
7th grade computer science 

 Essential Questions Content/Materials Skills Assessments 

Hex 1  ●​ What strategies and 
processes can I use to 
become a more 
effective problem 
solver? 

●​ How do computers help 
people to solve 
problems? 

●​ How do people and 
computers approach 
problems differently? 

●​ What does a computer 
need from people in 
order to solve problems 
effectively? 

 
 

Code.org curriculum AP - Algorithms & Programming 
●​ 1B-AP-08 - Compare and refine multiple algorithms 

for the same task and determine which is the most 
appropriate. 

●​ 1B-AP-11 - Decompose (break down) problems into 
smaller, manageable subproblems to facilitate the 
program development process. 

●​ 1B-AP-16 - Take on varying roles, with teacher 
guidance, when collaborating with peers during the 
design, implementation and review stages of 
program development. 

●​ 2-AP-10 - Use flowcharts and/or pseudocode to 
address complex problems as algorithms. 

●​ 2-AP-15 - Seek and incorporate feedback from 
team members and users to refine a solution that 
meets user needs. 

●​ 2-AP-17 - Systematically test and refine programs 
using a range of test cases. 

●​ 2-AP-18 - Distribute tasks and maintain a project 
timeline when collaboratively developing 
computational artifacts. 

CS - Computing Systems 

●​ 1B-CS-01 - Describe how internal and external 
parts of computing devices function to form a 
system. 

●​ 1B-CS-02 - Model how computer hardware and 
software work together as a system to accomplish 
tasks. 

●​ 2-CS-02 - Design projects that combine hardware 
and software components to collect and exchange 
data. 

IC - Impacts of Computing 

●​ 2-IC-20 - Compare tradeoffs associated with 
computing technologies that affect people's 

Periodic submissions of 
current work, formative 
assessment throughout 
lectures and work time 



everyday activities and career options. 

 

 

Hex  2  ●​ What strategies and 
processes can I use to 
become a more 
effective problem 
solver? 

 

Code.org curriculum AP - Algorithms & Programming 
●​ 1B-AP-11 - Decompose (break down) problems into 

smaller, manageable subproblems to facilitate the 
program development process. 

●​ 1B-AP-15 - Test and debug (identify and fix errors) 
a program or algorithm to ensure it runs as 
intended.. 

●​ 2-AP-13 - Decompose problems and subproblems 
into parts to facilitate the design, implementation, 
and review of programs 

IC - Impacts of Computing 

●​ 1B-IC-18 - Discuss computing technologies that 
have changed the world and express how those 
technologies influence, and are influenced by, 
cultural practices. 

●​ 2-IC-20 - Compare tradeoffs associated with 
computing technologies that affect people's 
everyday activities and career options. 

●​ 2-IC-23 - Describe tradeoffs between allowing 
information to be public and keeping information 
private and secure. 

NI - Networks & the Internet 

●​ 1B-NI-05 - Discuss real-world cybersecurity 
problems and how personal information can be 
protected. 
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Hex 3  ●​ Why do people create 
websites? 

●​ How can text 

Code.org curriculum AP - Algorithms & Programming 
●​ 1B-AP-12 - Modify, remix or incorporate portions of 

an existing program into one's own work, to 
develop something new or add more advanced 
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current work, formative 
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communicate content 
and structure on a 
web page? 

●​ How can I incorporate 
content I find online 
into my own 
webpage? 

●​ What strategies can I 
use when coding to 
find and fix issues? 

features. 
●​ 1B-AP-15 - Test and debug (identify and fix errors) 

a program or algorithm to ensure it runs as 
intended. 

●​ 2-AP-16 - Incorporate existing code, media, and 
libraries into original programs, and give attribution. 

●​ 2-AP-17 - Systematically test and refine programs 
using a range of test cases. 

●​ 2-AP-18 - Distribute tasks and maintain a project 
timeline when collaboratively developing 
computational artifacts. 

●​ 2-AP-19 - Document programs in order to make 
them easier to follow, test, and debug. 

●​ 3A-AP-20 - Evaluate licenses that limit or restrict 
use of computational artifacts when using 
resources such as libraries. 

IC - Impacts of Computing 

●​ 1B-IC-21 - Use public domain or creative commons 
media and refrain from copying or using material 
created by others without permission. 

●​ 2-IC-20 - Compare tradeoffs associated with 
computing technologies that affect people's 
everyday activities and career options. 

●​ 2-IC-21 - Discuss issues of bias and accessibility in 
the design of existing technologies. 

●​ 2-IC-23 - Describe tradeoffs between allowing 
information to be public and keeping information 
private and secure. 

 

 

lectures and work time 

Hex 4  ●​ What is a computer 
program? 

