
Architecting a Heterogeneous RAG System on an Apple M4 
Cluster with the Modular Platform: A Technical Backgrounder 
This report provides a comprehensive technical foundation for developing a private, 
distributed Retrieval-Augmented Generation (RAG) system. The architectural focus is 
on fully exploiting the heterogeneous computing capabilities of a two-node cluster of 
Apple M4 Mac Minis, each equipped with 32 GB of unified memory. This will be 
achieved through the Modular software stack, which includes the Mojo programming 
language, the MAX inference engine, and their underlying LLVM and Multi-Level 
Intermediate Representation (MLIR) compiler technologies. 

The central thesis of this analysis is that achieving optimal performance and efficiency 
requires a nuanced understanding of both the Apple Silicon M4 architecture and the 
Modular platform's capabilities and current limitations. The primary challenge is not 
merely to construct a RAG system, but to architect it for intelligent, distributed, and 
heterogeneous execution across the M4's distinct compute units: the Central 
Processing Unit (CPU), the Graphics Processing Unit (GPU), and the Apple Neural 
Engine (ANE). 

The scope of this document encompasses a detailed hardware architecture analysis, 
a critical evaluation of the software stack, a blueprint for distributed system design, 
strategies for mapping specific RAG workloads to the most appropriate hardware, and 
a forward-looking analysis of advanced, self-improving RAG techniques. This 
roadmap will guide the reader from foundational concepts through to advanced 
architectural blueprints and implementation strategies, providing the necessary 
background to undertake such a project. 

 

Section 1: The Compute Fabric: Apple M4 and Unified Memory 
Architecture 

 

A prerequisite for any advanced system design is a fundamental understanding of the 
underlying hardware platform. The capabilities, constraints, and interplay of the Apple 
M4's diverse compute units dictate the architectural possibilities and performance 
ceilings. 

 



1.1 A Deep Dive into the M4 System-on-a-Chip (SoC) 

 

The Apple M4 is a System-on-a-Chip (SoC) built on a second-generation 
3-nanometer process, integrating several specialized processors onto a single die.1 
This integration is key to its performance and efficiency. 

●​ CPU Complex: The standard M4 chip features a 10-core CPU, comprising four 
high-performance cores (P-cores) and six high-efficiency cores (E-cores).2 This 
configuration represents a significant advancement over previous generations, 
with next-generation cores that feature improved branch prediction and wider 
decode and execution engines.2 This architecture delivers industry-leading 
single-threaded performance, making the CPU the ideal processor for serial 
tasks, complex control logic, and non-parallelizable computations that are 
prevalent in the orchestration layer of a RAG pipeline.3 

●​ GPU Architecture: The integrated 10-core GPU builds upon the graphics 
architecture introduced in the M3 family but features faster cores and a 2x faster 
ray-tracing engine.3 It supports advanced features like Dynamic Caching, which 
allocates memory in hardware in real-time to improve GPU utilization, as well as 
hardware-accelerated mesh shading and ray tracing.2 While many of these 
features are highlighted for their gaming and graphics rendering benefits, they 
underscore a powerful and flexible parallel processing unit suitable for 
computationally intensive AI tasks like batch embedding generation or complex 
similarity search algorithms. 

●​ The Apple Neural Engine (ANE): A Specialized AI Accelerator: A standout 
feature of the M4 is its 16-core Neural Engine, a dedicated processor block for 
accelerating AI workloads.2 Capable of executing up to 38 trillion operations per 
second (TOPS), it is significantly more powerful than the NPU in its M3 
predecessor and more capable than NPUs found in contemporary AI PCs.1 The 
ANE is designed for extremely power-efficient, high-throughput execution of 
specific machine learning operations, making it a prime candidate for offloading 
persistent or repetitive inference tasks within the RAG system.5 

 

1.2 The Unified Memory Advantage: A Paradigm Shift for Local LLMs 

 

Perhaps the most critical architectural feature of Apple Silicon for AI workloads is its 



Unified Memory Architecture (UMA). 

