
Architecting a Heterogeneous RAG System on an Apple M4
Cluster with the Modular Platform: A Technical Backgrounder
This report provides a comprehensive technical foundation for developing a private,
distributed Retrieval-Augmented Generation (RAG) system. The architectural focus is
on fully exploiting the heterogeneous computing capabilities of a two-node cluster of
Apple M4 Mac Minis, each equipped with 32 GB of unified memory. This will be
achieved through the Modular software stack, which includes the Mojo programming
language, the MAX inference engine, and their underlying LLVM and Multi-Level
Intermediate Representation (MLIR) compiler technologies.

The central thesis of this analysis is that achieving optimal performance and efficiency
requires a nuanced understanding of both the Apple Silicon M4 architecture and the
Modular platform's capabilities and current limitations. The primary challenge is not
merely to construct a RAG system, but to architect it for intelligent, distributed, and
heterogeneous execution across the M4's distinct compute units: the Central
Processing Unit (CPU), the Graphics Processing Unit (GPU), and the Apple Neural
Engine (ANE).

The scope of this document encompasses a detailed hardware architecture analysis,
a critical evaluation of the software stack, a blueprint for distributed system design,
strategies for mapping specific RAG workloads to the most appropriate hardware, and
a forward-looking analysis of advanced, self-improving RAG techniques. This
roadmap will guide the reader from foundational concepts through to advanced
architectural blueprints and implementation strategies, providing the necessary
background to undertake such a project.

Section 1: The Compute Fabric: Apple M4 and Unified Memory
Architecture

A prerequisite for any advanced system design is a fundamental understanding of the
underlying hardware platform. The capabilities, constraints, and interplay of the Apple
M4's diverse compute units dictate the architectural possibilities and performance
ceilings.

1.1 A Deep Dive into the M4 System-on-a-Chip (SoC)

The Apple M4 is a System-on-a-Chip (SoC) built on a second-generation
3-nanometer process, integrating several specialized processors onto a single die.1
This integration is key to its performance and efficiency.

●​ CPU Complex: The standard M4 chip features a 10-core CPU, comprising four
high-performance cores (P-cores) and six high-efficiency cores (E-cores).2 This
configuration represents a significant advancement over previous generations,
with next-generation cores that feature improved branch prediction and wider
decode and execution engines.2 This architecture delivers industry-leading
single-threaded performance, making the CPU the ideal processor for serial
tasks, complex control logic, and non-parallelizable computations that are
prevalent in the orchestration layer of a RAG pipeline.3

●​ GPU Architecture: The integrated 10-core GPU builds upon the graphics
architecture introduced in the M3 family but features faster cores and a 2x faster
ray-tracing engine.3 It supports advanced features like Dynamic Caching, which
allocates memory in hardware in real-time to improve GPU utilization, as well as
hardware-accelerated mesh shading and ray tracing.2 While many of these
features are highlighted for their gaming and graphics rendering benefits, they
underscore a powerful and flexible parallel processing unit suitable for
computationally intensive AI tasks like batch embedding generation or complex
similarity search algorithms.

●​ The Apple Neural Engine (ANE): A Specialized AI Accelerator: A standout
feature of the M4 is its 16-core Neural Engine, a dedicated processor block for
accelerating AI workloads.2 Capable of executing up to 38 trillion operations per
second (TOPS), it is significantly more powerful than the NPU in its M3
predecessor and more capable than NPUs found in contemporary AI PCs.1 The
ANE is designed for extremely power-efficient, high-throughput execution of
specific machine learning operations, making it a prime candidate for offloading
persistent or repetitive inference tasks within the RAG system.5

1.2 The Unified Memory Advantage: A Paradigm Shift for Local LLMs

Perhaps the most critical architectural feature of Apple Silicon for AI workloads is its

Unified Memory Architecture (UMA).

●​ Architecture Explained: In a traditional computing architecture, the CPU and a
discrete GPU have separate, dedicated pools of memory (system RAM and VRAM,
respectively). Data must be copied between these two pools, an operation that
introduces significant latency and overhead. UMA eliminates this bottleneck by
providing a single, high-bandwidth pool of memory that is accessible to the CPU,
GPU, and ANE.7 The base M4 chip features LPDDR5X memory delivering 120 GB/s
of bandwidth.9

●​ Implications for LLMs: This architecture is a crucial enabler for running large
language models (LLMs) on local, consumer-grade hardware. The 32 GB of
unified memory in each Mac Mini effectively functions as 32 GB of VRAM for the
GPU and ANE.11 This circumvents the primary limitation of many consumer-grade
discrete GPUs, which often have limited VRAM (e.g., 8-16 GB). When a model
exceeds a discrete GPU's VRAM, it must swap data with much slower system
RAM, causing a catastrophic drop in performance.11 UMA allows the M4 to run
models that would otherwise require expensive data-center-grade GPUs with
large memory capacities, making the Mac Mini cluster a uniquely viable platform
for private, large-scale AI.13

●​ Memory-Level Parallelism (MLP): The performance of UMA is not just about
total capacity. The memory subsystem is designed for high memory-level
parallelism, meaning it can sustain many independent memory requests
simultaneously.14 While the M4's peak bandwidth is lower than that of a high-end
discrete GPU like an NVIDIA RTX 4090 (120 GB/s vs. ~1008 GB/s) 15, its low-latency
access and high MLP are particularly well-suited for the memory access patterns
of LLM token generation, which is often memory-bandwidth bound.12

1.3 Architectural Trade-offs: ANE vs. GPU for RAG-Specific Workloads

The presence of both a powerful GPU and a specialized ANE necessitates a deliberate
choice of where to run AI workloads.

●​ Programming Model and Accessibility: The GPU is a general-purpose parallel
processor that can be programmed using APIs like Apple's Metal.16 In contrast,
the ANE is effectively a black box from a developer's perspective. It is not directly
programmable. Access is abstracted through Apple's Core ML framework;
developers convert pre-trained models into the Core ML format, and the system
then decides how to execute them on the ANE.5

●​ Performance Characteristics: The GPU excels at high-throughput,
floating-point-intensive parallel tasks, such as the large matrix multiplications
found in many parts of an LLM. The ANE is optimized for a more limited set of
operations commonly found in neural networks, particularly at lower precisions
like 16-bit floating point (FP16) and 8-bit integer (INT8). Its key advantage is
performing these tasks with exceptional power efficiency.5

●​ Data Format Constraints: A critical consideration is that the ANE has strict
requirements for the data it processes. It expects data in a 4-dimensional,
"channels-first" format and has specific memory alignment rules.5 Models must
be carefully converted to adhere to these constraints, which may not be possible
for all architectures. The GPU, being a more general-purpose unit, is significantly
more flexible.

The M4 SoC should not be viewed as a collection of independent processors but as a
cohesive, heterogeneous fabric. The optimal choice of compute unit—CPU, GPU, or
ANE—is a primary architectural decision that depends entirely on the workload's
characteristics, such as its degree of parallelism, data type requirements, and power
constraints. A naive approach that defaults to a single type of processor will inevitably
fail to leverage the SoC's full potential, particularly its unique balance of performance
and power efficiency.

Furthermore, the 120 GB/s memory bandwidth is both a key enabler and a potential
point of contention. While this bandwidth allows the 32 GB memory pool to be used
far more effectively than in traditional systems, it is a resource shared by the CPU,
GPU, and ANE. In scenarios where all compute units are active simultaneously,
memory bandwidth will become the primary system bottleneck, necessitating careful
scheduling and data management to avoid contention.

