
- 4. Cell structure and functions as seen under microscope
- 5. Preparation of temporary slides of plant cells
- 6. Estimation of cell size
- 7. Cell specialization, tissues, organs, and organ systems.

2. Practical activities

- 1. Observe, identify, draw and state the functions of parts of the light microscope
- 2. Prepare and observe temporary slides of plant cells
- 3. Observe permanent slides of animal cells
- 4. Comparison between plant and animal cells
- 5. Observe, estimate size and calculate magnification of plant cells

4. CELL PHYSIOLOGY

- 1. Meaning of cell physiology
- 2. Structure and properties of cell membrane (Theories of membrane structure not required)
- 3. Physiological properties- diffusion, osmosis and active transport
- 4. Factors affecting diffusion, osmosis and active transport in living organisms
- 5. Role of diffusion, osmosis and active transport in living

organisms

- 6. Water relations in plant and animal cells: turgor, plasmolysis, wilting and haemolysis
- 1. Diffusion as demonstrated with potassium permanganate or potassium iodide/ flower dyes/ coloured plant extracts/ smoke
- 2. Experiments with visking tubing and living tissues: fresh arrow roots/ cassava/ sweet potatoes/ leaf petioles/ irish potatoes
- 3. Demonstration of plasmolysis

5. NUTRITION IN PLANTS AND ANIMALS

- 1. Meaning, importance and types of nutrition
- 2. Nutrition in plants
- 1. Definition of photosynthesis and its importance in nature
- 2. Adaptations of leaf to photosynthesis
- 3. Structure and function of chloroplast
- 4. Process of photosynthesis- light and dark stage
- 5. Factors influencing photosynthesis
- 3. Chemical compounds which constitute living organisms
- 1. Chemical composition and functions of carbohydrates, proteins and lipids
- 2. Properties and functions of enzymes

4. Nutrition in animals

- 1. Modes of feeding in animals
- 2. Dentition of a named carnivorous, herbivorous and omnivorous mammal
- 3. Adaptation of the three types of dentition of feeding.
- 4. Internal structure of mammalian teeth.
- 5. Common dental diseases, their causes and treatment

5. Digestive system and digestion in a mammal human)

- 1. Digestive system, regions, glands and organs associated with digestion.
- 2. Ingestion, digestion, absorption, assimilation and egestion.
- 6. Importance of vitamins, mineral salts, roughage and water in human nutrition
- 7. Factors determining energy requirements in humans

FORM 2

1. TRANSPORT IN PLANTS AND ANIMALS

- 1. Meaning and importance of transport systems
- 2. Absorption of water and mineral salts
- 1. Internal structure of root and root hairs
- 2. Absorption of water
- 3. Active intake of mineral salts

3. Transpiration

1. Definition of transpiration

- 2. Review of structure of the leaf.
- 3. Structure and function of xylem
- 4. Factors affecting transpiration
- 5. Forces involved in water movement in plants

4. Translocation

- 1. Structure and function of phloem
- 2. Materials translocated
- 5. Comparison between closed and open circulatory system.
- 6. Mammalian circulatory system
- 1. Structure and function of heart, arteries, veins and capillaries
- 2. Diseases and defects of the heart, arteries, veins, and capillaries
- 3. Diseases and defects of the circulatory system.
- 7. The structure and functions of blood
- 1. Composition of blood
- 2. Functions of blood plasma
- 3. The structure and functions of red blood cells and white blood cells
- 4. Mechanism of blood clotting and its importance
- 8. Blood groups (ABO system and rhesus factor)
- 9. Immune responses
- 1. Natural and artificial immunity
- 2. Allergic reactions
- 3. Importance of vaccinations against diseases
- 10. Practical Activities
- 1. Observe permanent slides of sections of stems and roots
- 2. Carry out experiments to compare transpiration on lower and upper surfaces
- 3. Observe wall charts/models
- 4. Analyse data on transpiration rate under different environmental conditions in plants
- 5. Dissect a small mammal and observe its transport system.
- 6. Make longitudinal section of the mammalian heart
- to display the chambers and associated blood vessels
- 7. Record pulse rate at the wrist before and after vigorous activities and analyse the results
- 8. Demonstrate the unidirectional flow of blood in the cutaneous veins of the fore arm