●​ Architecture Explained: In a traditional computing architecture, the CPU and a 
discrete GPU have separate, dedicated pools of memory (system RAM and VRAM, 
respectively). Data must be copied between these two pools, an operation that 
introduces significant latency and overhead. UMA eliminates this bottleneck by 
providing a single, high-bandwidth pool of memory that is accessible to the CPU, 
GPU, and ANE.7 The base M4 chip features LPDDR5X memory delivering 120 GB/s 
of bandwidth.9 

●​ Implications for LLMs: This architecture is a crucial enabler for running large 
language models (LLMs) on local, consumer-grade hardware. The 32 GB of 
unified memory in each Mac Mini effectively functions as 32 GB of VRAM for the 
GPU and ANE.11 This circumvents the primary limitation of many consumer-grade 
discrete GPUs, which often have limited VRAM (e.g., 8-16 GB). When a model 
exceeds a discrete GPU's VRAM, it must swap data with much slower system 
RAM, causing a catastrophic drop in performance.11 UMA allows the M4 to run 
models that would otherwise require expensive data-center-grade GPUs with 
large memory capacities, making the Mac Mini cluster a uniquely viable platform 
for private, large-scale AI.13 

●​ Memory-Level Parallelism (MLP): The performance of UMA is not just about 
total capacity. The memory subsystem is designed for high memory-level 
parallelism, meaning it can sustain many independent memory requests 
simultaneously.14 While the M4's peak bandwidth is lower than that of a high-end 
discrete GPU like an NVIDIA RTX 4090 (120 GB/s vs. ~1008 GB/s) 15, its low-latency 
access and high MLP are particularly well-suited for the memory access patterns 
of LLM token generation, which is often memory-bandwidth bound.12 

 

1.3 Architectural Trade-offs: ANE vs. GPU for RAG-Specific Workloads 

 

The presence of both a powerful GPU and a specialized ANE necessitates a deliberate 
choice of where to run AI workloads. 

●​ Programming Model and Accessibility: The GPU is a general-purpose parallel 
processor that can be programmed using APIs like Apple's Metal.16 In contrast, 
the ANE is effectively a black box from a developer's perspective. It is not directly 
programmable. Access is abstracted through Apple's Core ML framework; 
developers convert pre-trained models into the Core ML format, and the system 
then decides how to execute them on the ANE.5 



●​ Performance Characteristics: The GPU excels at high-throughput, 
floating-point-intensive parallel tasks, such as the large matrix multiplications 
found in many parts of an LLM. The ANE is optimized for a more limited set of 
operations commonly found in neural networks, particularly at lower precisions 
like 16-bit floating point (FP16) and 8-bit integer (INT8). Its key advantage is 
performing these tasks with exceptional power efficiency.5 

●​ Data Format Constraints: A critical consideration is that the ANE has strict 
requirements for the data it processes. It expects data in a 4-dimensional, 
"channels-first" format and has specific memory alignment rules.5 Models must 
be carefully converted to adhere to these constraints, which may not be possible 
for all architectures. The GPU, being a more general-purpose unit, is significantly 
more flexible. 

The M4 SoC should not be viewed as a collection of independent processors but as a 
cohesive, heterogeneous fabric. The optimal choice of compute unit—CPU, GPU, or 
ANE—is a primary architectural decision that depends entirely on the workload's 
characteristics, such as its degree of parallelism, data type requirements, and power 
constraints. A naive approach that defaults to a single type of processor will inevitably 
fail to leverage the SoC's full potential, particularly its unique balance of performance 
and power efficiency. 

Furthermore, the 120 GB/s memory bandwidth is both a key enabler and a potential 
point of contention. While this bandwidth allows the 32 GB memory pool to be used 
far more effectively than in traditional systems, it is a resource shared by the CPU, 
GPU, and ANE. In scenarios where all compute units are active simultaneously, 
memory bandwidth will become the primary system bottleneck, necessitating careful 
scheduling and data management to avoid contention. 

This leads to a powerful architectural pattern: the ANE's extreme power efficiency 
makes it the ideal target for continuous or background RAG tasks. For example, a 
process that constantly indexes new documents by running an embedding model, or a 
self-improvement loop that uses a lightweight "critic" model, could run on the ANE. 
This would consume minimal power while leaving the more powerful and flexible CPU 
and GPU resources fully available for user-facing, low-latency query processing. 

Table 1.1: Comparative Analysis of M4 Compute Units for AI Workloads 

Metric CPU (4 P-cores + 6 
E-cores) 

GPU (10-core) Apple Neural Engine 
(ANE, 16-core) 



Peak Operations High GFLOPS 
(single-thread focus) 

Very High GFLOPS 
(parallel focus) 

38 TOPS (INT8) 

Supported 
Precisions 

FP64, FP32, FP16, 
INT8 

FP32, FP16 Optimized for FP16, 
INT8 

Ideal Workload 
Type 

Serial Logic, Control 
Flow, Complex 
Branching, Data Prep 

Massively Parallel FP 
Math, Batch 
Processing, Graphics 

Fixed-Function ML 
Inference, Low-Power 
Continuous Tasks 

Power Efficiency Medium Low Very High 

Programmability 
(via Modular) 

Direct (Mojo) Currently 
Unsupported on 
macOS 

Indirect (via Core ML 
bridge) 

Memory Access Shared access to 
Unified Memory 

Shared access to 
Unified Memory 

Shared access to 
Unified Memory 

 

Section 2: The Software Stack: The Modular Platform and its 
Compiler Foundations 

 

The choice of the Modular platform, encompassing Mojo and the MAX Engine, is 
central to this project. This section analyzes the software stack's design philosophy, 
its underlying compiler technologies, and its practical capabilities and limitations on 
Apple Silicon. 