This leads to a powerful architectural pattern: the ANE's extreme power efficiency
makes it the ideal target for continuous or background RAG tasks. For example, a
process that constantly indexes new documents by running an embedding model, or a
self-improvement loop that uses a lightweight "critic" model, could run on the ANE.
This would consume minimal power while leaving the more powerful and flexible CPU
and GPU resources fully available for user-facing, low-latency query processing.

Table 1.1: Comparative Analysis of M4 Compute Units for AI Workloads

Metric CPU (4 P-cores + 6
E-cores)

GPU (10-core) Apple Neural Engine
(ANE, 16-core)

Peak Operations High GFLOPS
(single-thread focus)

Very High GFLOPS
(parallel focus)

38 TOPS (INT8)

Supported
Precisions

FP64, FP32, FP16,
INT8

FP32, FP16 Optimized for FP16,
INT8

Ideal Workload
Type

Serial Logic, Control
Flow, Complex
Branching, Data Prep

Massively Parallel FP
Math, Batch
Processing, Graphics

Fixed-Function ML
Inference, Low-Power
Continuous Tasks

Power Efficiency Medium Low Very High

Programmability
(via Modular)

Direct (Mojo) Currently
Unsupported on
macOS

Indirect (via Core ML
bridge)

Memory Access Shared access to
Unified Memory

Shared access to
Unified Memory

Shared access to
Unified Memory

Section 2: The Software Stack: The Modular Platform and its
Compiler Foundations

The choice of the Modular platform, encompassing Mojo and the MAX Engine, is
central to this project. This section analyzes the software stack's design philosophy,
its underlying compiler technologies, and its practical capabilities and limitations on
Apple Silicon.

2.1 Core Philosophy: Unifying Heterogeneous Systems with LLVM and MLIR

The AI development landscape has long been plagued by the "two-language
problem": rapid prototyping and high-level logic are written in a user-friendly
language like Python, while performance-critical components must be painstakingly
rewritten in a low-level language like C++ or CUDA to run efficiently on hardware.19 The
Modular platform is designed from the ground up to solve this problem.

●​ MLIR as the Foundation: The key innovation behind the Modular stack is its

foundation on the Multi-Level Intermediate Representation (MLIR) framework.21
MLIR, a project that originated from the LLVM ecosystem, acts as a "compiler for
compilers." Unlike LLVM, which operates at a low level, MLIR allows for the
definition of higher-level dialects and optimizations that are specific to domains
like AI and heterogeneous hardware. This enables a single language to be
compiled efficiently for vastly different targets, from CPUs to GPUs and other
accelerators.23 Mojo is the first major language designed expressly for MLIR,
giving it unique power for systems-level AI programming.21

●​ Mojo🔥: A Systems Language with Python's Usability: Mojo is a programming
language that extends the Python syntax with systems-level capabilities.20 It aims
to be a full superset of Python, allowing developers to leverage the vast Python
ecosystem while incrementally adding performance features. It introduces
concepts from languages like Rust, including strong type checking (distinguishing
between dynamic​
def functions and statically-typed fn functions), an ownership and borrowing
model for compile-time memory safety, and powerful compile-time
metaprogramming with the @parameter decorator.19 This unique combination
allows developers to write code that feels Pythonic but compiles down to
machine code with performance rivaling C++.24

●​ MAX Engine: The Graph Compiler and Runtime: The MAX Engine serves as the
high-level orchestration layer of the platform.25 It takes AI models, often
originating from frameworks like PyTorch, and converts them into a computational
graph representation (MAX Graph). This graph is then compiled and optimized for
execution on specific hardware targets.26 The performance-critical kernels that
make up the nodes of this graph are written in Mojo.28 MAX provides the
necessary APIs, such as​
InferenceSession and DeviceContext, to manage the deployment and execution
of these graphs across different devices.19

2.2 The State of Modular on Apple Silicon: A Critical Assessment

While the philosophy is compelling, the practical implementation on macOS has
critical nuances.

●​ Official Support: Modular provides official support for macOS on Apple Silicon
for both the Mojo SDK and the MAX Engine.28 Installation is streamlined via
standard package managers like​

pip and conda, making the platform accessible for local development.31

●​ The GPU Conundrum: A crucial and significant limitation for this project is that,
despite the platform's focus on heterogeneous compute, the official MAX FAQ
explicitly states: "We currently don't support Mac GPUs".33 This means that the
primary tool for orchestrating heterogeneous workloads, the MAX Engine, cannot
currently leverage the Mac's most powerful parallel processor. Any AI workload
run through the MAX Engine on a Mac will execute on the CPU.

●​ ANE Inaccessibility: Similarly, there is no evidence in the available
documentation that Mojo or MAX can directly target or program the Apple Neural
Engine. The established and only supported pathway to the ANE is through
Apple's own Core ML framework, which involves converting models to the
.mlpackage format using tools like coremltools.5

The project's core premise of using the Modular platform for end-to-end
heterogeneous compute on the M4 SoC is confronted by a major implementation gap.
The platform's primary tool for hardware abstraction and orchestration, the MAX
Engine, does not currently support the Mac's GPU. Consequently, a solution built
purely on the Modular stack would be confined to the M4's CPU cores, failing to
leverage the massive parallel processing power of the GPU or the specialized
efficiency of the ANE. This reality forces a pragmatic re-evaluation of the system
architecture.

The most viable path forward is a hybrid architectural approach. The Modular stack
can be used to orchestrate the CPU-bound components of the cluster, while Apple's
native frameworks—Core ML for the ANE and Metal for the GPU—are used to program
the specialized accelerators. Mojo's excellent Python interoperability becomes the
critical "glue" that can unify these disparate components.20 The central RAG logic can
be written in Mojo and run on the CPU cluster via MAX, while making calls through a
Python bridge to specialized functions. These functions would, in turn, execute
models on the ANE (via

coremltools and the Core ML runtime) or custom kernels on the GPU (via Python's
Metal bindings).

This re-framing also clarifies Mojo's primary value proposition for this specific project.
It is not just a "faster Python" or a unified language for all hardware. Instead, its
strength lies in being a high-performance systems language for writing the custom
logic and data processing kernels that will run on the CPU cluster. The RAG pipeline
involves significant data manipulation beyond just LLM inference, including document
chunking, text processing, and managing the vector index. These stages often

become bottlenecks in pure Python implementations. By implementing this
data-heavy logic in Mojo, which provides explicit control over vectorization (SIMD) and
multi-threading, the overall pipeline latency can be significantly reduced, even if the
core LLM inference is handled by a separate subsystem.19

Section 3: Architectural Blueprint for a Distributed RAG System

Translating the foundational knowledge of the hardware and software into a concrete
architectural plan requires defining the components, the distribution strategy, and the
communication fabric. This section outlines a blueprint, first for a single node and
then scaled to the two-node cluster.

3.1 Part I: The Single-Node RAG Pipeline (32 GB M4 Mac Mini)

Before distributing the system, a robust single-node architecture must be established.
This serves as the fundamental building block of the cluster.