2. GASEOUS EXCHANGE

- 1. Gaseous exchange in living organisms
- 2. Gaseous exchange in plants
- 1. Mechanism of opening and closing of the stomata
- 2. The process of gaseous exchange in roots, stem and leaves of both aquatic and terrestrial plants
- 3. Gaseous exchange in animals
- 1. Types and characteristics of Respiratory surfacescell membrane, gills, buccal cavity, skin and lungs
- 2. Mechanism of gaseous exchange in protozoa,
- insect (grasshopper), fish (bonnyfish), Frog and human
- 3. Factors affecting rate of breathing in humans
- 4. Respiratory diseases: Asthma, Bronchitis, Pulmonary

Tuberculosis, Pneumonia and Whooping cough

3. RESPIRATION

- 1. Meaning and significance of respiration
- 2. Tissue respiration
- 1. Mitochondrion- structure and functions
- 2. Aerobic respiration
- 3. Anaerobic respiration in plants and animals
- 4. Application of anaerobic respiration in industry and at home
- 5. Compare energy output of aerobic and anaerobic respiration

4. EXCRETION AND HOMEOSTASIS

- 1. Excretion in Plants
- 1. Methods of excretion in plants
- 2. Useful and harmful excretory products of plants and their economic importance e.g. coffee, caffeine

2. Excretion and homeostasis in animals

- 1. Difference between excretion, homeostasis and egestion
- 2. Excretion in a named unicellular organism (protozoa)
- 3. Structure and functions of skin and kidney
- 4. Neuro-endocrine system and homeostasis
- 5. Common kidney diseases, their symptoms and possible methods of prevention and control
- 6. The role of skin in thermoregulation, salt and water balance
- 7. Major functions of liver and their contributions to homeostasis
- 8. Common diseases of liver, their symptoms and possible methods of prevention, control

FORM 3

1. CLASSIFICATION II

- 1. Review of binomial nomenclature
- 2. General principles of classification
- 3. General characteristics of kingdoms
- 1. Monera
- 2. Protoctista
- 3. Fungi
- 4. Plantae
- 5. Animalia
- 4. Main characteristics of major divisions of plantae
- 1. Bryophyta
- 2. Pterodophyta
- 3. Spermatophyta
- 5. Main characteristics of phyla Arthropoda and Chordata
- 1. Arthropoda
- 2. Diplopoda

- 3. Chilopoda
- 4. insecta
- 5. crustacea
- 6. arachnida
- 6. Construction and use of simple dichotomous keys based on observable features of plants and animals

2. ECOLOGY

- 1. Concepts of ecology
- 1. Habitat
- 2. Niche
- 3. Population
- 4. Community
- 5. Ecosystem
- 6. Biomass
- 7. Carrying capacity

2. Factors in an ecosystem

- 1. Abjotic factors
- 2. Biotic factors
- 3. Inter-relationships:- Competition, predation, saprophytism, parasitism and symbiosis

4. Nitrogen cycle

- 3. Energy flow in an ecosystem:- Food chains, food webs, decomposers, pyramid of numbers and pyramid of biomass
- 4. Population estimation methods
- 1. Quadrat method
- 2. Line transect
- 3. Belt transect
- 4. Capture-recapture method
- 5. Adaptations of plants to various habitats
- 1. Xerophytes
- 2. Mesophytes
- 3. Hydrophytes
- 4. Halophytes
- 6. Effect of pollution on human beings and other organisms Causes, effects and control of pollutants in air, water and soil

7. Human diseases

- 1. Bacterial diseases- Cholera and Typhoid
- 2. Protozoa- malaria and amoebic dysentry
- 3. Ascaris lumbricodes and schistosoma

3. REPRODUCTION IN PLANTS AND ANIMALS

- 1. Concept of reproduction
- 1. Importance of reproduction
- 2. Chromosomes, meiosis and mitosis
- 3. Asexual reproduction
- 1. Binary fission in amoeba
- 2. Spore formation/ reproduction in mucor / Rhizopus
- 3. Budding in yeast