 

2.1 Core Philosophy: Unifying Heterogeneous Systems with LLVM and MLIR 

 

The AI development landscape has long been plagued by the "two-language 
problem": rapid prototyping and high-level logic are written in a user-friendly 
language like Python, while performance-critical components must be painstakingly 
rewritten in a low-level language like C++ or CUDA to run efficiently on hardware.19 The 
Modular platform is designed from the ground up to solve this problem. 

●​ MLIR as the Foundation: The key innovation behind the Modular stack is its 



foundation on the Multi-Level Intermediate Representation (MLIR) framework.21 
MLIR, a project that originated from the LLVM ecosystem, acts as a "compiler for 
compilers." Unlike LLVM, which operates at a low level, MLIR allows for the 
definition of higher-level dialects and optimizations that are specific to domains 
like AI and heterogeneous hardware. This enables a single language to be 
compiled efficiently for vastly different targets, from CPUs to GPUs and other 
accelerators.23 Mojo is the first major language designed expressly for MLIR, 
giving it unique power for systems-level AI programming.21 

●​ Mojo🔥: A Systems Language with Python's Usability: Mojo is a programming 
language that extends the Python syntax with systems-level capabilities.20 It aims 
to be a full superset of Python, allowing developers to leverage the vast Python 
ecosystem while incrementally adding performance features. It introduces 
concepts from languages like Rust, including strong type checking (distinguishing 
between dynamic​
def functions and statically-typed fn functions), an ownership and borrowing 
model for compile-time memory safety, and powerful compile-time 
metaprogramming with the @parameter decorator.19 This unique combination 
allows developers to write code that feels Pythonic but compiles down to 
machine code with performance rivaling C++.24 

●​ MAX Engine: The Graph Compiler and Runtime: The MAX Engine serves as the 
high-level orchestration layer of the platform.25 It takes AI models, often 
originating from frameworks like PyTorch, and converts them into a computational 
graph representation (MAX Graph). This graph is then compiled and optimized for 
execution on specific hardware targets.26 The performance-critical kernels that 
make up the nodes of this graph are written in Mojo.28 MAX provides the 
necessary APIs, such as​
InferenceSession and DeviceContext, to manage the deployment and execution 
of these graphs across different devices.19 

 

2.2 The State of Modular on Apple Silicon: A Critical Assessment 

 

While the philosophy is compelling, the practical implementation on macOS has 
critical nuances. 

●​ Official Support: Modular provides official support for macOS on Apple Silicon 
for both the Mojo SDK and the MAX Engine.28 Installation is streamlined via 
standard package managers like​



pip and conda, making the platform accessible for local development.31 

●​ The GPU Conundrum: A crucial and significant limitation for this project is that, 
despite the platform's focus on heterogeneous compute, the official MAX FAQ 
explicitly states: "We currently don't support Mac GPUs".33 This means that the 
primary tool for orchestrating heterogeneous workloads, the MAX Engine, cannot 
currently leverage the Mac's most powerful parallel processor. Any AI workload 
run through the MAX Engine on a Mac will execute on the CPU. 

●​ ANE Inaccessibility: Similarly, there is no evidence in the available 
documentation that Mojo or MAX can directly target or program the Apple Neural 
Engine. The established and only supported pathway to the ANE is through 
Apple's own Core ML framework, which involves converting models to the 
.mlpackage format using tools like coremltools.5 

The project's core premise of using the Modular platform for end-to-end 
heterogeneous compute on the M4 SoC is confronted by a major implementation gap. 
The platform's primary tool for hardware abstraction and orchestration, the MAX 
Engine, does not currently support the Mac's GPU. Consequently, a solution built 
purely on the Modular stack would be confined to the M4's CPU cores, failing to 
leverage the massive parallel processing power of the GPU or the specialized 
efficiency of the ANE. This reality forces a pragmatic re-evaluation of the system 
architecture. 

The most viable path forward is a hybrid architectural approach. The Modular stack 
can be used to orchestrate the CPU-bound components of the cluster, while Apple's 
native frameworks—Core ML for the ANE and Metal for the GPU—are used to program 
the specialized accelerators. Mojo's excellent Python interoperability becomes the 
critical "glue" that can unify these disparate components.20 The central RAG logic can 
be written in Mojo and run on the CPU cluster via MAX, while making calls through a 
Python bridge to specialized functions. These functions would, in turn, execute 
models on the ANE (via 

coremltools and the Core ML runtime) or custom kernels on the GPU (via Python's 
Metal bindings). 