●​ Component Selection:
○​ LLM: With a 32 GB unified memory budget on a single Mac Mini, several

powerful open-source models become viable. Google's Gemma 3 family is a
strong candidate due to its excellent performance-to-size ratio and
immediate support in the Apple ecosystem via MLX.34 A​
gemma-3-12b-it model would run comfortably, while a quantized version of
the larger gemma-3-27b model (e.g., 4-bit quantization) would also fit within
the memory budget, offering a trade-off between higher reasoning capability
and slightly reduced precision.13

○​ Embedding Model: The choice of embedding model is crucial for retrieval
quality. The Massive Text Embedding Benchmark (MTEB) leaderboard on
Hugging Face is the definitive resource for this.37 A high-performing yet
lightweight model like​
BAAI/bge-base-en-v1.5 is an excellent choice. It is small enough to run with
minimal resource footprint, making it an ideal candidate for offloading to the
ANE.38

○​ Vector Storage and Retrieval: For a local, private, and high-performance

system, an in-memory vector database is the optimal choice. FAISS (Facebook
AI Similarity Search) is a mature, industry-standard library known for its speed
and efficiency, making it well-suited for this use case.40 The entire vector
index would be built and managed within the Mac Mini's unified memory.

●​ Orchestration Logic (The Hybrid Model):​
The single-node pipeline will be orchestrated using the hybrid model identified in
Section 2.
○​ Data Ingestion/Processing: This stage, which includes loading documents

from disk, splitting them into chunks, and pre-processing text, will be
implemented in Mojo to leverage its C-like performance on the CPU.

○​ Embedding Generation: The chosen embedding model (bge-base-en-v1.5)
will be converted to the Core ML format. A Python script using coremltools will
then be used to run inference on the ANE. This offloads the embedding task
to the most power-efficient processor, which is ideal if indexing is a
continuous or frequent background task.

○​ Query and Generation: The main LLM (e.g., Gemma 3) will be served using
the max serve command from the Modular platform. This creates an
OpenAI-compatible REST API endpoint that runs the model on the CPU.31 The
core RAG application logic, which takes a user query, retrieves relevant
context from the FAISS index, and constructs the final prompt for the LLM, will
be written in Mojo.

3.2 Part II: Scaling to a Two-Node Cluster

With a working single-node pipeline, the system can be scaled to the two-node
cluster to unlock new capabilities.

●​ Interconnect Strategy: The most effective way to connect the two Mac Minis is
directly via a Thunderbolt 4 cable, creating a peer-to-peer network known as a
Thunderbolt Bridge. This provides a high-speed, low-latency link with a
theoretical bidirectional bandwidth of 40 Gb/s. This is substantially faster and
lower-latency than the standard 1GbE networking and even the optional 10GbE
upgrade, which is critical for minimizing the overhead of inter-node
communication in a distributed computing setup.41

Table 3.1: Comparison of Interconnect Technologies for a Two-Node Cluster

Technology Max Bandwidth
(Bi-directional)

Latency Profile Setup Complexity

1GbE 1 Gb/s High Low

10GbE 10 Gb/s Medium Medium (Requires
10GbE option on
both Minis)

Thunderbolt 4
Bridge

40 Gb/s Very Low Low (Single cable
connection)

●​ Distributed Computing Framework:​
Orchestrating tasks across the two nodes requires a distributed computing
framework.
○​ Ray: Ray is a mature and popular framework in the Python ecosystem for

building distributed applications. It provides simple primitives (@ray.remote)
for distributing functions and classes across a cluster.43 However, its
multi-node support on macOS is officially designated as experimental and
requires setting the​
RAY_ENABLE_WINDOWS_OR_OSX_CLUSTER=1 environment variable, which
introduces a support and stability risk.44 Nevertheless, community tutorials
demonstrate that setting up a Ray cluster on Mac Minis is feasible.46

○​ Apple MLX Distributed (mlx.distributed): This is a compelling alternative.
As a component of Apple's own MLX framework, it is purpose-built and
optimized for Apple Silicon.47 It uses the standard Message Passing Interface
(MPI) for communication and is specifically designed for small clusters,
making it a natural fit for this project's hardware.41

○​ Recommendation: Given the target hardware, MLX Distributed is the
recommended framework due to its native Apple Silicon focus and likely
superior stability and performance. Ray remains a viable but higher-risk
alternative due to its experimental support status on macOS.

Table 3.2: Distributed Frameworks for macOS: Ray vs. MLX

Framework Core
Primitives

macOS
Support
Status

Underlying
Protocol

Ease of Use Community/
Maturity

Ray Tasks,
Actors,
Objects

Experimental
(Requires
Env Var)

Proprietary
(GCS)

High
(Pythonic
Decorators)

High
(Mature,
Large

Community)

MLX
Distributed

Distributed
Arrays, MPI
Ops

Natively
Supported

MPI Medium
(Lower-level
Primitives)

Low (New,
Smaller
Community)

●​ A Task Distribution Model for the Cluster:​
The primary benefit of this two-node cluster is not necessarily accelerating a
single query, but enabling the use of much larger models thanks to the
aggregated memory pool of 64 GB.
○​ Head Node (Node 1): This node will run the main application logic, receive

user queries via a web interface or API, and orchestrate the overall RAG
pipeline.

○​ Worker Node (Node 2): This node will primarily serve as a compute resource.
○​ Distribution Strategy: Given the small scale of the cluster, attempting

fine-grained model parallelism (splitting a single model's layers across both
nodes) would likely be inefficient due to the communication overhead
introduced by the Thunderbolt interconnect.42 A more practical and effective
strategy is​
replicated inference with a shared vector store.
1.​ Aggregated Memory for a Larger Model: The 64 GB of total memory

allows the cluster to run a significantly larger model than a single node
could, such as a quantized 70B parameter model (e.g., llama3:70b).13

2.​ Replicated Model, Sharded Index: Each node would load a full copy of
this large LLM into its 32 GB of memory. The FAISS vector index, which
may now be too large for one node, can be sharded, with each node
holding half of the document embeddings.

3.​ Orchestration Flow: When a query arrives at the Head Node, it
broadcasts the query to the Worker Node. Both nodes perform a similarity
search on their local shard of the vector index. The results are sent back
to the Head Node, which merges them, determines the best overall
context, constructs the final prompt, and then sends an inference request
to whichever node is currently available (or load balances between them).
This architecture primarily leverages the cluster for its memory capacity
and doubles the system's overall query throughput.

Section 4: A Principled Approach to Heterogeneous Workload
Distribution

This section provides the practical "how-to" for implementing the heterogeneous
compute strategy, translating the theoretical advantages of the M4 SoC into an
applied methodology for the RAG pipeline.

4.1 Mapping the RAG Pipeline to M4 Hardware

A successful heterogeneous architecture requires decomposing the RAG workflow
into its constituent parts and mapping each to the optimal hardware target.

●​ Document Loading & Chunking (CPU): These initial ingestion steps are typically
I/O-bound and involve string manipulation and logical processing. They are not
massively parallel. The M4's high-performance P-cores are perfectly suited for
this work. Implementing this logic in Mojo will ensure it runs with maximum
efficiency, minimizing the time it takes to process new documents.

●​ Embedding Generation (ANE): As established, this is the ideal workload for the
Apple Neural Engine. The embedding model is a relatively small, fixed-function
neural network. Running it on the ANE provides high throughput with exceptional
power efficiency, making it perfect for the potentially continuous task of indexing
new information without impacting system responsiveness or battery life on a
portable device. This requires converting the chosen HuggingFace model to the
Core ML format.

●​ Vector Indexing & Similarity Search (CPU): Building and searching the FAISS
vector index involves a series of linear algebra operations. While parts of this are
parallelizable, the overall process is complex. Mojo's ability to explicitly use the
CPU's advanced vector instructions (SIMD) and to parallelize operations across all
CPU cores will be critical for achieving the lowest possible retrieval latency.