4. Sexual reproduction in plants

- 1. Structure and function of parts of named insect and wind pollinated flowers
- 2. Pollination and agents of pollination
- 3. Features and mechanisms that hinder self fertilization and self pollination
- 4. The process of fertilization
- 5. Fruit and seed formation and dispersal

5. Sexual reproduction in animals

- 1. External fertilization in amphibians
- 2. Structure of the reproductive system of a named mammal (human)
- 3. Functions of the parts of reproductive system
- 4. Fertilization, implantation and role of placenta.
- 5. Gestation period
- 6. Role of hormones in reproduction in humans
- 6. Sexually transmitted infections (S.T.Is)
- 1. Gonorrhea
- 2. Herpes Simplex
- 3. Syphilis, Trichomoniasis, hepatitis, Candidiasis
- 4. HIV/AIDS
- 7. Advantages and disadvantages of asexual and sexual reproduction

4. GROWTH AND DEVELOPMENT

- 1. Concepts of growth and development
- 2. Growth and development in plants
- 1. Dormancy and ways of breaking it
- 2. Conditions necessary for germination
- 3. Measurement of one aspect of growth in a named seedling e.g. region of growth
- 4. Primary and secondary growth
- 5. Role of growth hormone in plants
- 6. Apical dominance
- 3. Growth and development in animals
- 1. Complete and incomplete metamorphosis in insects
- 2. Role of growth hormones in insects

* FORM 4

1. GENETICS

1. Concept of genetics

- 1. Variation within plant and animal species
- 2. Review of chromosomes
- 3. Brief mention of genes and DNA (Without details of molecular structure of genes and DNA)

2. First law of heredity

- 1. Mendel's experiments- monohybrid inheritance(3:1 ratio)
- 2. Complete and incomplete dominance, back/ testcross
- 3. Inheritance of ABO blood groups and Rh factor

3. Sex determination in humans

4. Linkage: sex linked genes, sex linked characteristics e.g. colour blindness, Haemophilia, Hairy ears and nose

5. Mutations

- 1. Types of mutations
- 2. Causes and consequences of chromosomal mutations
- 3. Gene mutations

2. EVOLUTION

1. Meaning of evolution

2. The origin of life

- 1. Special creation
- 2. Chemical evolution

3. Evidence of organic evolution

- 1. Fossil records
- 2. Geographical distribution Continental drift
- 3. Comparative embryology
- 4. Comparative anatomy
- 5. Cell biology- occurrence of cell organelles and blood pigments

4. Mechanisms of evolution

- 1. Lamarck's theory (Brief mention)
- 2. Evolution by natural selection
- 3. Natural selection in action e.g. peppered moth
- 4. Resistance to drugs, pesticides and antibiotics

3. RECEPTION, RESPONSE AND COORDINATION IN PLANTS AND ANIMALS

- 1. Meaning of stimulus, response and irritability
- 2. Reception, response and coordination in plants
- 1. Response to a variety of external stimuli
- 2. Tropisms and tactic movements and their survival values

3. Production of auxins and their effects on plant growth

3. Reception, responses and coordination in animals

- 1. Components of the nervous system in a mammal
- 2. Structure and functions of the neurones
- 3. Functions of major parts of human brain
- 4. Simple and conditioned reflex actions

4. The role of hormones in coordination in a mammal

1. Effects of over secretion and under secretion of adrenaline and thyroxine in humans

5. Effects of drug abuse on human health

- 6. Structure and functions of parts of the mammalian eye
- 1. Accommodation, image formation and interpretation
- 2. common eye defects and their corrections
- 7. Structure and functions of parts of the mammalian ear (human)
- 1. Hearing
- 2. Balance and posture

4. SUPPORT AND MOVEMENT IN PLANTS AND ANIMALS

- 1. Plants
- 1. Necessity for support and movement in plants
- 2. Review of tissue distribution in monocotyledonous and dicotyledonous plants
- 2. Animals
- 1. Necessity for support and movement in animals
- 2. Types and functions of the skeleton

3. Locomotion in a finned fish

- 4. Identification of the bones of axial and appendicular skeletons (names of individual bones of coccyx not required)
- 5. Types and functions of movable joints (ball and socket, hinge joint)
- 6. Structure, function and location of cardiac, smooth and skeletal muscles