This re-framing also clarifies Mojo's primary value proposition for this specific project. 
It is not just a "faster Python" or a unified language for all hardware. Instead, its 
strength lies in being a high-performance systems language for writing the custom 
logic and data processing kernels that will run on the CPU cluster. The RAG pipeline 
involves significant data manipulation beyond just LLM inference, including document 
chunking, text processing, and managing the vector index. These stages often 



become bottlenecks in pure Python implementations. By implementing this 
data-heavy logic in Mojo, which provides explicit control over vectorization (SIMD) and 
multi-threading, the overall pipeline latency can be significantly reduced, even if the 
core LLM inference is handled by a separate subsystem.19 

 

Section 3: Architectural Blueprint for a Distributed RAG System 

 

Translating the foundational knowledge of the hardware and software into a concrete 
architectural plan requires defining the components, the distribution strategy, and the 
communication fabric. This section outlines a blueprint, first for a single node and 
then scaled to the two-node cluster. 

 

3.1 Part I: The Single-Node RAG Pipeline (32 GB M4 Mac Mini) 

 

Before distributing the system, a robust single-node architecture must be established. 
This serves as the fundamental building block of the cluster. 

●​ Component Selection: 
○​ LLM: With a 32 GB unified memory budget on a single Mac Mini, several 

powerful open-source models become viable. Google's Gemma 3 family is a 
strong candidate due to its excellent performance-to-size ratio and 
immediate support in the Apple ecosystem via MLX.34 A​
gemma-3-12b-it model would run comfortably, while a quantized version of 
the larger gemma-3-27b model (e.g., 4-bit quantization) would also fit within 
the memory budget, offering a trade-off between higher reasoning capability 
and slightly reduced precision.13 

○​ Embedding Model: The choice of embedding model is crucial for retrieval 
quality. The Massive Text Embedding Benchmark (MTEB) leaderboard on 
Hugging Face is the definitive resource for this.37 A high-performing yet 
lightweight model like​
BAAI/bge-base-en-v1.5 is an excellent choice. It is small enough to run with 
minimal resource footprint, making it an ideal candidate for offloading to the 
ANE.38 

○​ Vector Storage and Retrieval: For a local, private, and high-performance 



system, an in-memory vector database is the optimal choice. FAISS (Facebook 
AI Similarity Search) is a mature, industry-standard library known for its speed 
and efficiency, making it well-suited for this use case.40 The entire vector 
index would be built and managed within the Mac Mini's unified memory. 

●​ Orchestration Logic (The Hybrid Model):​
The single-node pipeline will be orchestrated using the hybrid model identified in 
Section 2. 
○​ Data Ingestion/Processing: This stage, which includes loading documents 

from disk, splitting them into chunks, and pre-processing text, will be 
implemented in Mojo to leverage its C-like performance on the CPU. 

○​ Embedding Generation: The chosen embedding model (bge-base-en-v1.5) 
will be converted to the Core ML format. A Python script using coremltools will 
then be used to run inference on the ANE. This offloads the embedding task 
to the most power-efficient processor, which is ideal if indexing is a 
continuous or frequent background task. 

○​ Query and Generation: The main LLM (e.g., Gemma 3) will be served using 
the max serve command from the Modular platform. This creates an 
OpenAI-compatible REST API endpoint that runs the model on the CPU.31 The 
core RAG application logic, which takes a user query, retrieves relevant 
context from the FAISS index, and constructs the final prompt for the LLM, will 
be written in Mojo. 

 

3.2 Part II: Scaling to a Two-Node Cluster 

 

With a working single-node pipeline, the system can be scaled to the two-node 
cluster to unlock new capabilities. 

●​ Interconnect Strategy: The most effective way to connect the two Mac Minis is 
directly via a Thunderbolt 4 cable, creating a peer-to-peer network known as a 
Thunderbolt Bridge. This provides a high-speed, low-latency link with a 
theoretical bidirectional bandwidth of 40 Gb/s. This is substantially faster and 
lower-latency than the standard 1GbE networking and even the optional 10GbE 
upgrade, which is critical for minimizing the overhead of inter-node 
communication in a distributed computing setup.41 

Table 3.1: Comparison of Interconnect Technologies for a Two-Node Cluster 



Technology Max Bandwidth 
(Bi-directional) 

Latency Profile Setup Complexity 

1GbE 1 Gb/s High Low 

10GbE 10 Gb/s Medium Medium (Requires 
10GbE option on 
both Minis) 