●​ LLM Prompt-Processing (GPU - Theoretical): The initial processing of a long
prompt, which includes the user's query and all the retrieved context, is a highly
parallel task. The attention mechanism must compute relationships between all
tokens in the input. This is an ideal workload for a GPU, as it can be heavily
batched. In a future where Modular's MAX engine supports Apple Silicon GPUs,
this stage would be a prime candidate for GPU offloading. In the current
implementation, this task will fall back to the CPU.

●​ LLM Token Generation (CPU): The auto-regressive generation of the response,
one token at a time, is a process that is famously limited by memory bandwidth.12

Each new token requires the entire model's weights to be read from memory. The
M4 CPU, with its fast cores and high-bandwidth, low-latency access to the
Unified Memory Architecture, is well-suited for this task. This is the default
execution path for the​
max serve command on macOS and represents a sensible allocation of
resources.33

4.2 Programming the Apple SoC with Mojo and MAX

●​ Writing Custom CPU Kernels in Mojo: To accelerate data processing,
developers can write custom functions in Mojo that outperform their Python
equivalents. For example, a text-cleaning or chunking algorithm can be
parallelized across the CPU cores using Mojo's parallelize function. Furthermore,
numerical operations can be vectorized to run on the CPU's SIMD units for a
significant speedup.19​
Conceptual Mojo Example for Parallel Processing:​
Code snippet​
from a_library import parallelize, List​
​
fn process_chunk(chunk: String):​
 #... complex processing logic...​
 return processed_chunk​
​
fn process_all_chunks(chunks: List):​
 let num_chunks = len(chunks)​
 parallelize[process_chunk](num_chunks, chunks)​

●​ Using the MAX Engine for CPU Inference: The simplest way to deploy the main
LLM is using the max serve command provided by Modular. This command can
load a model in a common format like GGUF and automatically expose it via an
OpenAI-compatible REST API.31 The Mojo-based RAG application can then
interact with this local endpoint using standard HTTP requests, abstracting away
the complexity of the inference process.

●​ Theoretical GPU Programming with Mojo: While not currently functional on
macOS through MAX, it is instructive to understand Mojo's design for GPU
programming, as this prepares for future support. Mojo allows developers to
define a fn as a GPU kernel. This kernel can then be launched onto the GPU using

a DeviceContext object, specifying the grid and block dimensions for the parallel
execution.29 This syntax is designed to be hardware-agnostic, meaning the same
code could theoretically target NVIDIA, AMD, or Apple GPUs once the compiler
backend is enabled.48 This section is purely​
forward-looking and highlights the platform's ultimate goal.

●​ Bridging to Core ML/ANE: To leverage the ANE, the architecture must bridge the
gap between the Modular and Apple ecosystems. The most practical way to do
this is through Mojo's Python interoperability. The main Mojo program would
import a Python module. This Python script would use libraries like coremltools
and CoreML to load the ANE-optimized embedding model and run inference. The
resulting embedding vectors would then be passed back as a data structure (e.g.,
a NumPy array, which Mojo can handle) into the Mojo environment for indexing
with FAISS.

4.3 Thermal Management of the M4 Mac Mini Cluster

The M4 Mac Mini introduces an innovative thermal architecture that pulls air through
the base of the unit, designed to cool the powerful SoC within its compact chassis.49
While Apple's silicon is remarkably power-efficient, a sustained, high-intensity AI
workload that simultaneously taxes the CPU, GPU, and ANE for extended periods can
generate significant heat and potentially lead to thermal throttling, where the system
reduces performance to manage temperatures.51

For typical RAG inference workloads, which are bursty in nature, thermal throttling is
unlikely to be a significant issue.53 However, for more demanding and continuous
tasks, such as fine-tuning the model or running a persistent Self-RAG loop, thermal
performance must be considered. It is advisable to use command-line monitoring
tools like

asitop to observe system load and temperatures during these intensive operations.55
Mitigation strategies are simple: ensure adequate ventilation and airflow around both
Mac Minis in the cluster. While the base M4 Mac Mini does not offer the "High
Performance" power mode found in Pro models, careful monitoring will ensure the
system remains within its operational limits.56

Section 5: Advanced Architectures: Towards a Self-Improving
RAG System

The proposed two-node M4 cluster provides a powerful foundation not just for
standard RAG, but also for more advanced, computationally intensive paradigms that
enable the system to improve itself over time.

5.1 Implementing Self-Correction and Adaptive Retrieval (Self-RAG/CRAG)

Traditional RAG systems blindly retrieve and generate. Advanced techniques like
Self-RAG and Corrective RAG (CRAG) introduce a layer of self-reflection to improve
accuracy and relevance.

●​ Architectural Overview: Self-RAG works by training a model to generate special
"reflection tokens" that allow it to critique its own processes.57 In practice, this is
often implemented by adding a separate, lightweight "critic" or "evaluator" model
to the pipeline. This evaluator assesses the relevance of retrieved documents and
the factual accuracy of the generated response against the retrieved context.59 If
the retrieved information is poor or the generated answer is unsupported, the
system can trigger a new retrieval or regenerate the response.

●​ Computational Cost: This self-reflection loop adds significant computational
overhead. For each query, the system must now run not only the main generator
LLM but also one or more passes of the evaluator model, increasing both latency
and resource consumption.59

●​ Heterogeneous Deployment Strategy: The heterogeneous nature of the M4
cluster is uniquely suited to this computational pattern. A powerful architecture
would deploy the large, primary generator LLM (e.g., gemma-3-27b) to run on the
CPU cluster, leveraging the aggregated memory and processing power. The
smaller, specialized critic models, which perform focused and repetitive
evaluation tasks, can be converted to the Core ML format and deployed to run on
the power-efficient ANE of one or both nodes. This offloads the entire critique
workload, preventing it from consuming CPU cycles needed for the main
generation task and allowing the self-reflection loop to run efficiently in the
background. This represents a prime example of intelligent, heterogeneous
computing.

5.2 The Feasibility of On-Device Fine-Tuning with PEFT/RLHF

The ultimate goal of an intelligent system is to learn from its experience. With the M4
cluster, continuous, on-device fine-tuning becomes a realistic long-term objective.

●​ Introduction to PEFT: Full fine-tuning of a large language model is
computationally prohibitive, requiring vast amounts of GPU memory and time.
Parameter-Efficient Fine-Tuning (PEFT) techniques, most notably Low-Rank
Adaptation (LoRA), offer a solution. LoRA works by freezing the pre-trained
model's weights and injecting small, trainable "adapter" layers. This means only a
tiny fraction of the total parameters (often less than 0.1%) are updated during
training, dramatically reducing the memory and compute requirements.62 A
resulting LoRA checkpoint can be just a few megabytes in size, compared to
gigabytes for the full model.64

●​ RLHF on the Cluster: Reinforcement Learning from Human Feedback (RLHF) is a
powerful technique for aligning a model's behavior with human preferences, but it
is notoriously expensive.66 A typical RLHF setup requires running multiple
instances of the model simultaneously (an actor, a critic, a reference model, and a
reward model), which multiplies the memory requirements.67

●​ PERL (Parameter-Efficient Reinforcement Learning): By combining PEFT with
RLHF, the computational cost can be drastically reduced. Using LoRA to train the
models in an RLHF loop makes the process feasible on hardware with limited
resources.62 The 64 GB of aggregated unified memory in the two-node M4 cluster
is a key enabler for this approach. While a full RLHF training run from scratch
would still be very slow, the ability to perform periodic, incremental fine-tuning
based on user feedback collected by the RAG system is a viable and powerful
goal. Based on published memory requirements, a 7B parameter model can be
fine-tuned with LoRA using approximately 32 GB of memory, making it feasible to
run the multiple model copies needed for PEFT-RLHF within the cluster's 64 GB
memory pool.63

This creates a pathway for a true self-improving system. The RAG application can log
user queries, the system's responses, and implicit or explicit user feedback (e.g., "was
this answer helpful?"). This data can be used to periodically run a PEFT-RLHF training
job on the cluster, allowing the RAG system to learn from its mistakes and
progressively improve its retrieval and generation strategies over time.68

Section 6: Recommendations and Strategic Outlook

This report has detailed the hardware, software, and architectural considerations for
building a distributed, heterogeneous RAG system on an Apple M4 Mac Mini cluster
with the Modular platform. This final section synthesizes these findings into an
actionable roadmap and provides a strategic perspective on the future of this
technology stack.