●​ What are the core 
features of most 
programming 
languages? 

●​ How does 
programming enable 
creativity and 
individual expression? 

●​ What practices and 
strategies will help me 

Code.org curriculum AP - Algorithms & Programming 
●​ 2-AP-10 - Use flowcharts and/or pseudocode to 

address complex problems as algorithms. 
●​ 2-AP-11 - Create clearly named variables that 

represent different data types and perform 
operations on their values. 

●​ 2-AP-12 - Design and iteratively develop programs 
that combine control structures, including nested 
loops and compound conditionals. 

●​ 2-AP-13 - Decompose problems and subproblems 
into parts to facilitate the design, implementation, 
and review of programs. 
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as I write programs? 

 

●​ 2-AP-16 - Incorporate existing code, media, and 
libraries into original programs, and give attribution. 

●​ 2-AP-17 - Systematically test and refine programs 
using a range of test cases. 

●​ 2-AP-18 - Distribute tasks and maintain a project 
timeline when collaboratively developing 
computational artifacts. 

●​ 2-AP-19 - Document programs in order to make 
them easier to follow, test, and debug. 

IC - Impacts of Computing 

●​ 2-IC-21 - Discuss issues of bias and accessibility in 
the design of existing technologies. 

 

Hex 5  ●​ How do software 
developers manage 
complexity and scale? 

●​ How can programs be 
organized so that 
common problems 
only need to be solved 
once? 

●​ How can I build on 
previous solutions to 
create even more 
complex behavior? 

 

Code.org curriculum AP - Algorithms & Programming 

●​ 2-AP-10 - Use flowcharts and/or pseudocode to 
address complex problems as algorithms. 

●​ 2-AP-11 - Create clearly named variables that 
represent different data types and perform 
operations on their values. 

●​ 2-AP-12 - Design and iteratively develop 
programs that combine control structures, 
including nested loops and compound 
conditionals. 

●​ 2-AP-13 - Decompose problems and 
subproblems into parts to facilitate the design, 
implementation, and review of programs. 

●​ 2-AP-14 - Create procedures with parameters to 
organize code and make it easier to reuse. 

●​ 2-AP-15 - Seek and incorporate feedback from 
team members and users to refine a solution 
that meets user needs. 

●​ 2-AP-16 - Incorporate existing code, media, and 
libraries into original programs, and give 
attribution. 

●​ 2-AP-17 - Systematically test and refine 
programs using a range of test cases. 

●​ 2-AP-18 - Distribute tasks and maintain a 
project timeline when collaboratively 
developing computational artifacts. 

●​ 2-AP-19 - Document programs in order to make 
them easier to follow, test, and debug. 
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Hex 6  ●​ How do designers 
identify the needs of 
their user? 

●​ How can we ensure 
that a user's needs 
are met by our 
designs? 

●​ What processes will 
best allow us to 
efficiently create, test, 
and iterate upon our 
designs? 

 
 

Code.org curriculum AP - Algorithms & Programming 
●​ 2-AP-10 - Use flowcharts and/or pseudocode to 

address complex problems as algorithms. 
●​ 2-AP-13 - Decompose problems and subproblems 

into parts to facilitate the design, implementation, 
and review of programs. 

●​ 2-AP-14 - Create procedures with parameters to 
organize code and make it easier to reuse. 

●​ 2-AP-15 - Seek and incorporate feedback from 
team members and users to refine a solution that 
meets user needs. 

●​ 2-AP-16 - Incorporate existing code, media, and 
libraries into original programs, and give attribution. 

●​ 2-AP-17 - Systematically test and refine programs 
using a range of test cases. 

●​ 2-AP-18 - Distribute tasks and maintain a project 
timeline when collaboratively developing 
computational artifacts. 

●​ 2-AP-19 - Document programs in order to make 
them easier to follow, test, and debug. 

CS - Computing Systems 

●​ 2-CS-01 - Recommend improvements to the design 
of computing devices, based on an analysis of how 
users interact with the devices. 

●​ 2-CS-02 - Design projects that combine hardware 
and software components to collect and exchange 
data. 

DA - Data & Analysis 

●​ 2-DA-08 - Collect data using computational tools 
and transform the data to make it more useful and 
reliable. 

●​ 2-DA-09 - Refine computational models based on 
the data they have generated. 

IC - Impacts of Computing 

●​ 2-IC-20 - Compare tradeoffs associated with 
computing technologies that affect people's 
everyday activities and career options. 

●​ 2-IC-21 - Discuss issues of bias and accessibility in 
the design of existing technologies. 
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●​ 2-IC-22 - Collaborate with many contributors 
through strategies such as crowdsourcing or 
surveys when creating a computational artifact. 

 

 
 

 