Thunderbolt 4 
Bridge 

40 Gb/s Very Low Low (Single cable 
connection) 

●​ Distributed Computing Framework:​
Orchestrating tasks across the two nodes requires a distributed computing 
framework. 
○​ Ray: Ray is a mature and popular framework in the Python ecosystem for 

building distributed applications. It provides simple primitives (@ray.remote) 
for distributing functions and classes across a cluster.43 However, its 
multi-node support on macOS is officially designated as experimental and 
requires setting the​
RAY_ENABLE_WINDOWS_OR_OSX_CLUSTER=1 environment variable, which 
introduces a support and stability risk.44 Nevertheless, community tutorials 
demonstrate that setting up a Ray cluster on Mac Minis is feasible.46 

○​ Apple MLX Distributed (mlx.distributed): This is a compelling alternative. 
As a component of Apple's own MLX framework, it is purpose-built and 
optimized for Apple Silicon.47 It uses the standard Message Passing Interface 
(MPI) for communication and is specifically designed for small clusters, 
making it a natural fit for this project's hardware.41 

○​ Recommendation: Given the target hardware, MLX Distributed is the 
recommended framework due to its native Apple Silicon focus and likely 
superior stability and performance. Ray remains a viable but higher-risk 
alternative due to its experimental support status on macOS. 

Table 3.2: Distributed Frameworks for macOS: Ray vs. MLX 

Framework Core 
Primitives 

macOS 
Support 
Status 

Underlying 
Protocol 

Ease of Use Community/
Maturity 

Ray Tasks, 
Actors, 
Objects 

Experimental 
(Requires 
Env Var) 

Proprietary 
(GCS) 

High 
(Pythonic 
Decorators) 

High 
(Mature, 
Large 



Community) 

MLX 
Distributed 

Distributed 
Arrays, MPI 
Ops 

Natively 
Supported 

MPI Medium 
(Lower-level 
Primitives) 

Low (New, 
Smaller 
Community) 

●​ A Task Distribution Model for the Cluster:​
The primary benefit of this two-node cluster is not necessarily accelerating a 
single query, but enabling the use of much larger models thanks to the 
aggregated memory pool of 64 GB. 
○​ Head Node (Node 1): This node will run the main application logic, receive 

user queries via a web interface or API, and orchestrate the overall RAG 
pipeline. 

○​ Worker Node (Node 2): This node will primarily serve as a compute resource. 
○​ Distribution Strategy: Given the small scale of the cluster, attempting 

fine-grained model parallelism (splitting a single model's layers across both 
nodes) would likely be inefficient due to the communication overhead 
introduced by the Thunderbolt interconnect.42 A more practical and effective 
strategy is​
replicated inference with a shared vector store. 
1.​ Aggregated Memory for a Larger Model: The 64 GB of total memory 

allows the cluster to run a significantly larger model than a single node 
could, such as a quantized 70B parameter model (e.g., llama3:70b).13 

2.​ Replicated Model, Sharded Index: Each node would load a full copy of 
this large LLM into its 32 GB of memory. The FAISS vector index, which 
may now be too large for one node, can be sharded, with each node 
holding half of the document embeddings. 

3.​ Orchestration Flow: When a query arrives at the Head Node, it 
broadcasts the query to the Worker Node. Both nodes perform a similarity 
search on their local shard of the vector index. The results are sent back 
to the Head Node, which merges them, determines the best overall 
context, constructs the final prompt, and then sends an inference request 
to whichever node is currently available (or load balances between them). 
This architecture primarily leverages the cluster for its memory capacity 
and doubles the system's overall query throughput. 

 

Section 4: A Principled Approach to Heterogeneous Workload 
Distribution 



 

This section provides the practical "how-to" for implementing the heterogeneous 
compute strategy, translating the theoretical advantages of the M4 SoC into an 
applied methodology for the RAG pipeline. 

 

4.1 Mapping the RAG Pipeline to M4 Hardware 

 

A successful heterogeneous architecture requires decomposing the RAG workflow 
into its constituent parts and mapping each to the optimal hardware target. 

●​ Document Loading & Chunking (CPU): These initial ingestion steps are typically 
I/O-bound and involve string manipulation and logical processing. They are not 
massively parallel. The M4's high-performance P-cores are perfectly suited for 
this work. Implementing this logic in Mojo will ensure it runs with maximum 
efficiency, minimizing the time it takes to process new documents. 

●​ Embedding Generation (ANE): As established, this is the ideal workload for the 
Apple Neural Engine. The embedding model is a relatively small, fixed-function 
neural network. Running it on the ANE provides high throughput with exceptional 
power efficiency, making it perfect for the potentially continuous task of indexing 
new information without impacting system responsiveness or battery life on a 
portable device. This requires converting the chosen HuggingFace model to the 
Core ML format. 