6.1 A Phased Implementation Roadmap

A structured, phased approach is recommended to manage complexity and mitigate
risks.

●​ Phase 1: Single-Node Baseline. The initial focus should be on building and
benchmarking a complete RAG pipeline on a single M4 Mac Mini. The primary goal
of this phase is to validate the hybrid architecture: using Mojo for
high-performance CPU tasks (data ingestion, FAISS management), leveraging
Apple's Core ML toolchain to run the embedding model on the ANE, and using the
max serve command for CPU-based LLM inference. This establishes a functional
baseline and resolves any interoperability challenges between the Modular and
Apple ecosystems.

●​ Phase 2: Cluster Deployment. Once the single-node system is stable, the next
step is to scale to the two-node cluster. This involves physically connecting the
machines via a Thunderbolt Bridge and implementing a distributed computing
framework (MLX Distributed is recommended). The focus of this phase is to
achieve robust, replicated inference of a larger LLM that is enabled by the 64 GB
of aggregated memory, and to implement the sharded vector index strategy.

●​ Phase 3: Heterogeneous Optimization and Self-RAG. With the cluster
operational, the system can be profiled to identify performance bottlenecks. As
Modular's platform evolves, workloads can be migrated to newly supported
hardware (e.g., the GPU). This phase also involves implementing the advanced
Self-RAG architecture, deploying lightweight critic models to the ANEs to enable
a self-correcting inference loop.

●​ Phase 4: Self-Improvement Loop. The final phase focuses on making the

system truly intelligent. This involves implementing a feedback collection
mechanism within the RAG application to log user interactions. This data can then
be used to periodically run a Parameter-Efficient Reinforcement Learning
(PEFT-RLHF) job on the cluster, using the aggregated memory to fine-tune the
model and continuously improve its performance over time.

6.2 Anticipated Bottlenecks and Mitigation Strategies

Several key challenges must be anticipated:

●​ Modular's Mac GPU Support: This is the primary current platform limitation. The
architectural strategy is to build a CPU-first system that is modular by design. The
components identified as ideal for GPU execution (e.g., prompt processing)
should be encapsulated so they can be easily offloaded to the GPU when Modular
adds support. Monitoring Modular's official release notes and community
channels is the key mitigation strategy.69

●​ Inter-Node Communication Latency: While Thunderbolt is extremely fast
compared to Ethernet, it still introduces latency that is orders of magnitude higher
than on-chip memory access.42 This will be the bottleneck for any task requiring
tight, frequent synchronization between nodes. The architectural strategy to
mitigate this is to minimize inter-node traffic by replicating models and sharding
data, preferring coarse-grained task distribution over fine-grained parallelism.

●​ ANE Model Conversion Complexity: The process of optimizing and converting a
HuggingFace model for optimal performance on the ANE can be complex,
involving strict data format and layer compatibility requirements. The mitigation
strategy is to rely heavily on Apple's official documentation and coremltools
package, and to begin with well-supported, standard model architectures before
attempting more exotic ones.5

6.3 Future Outlook: The Trajectory of Modular and Apple Silicon

This project is positioned at the confluence of two significant industry trends: the
democratization of powerful, local AI and the emergence of unified, heterogeneous
programming models designed to tame hardware complexity.

●​ Apple's Trajectory: Apple will undoubtedly continue to push the performance of
its custom silicon. Future generations of M-series chips will likely feature more
powerful CPUs, GPUs, and ANEs, along with higher unified memory bandwidth
and capacity. This will make local AI even more capable, further solidifying the
Mac as a premier platform for private and efficient AI development and
deployment.6

●​ Modular's Trajectory: Modular's stated mission is to unify AI software
development across all hardware.72 It is therefore highly probable that support for
Apple Silicon GPUs will be added to the MAX Engine in a future release. When this
occurs, the architecture proposed in this report can be readily adapted to offload
parallel workloads from the CPU to the GPU, unlocking another significant tier of
performance without requiring a fundamental rewrite of the application logic.

In conclusion, building a sophisticated RAG system on this specific hardware and
software stack is a forward-looking endeavor. While it faces certain contemporary
limitations, namely the current lack of GPU support in MAX for macOS, the process
provides a unique and valuable opportunity. It allows developers to gain deep,
practical expertise in a hardware and software paradigm—one centered on
heterogeneous computing, unified memory, and high-performance systems
languages—that is poised to become increasingly dominant in the future of
decentralized, private, and power-efficient artificial intelligence.

Works cited

1.​ Apple M4 chip: everything you need to know about Apple's latest silicon -
TechRadar, accessed July 14, 2025,
https://www.techradar.com/computing/apple-m4

2.​ Apple introduces M4 chip, accessed July 14, 2025,
https://www.apple.com/newsroom/2024/05/apple-introduces-m4-chip/

3.​ Apple introduces M4 Pro and M4 Max, accessed July 14, 2025,
https://www.apple.com/newsroom/2024/10/apple-introduces-m4-pro-and-m4-
max/

4.​ Apple's 'Breakthrough' M4 Chip Was Just Announced. Here's What It Can Do |
Man of Many, accessed July 14, 2025,
https://manofmany.com/tech/apple-m4-chip-explained

5.​ Deploying Transformers on the Apple Neural Engine - Apple Machine Learning
Research, accessed July 14, 2025,
https://machinelearning.apple.com/research/neural-engine-transformers

6.​ Benefits of Using a Mac with Apple Silicon for Artificial Intelligence - Mac Business
Solutions, accessed July 14, 2025,
https://www.mbsdirect.com/featured-solutions/apple-for-business/benefits-of-a
pple-silicon-for-artificial-intelligence

https://www.techradar.com/computing/apple-m4
https://www.apple.com/newsroom/2024/05/apple-introduces-m4-chip/
https://www.apple.com/newsroom/2024/10/apple-introduces-m4-pro-and-m4-max/
https://www.apple.com/newsroom/2024/10/apple-introduces-m4-pro-and-m4-max/
https://manofmany.com/tech/apple-m4-chip-explained
https://machinelearning.apple.com/research/neural-engine-transformers
https://www.mbsdirect.com/featured-solutions/apple-for-business/benefits-of-apple-silicon-for-artificial-intelligence
https://www.mbsdirect.com/featured-solutions/apple-for-business/benefits-of-apple-silicon-for-artificial-intelligence

7.​ What is unified memory on Mac, and how does it work? - MacPaw, accessed July
14, 2025, https://macpaw.com/how-to/unified-memory-mac

8.​ What is Unified Memory and how does it work on Apple Silicon? - XDA
Developers, accessed July 14, 2025,
https://www.xda-developers.com/apple-silicon-unified-memory/

9.​ Apple's M4 Silicon Tested and Compared—in All the New Macs | PCMag,
accessed July 14, 2025,
https://www.pcmag.com/articles/apples-m4-silicon-tested-and-compared-in-all-
the-new-macs

10.​MacBook Air 13- and 15-inch with M4 Chip - Tech Specs - Apple, accessed July
14, 2025, https://www.apple.com/macbook-air/specs/

11.​DeepSeek R1 32B vs M4 Mac Mini Pro 24GB - YouTube, accessed July 14, 2025,
https://www.youtube.com/watch?v=PkIoGitVZXw&pp=0gcJCfwAo7VqN5tD

12.​Thoughts on Apple Silicon Performance for Local LLMs | by Andreas Kunar |
Medium, accessed July 14, 2025,
https://medium.com/@andreask_75652/thoughts-on-apple-silicon-performance-
for-local-llms-3ef0a50e08bd

13.​The Best Local LLMs To Run On Every Mac (Apple Silicon) - ApX Machine
Learning, accessed July 14, 2025,
https://apxml.com/posts/best-local-llm-apple-silicon-mac

14.​Memory-level parallelism :: Apple M2 vs Apple M4 - Daniel Lemire's blog,
accessed July 14, 2025,
https://lemire.me/blog/2025/07/09/memory-level-parallelism-apple-m2-vs-apple-
m4/

15.​Apple introduces M4 chip, M4 has Apple's fastest Neural Engine, capable of up to
38 trillion operations per second, which is faster than the neural processing unit
of any AI PC today. : r/singularity - Reddit, accessed July 14, 2025,
https://www.reddit.com/r/singularity/comments/1cneeme/apple_introduces_m4_c
hip_m4_has_apples_fastest/

16.​Heterogeneous computing: Experimenting with Apple Silicon gpu(s) and metal-rs
bindings, accessed July 14, 2025,
https://www.youtube.com/watch?v=O_jT0kslGCM

17.​You can now run models on the neural engine if you have mac : r/LocalLLaMA -
Reddit, accessed July 14, 2025,
https://www.reddit.com/r/LocalLLaMA/comments/1iplsk1/you_can_now_run_mod
els_on_the_neural_engine_if/

18.​Run LLMs on Apple Neural Engine (ANE) - Hacker News, accessed July 14, 2025,
https://news.ycombinator.com/item?id=43879702

19.​Mojo : Powerful CPU+GPU Programming - Modular, accessed July 14, 2025,
https://www.modular.com/mojo

20.​Introduction to Mojo Programming Language: New Era of AI Programming -
Stratoflow, accessed July 14, 2025,
https://stratoflow.com/introduction-to-mojo-programming-language/

21.​Why Mojo | Modular, accessed July 14, 2025,
https://docs.modular.com/mojo/why-mojo/

https://macpaw.com/how-to/unified-memory-mac
https://www.xda-developers.com/apple-silicon-unified-memory/
https://www.pcmag.com/articles/apples-m4-silicon-tested-and-compared-in-all-the-new-macs
https://www.pcmag.com/articles/apples-m4-silicon-tested-and-compared-in-all-the-new-macs
https://www.apple.com/macbook-air/specs/
https://www.youtube.com/watch?v=PkIoGitVZXw&pp=0gcJCfwAo7VqN5tD
https://medium.com/@andreask_75652/thoughts-on-apple-silicon-performance-for-local-llms-3ef0a50e08bd
https://medium.com/@andreask_75652/thoughts-on-apple-silicon-performance-for-local-llms-3ef0a50e08bd
https://apxml.com/posts/best-local-llm-apple-silicon-mac
https://lemire.me/blog/2025/07/09/memory-level-parallelism-apple-m2-vs-apple-m4/
https://lemire.me/blog/2025/07/09/memory-level-parallelism-apple-m2-vs-apple-m4/
https://www.reddit.com/r/singularity/comments/1cneeme/apple_introduces_m4_chip_m4_has_apples_fastest/
https://www.reddit.com/r/singularity/comments/1cneeme/apple_introduces_m4_chip_m4_has_apples_fastest/
https://www.youtube.com/watch?v=O_jT0kslGCM
https://www.reddit.com/r/LocalLLaMA/comments/1iplsk1/you_can_now_run_models_on_the_neural_engine_if/
https://www.reddit.com/r/LocalLLaMA/comments/1iplsk1/you_can_now_run_models_on_the_neural_engine_if/
https://news.ycombinator.com/item?id=43879702
https://www.modular.com/mojo
https://stratoflow.com/introduction-to-mojo-programming-language/
https://docs.modular.com/mojo/why-mojo/

22.​Mojo, The Next-Gen Programming Language | by guna S D | Jun, 2025 | Medium,
accessed July 14, 2025,
https://medium.com/@sdgunaa/mojo-the-next-gen-programming-language-ebb
de84705c9

23.​Mojo (programming language) - Wikipedia, accessed July 14, 2025,
https://en.wikipedia.org/wiki/Mojo_(programming_language)

24.​Blog - Mojo for Mac - Michael Tsai, accessed July 14, 2025,
https://mjtsai.com/blog/2023/10/19/mojo-for-mac/

25.​max - Modular docs, accessed July 14, 2025,
https://docs.modular.com/max/api/mojo/

26.​Modular Documentation | Modular, accessed July 14, 2025,
https://docs.modular.com/

27.​MAX for Research - Modular, accessed July 14, 2025,
https://www.modular.com/max/solutions/research

28.​Mojo FAQ - Modular docs, accessed July 14, 2025,
https://docs.modular.com/mojo/faq/

29.​Basics of GPU programming with Mojo - Modular docs, accessed July 14, 2025,
https://docs.modular.com/mojo/manual/gpu/basics

30.​MAX 24.4 - Introducing quantization APIs and MAX on macOS - Modular,
accessed July 14, 2025,
https://www.modular.com/blog/max-24-4-introducing-quantization-apis-and-ma
x-on-macos

31.​The Modular Platform (includes MAX & Mojo) - GitHub, accessed July 14, 2025,
https://github.com/modular/modular

32.​Modular: A Fast, Scalable Gen AI Inference Platform, accessed July 14, 2025,
https://www.modular.com/

33.​FAQ - Modular docs, accessed July 14, 2025, https://docs.modular.com/max/faq/
34.​Gemma 3: Inside Google's Revolutionary Open AI Model - SentiSight.ai, accessed

July 14, 2025,
https://www.sentisight.ai/gemma-3-introducing-googles-latest-open-ai-model/

35.​New Google Gemma3 Inference speeds on Macbook Pro M4 Max : r/ollama -
Reddit, accessed July 14, 2025,
https://www.reddit.com/r/ollama/comments/1j9uxlr/new_google_gemma3_inference_spe
eds_on_macbook_pro/

36.​Gemma 3 Performance: Tokens Per Second in LM Studio vs. Ollama on Mac
Studio M3 Ultra | by Rif Kiamil | Google Cloud - Community | May, 2025 | Medium,
accessed July 14, 2025,
https://medium.com/google-cloud/gemma-3-performance-tokens-per-second-i
n-lm-studio-vs-ollama-mac-studio-m3-ultra-7e1af75438e4

37.​Choosing an Embedding Model - Pinecone, accessed July 14, 2025,
https://www.pinecone.io/learn/series/rag/embedding-models-rundown/