●​ Vector Indexing & Similarity Search (CPU): Building and searching the FAISS 
vector index involves a series of linear algebra operations. While parts of this are 
parallelizable, the overall process is complex. Mojo's ability to explicitly use the 
CPU's advanced vector instructions (SIMD) and to parallelize operations across all 
CPU cores will be critical for achieving the lowest possible retrieval latency. 

●​ LLM Prompt-Processing (GPU - Theoretical): The initial processing of a long 
prompt, which includes the user's query and all the retrieved context, is a highly 
parallel task. The attention mechanism must compute relationships between all 
tokens in the input. This is an ideal workload for a GPU, as it can be heavily 
batched. In a future where Modular's MAX engine supports Apple Silicon GPUs, 
this stage would be a prime candidate for GPU offloading. In the current 
implementation, this task will fall back to the CPU. 

●​ LLM Token Generation (CPU): The auto-regressive generation of the response, 
one token at a time, is a process that is famously limited by memory bandwidth.12 



Each new token requires the entire model's weights to be read from memory. The 
M4 CPU, with its fast cores and high-bandwidth, low-latency access to the 
Unified Memory Architecture, is well-suited for this task. This is the default 
execution path for the​
max serve command on macOS and represents a sensible allocation of 
resources.33 

 

4.2 Programming the Apple SoC with Mojo and MAX 

 

●​ Writing Custom CPU Kernels in Mojo: To accelerate data processing, 
developers can write custom functions in Mojo that outperform their Python 
equivalents. For example, a text-cleaning or chunking algorithm can be 
parallelized across the CPU cores using Mojo's parallelize function. Furthermore, 
numerical operations can be vectorized to run on the CPU's SIMD units for a 
significant speedup.19​
Conceptual Mojo Example for Parallel Processing:​
Code snippet​
from a_library import parallelize, List​
​
fn process_chunk(chunk: String):​
    #... complex processing logic...​
    return processed_chunk​
​
fn process_all_chunks(chunks: List):​
    let num_chunks = len(chunks)​
    parallelize[process_chunk](num_chunks, chunks)​
 

●​ Using the MAX Engine for CPU Inference: The simplest way to deploy the main 
LLM is using the max serve command provided by Modular. This command can 
load a model in a common format like GGUF and automatically expose it via an 
OpenAI-compatible REST API.31 The Mojo-based RAG application can then 
interact with this local endpoint using standard HTTP requests, abstracting away 
the complexity of the inference process. 

●​ Theoretical GPU Programming with Mojo: While not currently functional on 
macOS through MAX, it is instructive to understand Mojo's design for GPU 
programming, as this prepares for future support. Mojo allows developers to 
define a fn as a GPU kernel. This kernel can then be launched onto the GPU using 



a DeviceContext object, specifying the grid and block dimensions for the parallel 
execution.29 This syntax is designed to be hardware-agnostic, meaning the same 
code could theoretically target NVIDIA, AMD, or Apple GPUs once the compiler 
backend is enabled.48 This section is purely​
forward-looking and highlights the platform's ultimate goal. 

●​ Bridging to Core ML/ANE: To leverage the ANE, the architecture must bridge the 
gap between the Modular and Apple ecosystems. The most practical way to do 
this is through Mojo's Python interoperability. The main Mojo program would 
import a Python module. This Python script would use libraries like coremltools 
and CoreML to load the ANE-optimized embedding model and run inference. The 
resulting embedding vectors would then be passed back as a data structure (e.g., 
a NumPy array, which Mojo can handle) into the Mojo environment for indexing 
with FAISS. 

 

4.3 Thermal Management of the M4 Mac Mini Cluster 

 

The M4 Mac Mini introduces an innovative thermal architecture that pulls air through 
the base of the unit, designed to cool the powerful SoC within its compact chassis.49 
While Apple's silicon is remarkably power-efficient, a sustained, high-intensity AI 
workload that simultaneously taxes the CPU, GPU, and ANE for extended periods can 
generate significant heat and potentially lead to thermal throttling, where the system 
reduces performance to manage temperatures.51 

For typical RAG inference workloads, which are bursty in nature, thermal throttling is 
unlikely to be a significant issue.53 However, for more demanding and continuous 
tasks, such as fine-tuning the model or running a persistent Self-RAG loop, thermal 
performance must be considered. It is advisable to use command-line monitoring 
tools like 

asitop to observe system load and temperatures during these intensive operations.55 
Mitigation strategies are simple: ensure adequate ventilation and airflow around both 
Mac Minis in the cluster. While the base M4 Mac Mini does not offer the "High 
Performance" power mode found in Pro models, careful monitoring will ensure the 
system remains within its operational limits.56 

 



Section 5: Advanced Architectures: Towards a Self-Improving 
RAG System 

 

The proposed two-node M4 cluster provides a powerful foundation not just for 
standard RAG, but also for more advanced, computationally intensive paradigms that 
enable the system to improve itself over time. 