38.​Top embedding models for RAG | Modal Blog, accessed July 14, 2025,
https://modal.com/blog/embedding-models-article

39.​Building A RAG Ebook “Librarian” Using LlamaIndex - Hugging Face Open-Source
AI Cookbook, accessed July 14, 2025,

https://medium.com/@sdgunaa/mojo-the-next-gen-programming-language-ebbde84705c9
https://medium.com/@sdgunaa/mojo-the-next-gen-programming-language-ebbde84705c9
https://en.wikipedia.org/wiki/Mojo_(programming_language)
https://mjtsai.com/blog/2023/10/19/mojo-for-mac/
https://docs.modular.com/max/api/mojo/
https://docs.modular.com/
https://www.modular.com/max/solutions/research
https://docs.modular.com/mojo/faq/
https://docs.modular.com/mojo/manual/gpu/basics
https://www.modular.com/blog/max-24-4-introducing-quantization-apis-and-max-on-macos
https://www.modular.com/blog/max-24-4-introducing-quantization-apis-and-max-on-macos
https://github.com/modular/modular
https://www.modular.com/
https://docs.modular.com/max/faq/
https://www.sentisight.ai/gemma-3-introducing-googles-latest-open-ai-model/
https://www.reddit.com/r/ollama/comments/1j9uxlr/new_google_gemma3_inference_speeds_on_macbook_pro/
https://www.reddit.com/r/ollama/comments/1j9uxlr/new_google_gemma3_inference_speeds_on_macbook_pro/
https://medium.com/google-cloud/gemma-3-performance-tokens-per-second-in-lm-studio-vs-ollama-mac-studio-m3-ultra-7e1af75438e4
https://medium.com/google-cloud/gemma-3-performance-tokens-per-second-in-lm-studio-vs-ollama-mac-studio-m3-ultra-7e1af75438e4
https://www.pinecone.io/learn/series/rag/embedding-models-rundown/
https://modal.com/blog/embedding-models-article

https://huggingface.co/learn/cookbook/rag_llamaindex_librarian
40.​How I Built a Local RAG Pipeline with Mistral & Benchmarked GPU Layer

Speedups on a MacBook M1 | by Santhosh Dhaipule Chandrakanth | Jun, 2025 |
Medium, accessed July 14, 2025,
https://medium.com/@santhoshnumber1/how-i-built-a-local-rag-pipeline-with-m
istral-benchmarked-gpu-layer-speedups-on-a-macbook-m1-e5610034e7e6

41.​A YouTuber has created a cluster of five Apple Mac mini M4s — how effective is
it? - ITC, accessed July 14, 2025,
https://itc.ua/en/news/a-youtuber-has-created-a-cluster-of-five-apple-mac-mini
-m4s-how-effective-is-it/

42.​M4 Mac minis in a computing cluster is incredibly cool, but not hugely effective,
accessed July 14, 2025,
https://appleinsider.com/articles/24/11/25/m4-mac-minis-in-a-computing-cluster-
is-an-incredibly-cool-project-but-not-hugely-effective

43.​Primer on Distributed Parallel Processing with Ray using KubeRay, accessed July
14, 2025,
https://www.infracloud.io/blogs/distributed-parallel-processing-ray-kuberay/

44.​Ray Clusters Overview — Ray 2.47.1 - Ray Docs, accessed July 14, 2025,
https://docs.ray.io/en/latest/cluster/getting-started.html

45.​How to set up a cluster including MacOS and Linux nodes - Ray, accessed July 14,
2025,
https://discuss.ray.io/t/how-to-set-up-a-cluster-including-macos-and-linux-node
s/10855

46.​Building a distributed AI system: How to set up Ray and vLLM on Mac Minis,
accessed July 14, 2025,
https://securityboulevard.com/2025/03/building-a-distributed-ai-system-how-to-
set-up-ray-and-vllm-on-mac-minis/

47.​Get started with MLX for Apple silicon - WWDC25 - Videos, accessed July 14,
2025, https://developer.apple.com/videos/play/wwdc2025/315/

48.​Next-Gen GPU Programming: Hands-On with Mojo and Max Modular HQ | Hacker
News, accessed July 14, 2025, https://news.ycombinator.com/item?id=43797058

49.​Apple's new Mac mini is more mighty, more mini, and built for Apple Intelligence,
accessed July 14, 2025,
https://www.apple.com/newsroom/2024/10/apples-new-mac-mini-is-more-migh
ty-more-mini-and-built-for-apple-intelligence/

50.​Apple's Much Smaller M4 Mac Mini Has All-New Thermal Architecture to
Maximize Speed, accessed July 14, 2025,
https://www.macrumors.com/2024/10/29/m4-mac-mini-thermal-architecture/

51.​Why does my M4 Mac mini lock in with AI a… - Apple Support Communities,
accessed July 14, 2025, https://discussions.apple.com/thread/256057856

52.​M4 Mac Mini vs Pro: What I Wish I Knew Before Choosing - Hostbor, accessed
July 14, 2025, https://hostbor.com/m4-mac-mini-vs-pro/

53.​The amazing M4 Pro Mac mini Stress Test - David Lewis, accessed July 14, 2025,
https://talkingtechandaudio.com/blog/m4-pro-mac-mini-stress-test/

54.​Decided to stress test my M4 16 GB : r/macmini - Reddit, accessed July 14, 2025,

https://huggingface.co/learn/cookbook/rag_llamaindex_librarian
https://medium.com/@santhoshnumber1/how-i-built-a-local-rag-pipeline-with-mistral-benchmarked-gpu-layer-speedups-on-a-macbook-m1-e5610034e7e6
https://medium.com/@santhoshnumber1/how-i-built-a-local-rag-pipeline-with-mistral-benchmarked-gpu-layer-speedups-on-a-macbook-m1-e5610034e7e6
https://itc.ua/en/news/a-youtuber-has-created-a-cluster-of-five-apple-mac-mini-m4s-how-effective-is-it/
https://itc.ua/en/news/a-youtuber-has-created-a-cluster-of-five-apple-mac-mini-m4s-how-effective-is-it/
https://appleinsider.com/articles/24/11/25/m4-mac-minis-in-a-computing-cluster-is-an-incredibly-cool-project-but-not-hugely-effective
https://appleinsider.com/articles/24/11/25/m4-mac-minis-in-a-computing-cluster-is-an-incredibly-cool-project-but-not-hugely-effective
https://www.infracloud.io/blogs/distributed-parallel-processing-ray-kuberay/
https://docs.ray.io/en/latest/cluster/getting-started.html
https://discuss.ray.io/t/how-to-set-up-a-cluster-including-macos-and-linux-nodes/10855
https://discuss.ray.io/t/how-to-set-up-a-cluster-including-macos-and-linux-nodes/10855
https://securityboulevard.com/2025/03/building-a-distributed-ai-system-how-to-set-up-ray-and-vllm-on-mac-minis/
https://securityboulevard.com/2025/03/building-a-distributed-ai-system-how-to-set-up-ray-and-vllm-on-mac-minis/
https://developer.apple.com/videos/play/wwdc2025/315/
https://news.ycombinator.com/item?id=43797058
https://www.apple.com/newsroom/2024/10/apples-new-mac-mini-is-more-mighty-more-mini-and-built-for-apple-intelligence/
https://www.apple.com/newsroom/2024/10/apples-new-mac-mini-is-more-mighty-more-mini-and-built-for-apple-intelligence/
https://www.macrumors.com/2024/10/29/m4-mac-mini-thermal-architecture/
https://discussions.apple.com/thread/256057856
https://hostbor.com/m4-mac-mini-vs-pro/
https://talkingtechandaudio.com/blog/m4-pro-mac-mini-stress-test/

https://www.reddit.com/r/macmini/comments/1gp87ub/decided_to_stress_test_m
y_m4_16_gb/

55.​mikeroyal/Apple-Silicon-Guide - GitHub, accessed July 14, 2025,
https://github.com/mikeroyal/Apple-Silicon-Guide

56.​M4 Mac mini's efficiency is incredible - Jeff Geerling, accessed July 14, 2025,
https://www.jeffgeerling.com/blog/2024/m4-mac-minis-efficiency-incredible

57.​The 2025 Guide to Retrieval-Augmented Generation (RAG) - Eden AI, accessed
July 14, 2025,
https://www.edenai.co/post/the-2025-guide-to-retrieval-augmented-generation-
rag

58.​Self-RAG: Learning to Retrieve, Generate and Critique through Self-Reflection,
accessed July 14, 2025, https://selfrag.github.io/

59.​Four retrieval techniques to improve RAG you need to know - Thoughtworks,
accessed July 14, 2025,
https://www.thoughtworks.com/insights/blog/generative-ai/four-retrieval-techniq
ues-improve-rag

60.​SELF-RAG (Self-Reflective Retrieval-Augmented Generation): The
Game-Changer in Factual AI… - Medium, accessed July 14, 2025,
https://medium.com/@sahin.samia/self-rag-self-reflective-retrieval-augmented-g
eneration-the-game-changer-in-factual-ai-dd32e59e3ff9

61.​Self-RAG: AI That Knows When to Double-Check - Analytics Vidhya, accessed
July 14, 2025, https://www.analyticsvidhya.com/blog/2025/01/self-rag/

62.​PERL: Parameter Efficient Reinforcement Learning from Human Feedback - arXiv,
accessed July 14, 2025, https://arxiv.org/html/2403.10704v1

63.​huggingface/peft: PEFT: State-of-the-art Parameter-Efficient Fine-Tuning. -
GitHub, accessed July 14, 2025, https://github.com/huggingface/peft

64.​peft/README.md at main · huggingface/peft - GitHub, accessed July 14, 2025,
https://github.com/huggingface/peft/blob/main/README.md?plain=1

65.​Parameter-Efficient Fine-Tuning using PEFT - Hugging Face, accessed July 14,
2025, https://huggingface.co/blog/peft

66.​What is RLHF? - Reinforcement Learning from Human Feedback Explained - AWS,
accessed July 14, 2025,
https://aws.amazon.com/what-is/reinforcement-learning-from-human-feedback/

67.​ReaLHF: Optimized RLHF Training for Large Language Models through Parameter
Reallocation - arXiv, accessed July 14, 2025, https://arxiv.org/html/2406.14088v1

68.​Building a Self-Improving RAG System with Reinforcement Learning - GoPenAI,
accessed July 14, 2025,
https://blog.gopenai.com/building-a-self-improving-rag-system-with-reinforcem
ent-learning-dbf51df5a966

69.​Introducing MAX 25.2 - YouTube, accessed July 14, 2025,
https://www.youtube.com/watch?v=dG0L1GalIHU

70.​Community Meeting #16: Modular Platform 25.3 and Mojo roadmap - YouTube,
accessed July 14, 2025, https://www.youtube.com/watch?v=-MNPowZ7xYE

71.​Apple Silicon Unified Memory Explained: How Much RAM Does Your Mac Really
Need?, accessed July 14, 2025,

https://www.reddit.com/r/macmini/comments/1gp87ub/decided_to_stress_test_my_m4_16_gb/
https://www.reddit.com/r/macmini/comments/1gp87ub/decided_to_stress_test_my_m4_16_gb/
https://github.com/mikeroyal/Apple-Silicon-Guide
https://www.jeffgeerling.com/blog/2024/m4-mac-minis-efficiency-incredible
https://www.edenai.co/post/the-2025-guide-to-retrieval-augmented-generation-rag
https://www.edenai.co/post/the-2025-guide-to-retrieval-augmented-generation-rag
https://selfrag.github.io/
https://www.thoughtworks.com/insights/blog/generative-ai/four-retrieval-techniques-improve-rag
https://www.thoughtworks.com/insights/blog/generative-ai/four-retrieval-techniques-improve-rag
https://medium.com/@sahin.samia/self-rag-self-reflective-retrieval-augmented-generation-the-game-changer-in-factual-ai-dd32e59e3ff9
https://medium.com/@sahin.samia/self-rag-self-reflective-retrieval-augmented-generation-the-game-changer-in-factual-ai-dd32e59e3ff9
https://www.analyticsvidhya.com/blog/2025/01/self-rag/
https://arxiv.org/html/2403.10704v1
https://github.com/huggingface/peft
https://github.com/huggingface/peft/blob/main/README.md?plain=1
https://huggingface.co/blog/peft
https://aws.amazon.com/what-is/reinforcement-learning-from-human-feedback/
https://arxiv.org/html/2406.14088v1
https://blog.gopenai.com/building-a-self-improving-rag-system-with-reinforcement-learning-dbf51df5a966
https://blog.gopenai.com/building-a-self-improving-rag-system-with-reinforcement-learning-dbf51df5a966
https://www.youtube.com/watch?v=dG0L1GalIHU
https://www.youtube.com/watch?v=-MNPowZ7xYE

https://wi-fiplanet.com/how-much-ram-does-your-mac-really-need/
72.​Mojo FAQ - Modular docs, accessed July 14, 2025,

https://docs.modular.com/mojo/faq

https://wi-fiplanet.com/how-much-ram-does-your-mac-really-need/
https://docs.modular.com/mojo/faq

	Architecting a Heterogeneous RAG System on an Apple M4 Cluster with the Modular Platform: A Technical Backgrounder
	Section 1: The Compute Fabric: Apple M4 and Unified Memory Architecture
	1.1 A Deep Dive into the M4 System-on-a-Chip (SoC)
	1.2 The Unified Memory Advantage: A Paradigm Shift for Local LLMs
	1.3 Architectural Trade-offs: ANE vs. GPU for RAG-Specific Workloads

	Section 2: The Software Stack: The Modular Platform and its Compiler Foundations
	2.1 Core Philosophy: Unifying Heterogeneous Systems with LLVM and MLIR
	2.2 The State of Modular on Apple Silicon: A Critical Assessment

	Section 3: Architectural Blueprint for a Distributed RAG System
	3.1 Part I: The Single-Node RAG Pipeline (32 GB M4 Mac Mini)
	3.2 Part II: Scaling to a Two-Node Cluster

	Section 4: A Principled Approach to Heterogeneous Workload Distribution
	4.1 Mapping the RAG Pipeline to M4 Hardware
	4.2 Programming the Apple SoC with Mojo and MAX
	4.3 Thermal Management of the M4 Mac Mini Cluster

	Section 5: Advanced Architectures: Towards a Self-Improving RAG System
	5.1 Implementing Self-Correction and Adaptive Retrieval (Self-RAG/CRAG)
	5.2 The Feasibility of On-Device Fine-Tuning with PEFT/RLHF

	Section 6: Recommendations and Strategic Outlook
	6.1 A Phased Implementation Roadmap
	6.2 Anticipated Bottlenecks and Mitigation Strategies
	6.3 Future Outlook: The Trajectory of Modular and Apple Silicon
	Works cited