 

5.1 Implementing Self-Correction and Adaptive Retrieval (Self-RAG/CRAG) 

 

Traditional RAG systems blindly retrieve and generate. Advanced techniques like 
Self-RAG and Corrective RAG (CRAG) introduce a layer of self-reflection to improve 
accuracy and relevance. 

●​ Architectural Overview: Self-RAG works by training a model to generate special 
"reflection tokens" that allow it to critique its own processes.57 In practice, this is 
often implemented by adding a separate, lightweight "critic" or "evaluator" model 
to the pipeline. This evaluator assesses the relevance of retrieved documents and 
the factual accuracy of the generated response against the retrieved context.59 If 
the retrieved information is poor or the generated answer is unsupported, the 
system can trigger a new retrieval or regenerate the response. 

●​ Computational Cost: This self-reflection loop adds significant computational 
overhead. For each query, the system must now run not only the main generator 
LLM but also one or more passes of the evaluator model, increasing both latency 
and resource consumption.59 

●​ Heterogeneous Deployment Strategy: The heterogeneous nature of the M4 
cluster is uniquely suited to this computational pattern. A powerful architecture 
would deploy the large, primary generator LLM (e.g., gemma-3-27b) to run on the 
CPU cluster, leveraging the aggregated memory and processing power. The 
smaller, specialized critic models, which perform focused and repetitive 
evaluation tasks, can be converted to the Core ML format and deployed to run on 
the power-efficient ANE of one or both nodes. This offloads the entire critique 
workload, preventing it from consuming CPU cycles needed for the main 
generation task and allowing the self-reflection loop to run efficiently in the 
background. This represents a prime example of intelligent, heterogeneous 
computing. 



 

5.2 The Feasibility of On-Device Fine-Tuning with PEFT/RLHF 

 

The ultimate goal of an intelligent system is to learn from its experience. With the M4 
cluster, continuous, on-device fine-tuning becomes a realistic long-term objective. 

●​ Introduction to PEFT: Full fine-tuning of a large language model is 
computationally prohibitive, requiring vast amounts of GPU memory and time. 
Parameter-Efficient Fine-Tuning (PEFT) techniques, most notably Low-Rank 
Adaptation (LoRA), offer a solution. LoRA works by freezing the pre-trained 
model's weights and injecting small, trainable "adapter" layers. This means only a 
tiny fraction of the total parameters (often less than 0.1%) are updated during 
training, dramatically reducing the memory and compute requirements.62 A 
resulting LoRA checkpoint can be just a few megabytes in size, compared to 
gigabytes for the full model.64 

●​ RLHF on the Cluster: Reinforcement Learning from Human Feedback (RLHF) is a 
powerful technique for aligning a model's behavior with human preferences, but it 
is notoriously expensive.66 A typical RLHF setup requires running multiple 
instances of the model simultaneously (an actor, a critic, a reference model, and a 
reward model), which multiplies the memory requirements.67 

●​ PERL (Parameter-Efficient Reinforcement Learning): By combining PEFT with 
RLHF, the computational cost can be drastically reduced. Using LoRA to train the 
models in an RLHF loop makes the process feasible on hardware with limited 
resources.62 The 64 GB of aggregated unified memory in the two-node M4 cluster 
is a key enabler for this approach. While a full RLHF training run from scratch 
would still be very slow, the ability to perform periodic, incremental fine-tuning 
based on user feedback collected by the RAG system is a viable and powerful 
goal. Based on published memory requirements, a 7B parameter model can be 
fine-tuned with LoRA using approximately 32 GB of memory, making it feasible to 
run the multiple model copies needed for PEFT-RLHF within the cluster's 64 GB 
memory pool.63 

This creates a pathway for a true self-improving system. The RAG application can log 
user queries, the system's responses, and implicit or explicit user feedback (e.g., "was 
this answer helpful?"). This data can be used to periodically run a PEFT-RLHF training 
job on the cluster, allowing the RAG system to learn from its mistakes and 
progressively improve its retrieval and generation strategies over time.68 



 

Section 6: Recommendations and Strategic Outlook 

 

This report has detailed the hardware, software, and architectural considerations for 
building a distributed, heterogeneous RAG system on an Apple M4 Mac Mini cluster 
with the Modular platform. This final section synthesizes these findings into an 
actionable roadmap and provides a strategic perspective on the future of this 
technology stack. 

 

6.1 A Phased Implementation Roadmap 

 

A structured, phased approach is recommended to manage complexity and mitigate 
risks. 

●​ Phase 1: Single-Node Baseline. The initial focus should be on building and 
benchmarking a complete RAG pipeline on a single M4 Mac Mini. The primary goal 
of this phase is to validate the hybrid architecture: using Mojo for 
high-performance CPU tasks (data ingestion, FAISS management), leveraging 
Apple's Core ML toolchain to run the embedding model on the ANE, and using the 
max serve command for CPU-based LLM inference. This establishes a functional 
baseline and resolves any interoperability challenges between the Modular and 
Apple ecosystems. 

●​ Phase 2: Cluster Deployment. Once the single-node system is stable, the next 
step is to scale to the two-node cluster. This involves physically connecting the 
machines via a Thunderbolt Bridge and implementing a distributed computing 
framework (MLX Distributed is recommended). The focus of this phase is to 
achieve robust, replicated inference of a larger LLM that is enabled by the 64 GB 
of aggregated memory, and to implement the sharded vector index strategy. 

●​ Phase 3: Heterogeneous Optimization and Self-RAG. With the cluster 
operational, the system can be profiled to identify performance bottlenecks. As 
Modular's platform evolves, workloads can be migrated to newly supported 
hardware (e.g., the GPU). This phase also involves implementing the advanced 
Self-RAG architecture, deploying lightweight critic models to the ANEs to enable 
a self-correcting inference loop. 

●​ Phase 4: Self-Improvement Loop. The final phase focuses on making the 



system truly intelligent. This involves implementing a feedback collection 
mechanism within the RAG application to log user interactions. This data can then 
be used to periodically run a Parameter-Efficient Reinforcement Learning 
(PEFT-RLHF) job on the cluster, using the aggregated memory to fine-tune the 
model and continuously improve its performance over time. 

 

6.2 Anticipated Bottlenecks and Mitigation Strategies 

 

Several key challenges must be anticipated: 

●​ Modular's Mac GPU Support: This is the primary current platform limitation. The 
architectural strategy is to build a CPU-first system that is modular by design. The 
components identified as ideal for GPU execution (e.g., prompt processing) 
should be encapsulated so they can be easily offloaded to the GPU when Modular 
adds support. Monitoring Modular's official release notes and community 
channels is the key mitigation strategy.69 

●​ Inter-Node Communication Latency: While Thunderbolt is extremely fast 
compared to Ethernet, it still introduces latency that is orders of magnitude higher 
than on-chip memory access.42 This will be the bottleneck for any task requiring 
tight, frequent synchronization between nodes. The architectural strategy to 
mitigate this is to minimize inter-node traffic by replicating models and sharding 
data, preferring coarse-grained task distribution over fine-grained parallelism. 

●​ ANE Model Conversion Complexity: The process of optimizing and converting a 
HuggingFace model for optimal performance on the ANE can be complex, 
involving strict data format and layer compatibility requirements. The mitigation 
strategy is to rely heavily on Apple's official documentation and coremltools 
package, and to begin with well-supported, standard model architectures before 
attempting more exotic ones.5 

 

6.3 Future Outlook: The Trajectory of Modular and Apple Silicon 

 

This project is positioned at the confluence of two significant industry trends: the 
democratization of powerful, local AI and the emergence of unified, heterogeneous 
programming models designed to tame hardware complexity. 



●​ Apple's Trajectory: Apple will undoubtedly continue to push the performance of 
its custom silicon. Future generations of M-series chips will likely feature more 
powerful CPUs, GPUs, and ANEs, along with higher unified memory bandwidth 
and capacity. This will make local AI even more capable, further solidifying the 
Mac as a premier platform for private and efficient AI development and 
deployment.6 

●​ Modular's Trajectory: Modular's stated mission is to unify AI software 
development across all hardware.72 It is therefore highly probable that support for 
Apple Silicon GPUs will be added to the MAX Engine in a future release. When this 
occurs, the architecture proposed in this report can be readily adapted to offload 
parallel workloads from the CPU to the GPU, unlocking another significant tier of 
performance without requiring a fundamental rewrite of the application logic. 

In conclusion, building a sophisticated RAG system on this specific hardware and 
software stack is a forward-looking endeavor. While it faces certain contemporary 
limitations, namely the current lack of GPU support in MAX for macOS, the process 
provides a unique and valuable opportunity. It allows developers to gain deep, 
practical expertise in a hardware and software paradigm—one centered on 
heterogeneous computing, unified memory, and high-performance systems 
languages—that is poised to become increasingly dominant in the future of 
decentralized, private, and power-efficient artificial intelligence. 
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