
7th grade computer science

 Essential Questions Content/Materials Skills Assessments

Hex 1 ●​ What strategies and
processes can I use to
become a more
effective problem
solver?

●​ How do computers help
people to solve
problems?

●​ How do people and
computers approach
problems differently?

●​ What does a computer
need from people in
order to solve problems
effectively?

Code.org curriculum AP - Algorithms & Programming
●​ 1B-AP-08 - Compare and refine multiple algorithms

for the same task and determine which is the most
appropriate.

●​ 1B-AP-11 - Decompose (break down) problems into
smaller, manageable subproblems to facilitate the
program development process.

●​ 1B-AP-16 - Take on varying roles, with teacher
guidance, when collaborating with peers during the
design, implementation and review stages of
program development.

●​ 2-AP-10 - Use flowcharts and/or pseudocode to
address complex problems as algorithms.

●​ 2-AP-15 - Seek and incorporate feedback from
team members and users to refine a solution that
meets user needs.

●​ 2-AP-17 - Systematically test and refine programs
using a range of test cases.

●​ 2-AP-18 - Distribute tasks and maintain a project
timeline when collaboratively developing
computational artifacts.

CS - Computing Systems

●​ 1B-CS-01 - Describe how internal and external
parts of computing devices function to form a
system.

●​ 1B-CS-02 - Model how computer hardware and
software work together as a system to accomplish
tasks.

●​ 2-CS-02 - Design projects that combine hardware
and software components to collect and exchange
data.

IC - Impacts of Computing

●​ 2-IC-20 - Compare tradeoffs associated with
computing technologies that affect people's

Periodic submissions of
current work, formative
assessment throughout
lectures and work time

everyday activities and career options.

Hex 2 ●​ What strategies and
processes can I use to
become a more
effective problem
solver?

Code.org curriculum AP - Algorithms & Programming
●​ 1B-AP-11 - Decompose (break down) problems into

smaller, manageable subproblems to facilitate the
program development process.

●​ 1B-AP-15 - Test and debug (identify and fix errors)
a program or algorithm to ensure it runs as
intended..

●​ 2-AP-13 - Decompose problems and subproblems
into parts to facilitate the design, implementation,
and review of programs

IC - Impacts of Computing

●​ 1B-IC-18 - Discuss computing technologies that
have changed the world and express how those
technologies influence, and are influenced by,
cultural practices.

●​ 2-IC-20 - Compare tradeoffs associated with
computing technologies that affect people's
everyday activities and career options.

●​ 2-IC-23 - Describe tradeoffs between allowing
information to be public and keeping information
private and secure.

NI - Networks & the Internet

●​ 1B-NI-05 - Discuss real-world cybersecurity
problems and how personal information can be
protected.

Periodic submissions of
current work, formative
assessment throughout
lectures and work time

Hex 3 ●​ Why do people create
websites?

●​ How can text

Code.org curriculum AP - Algorithms & Programming
●​ 1B-AP-12 - Modify, remix or incorporate portions of

an existing program into one's own work, to
develop something new or add more advanced

Periodic submissions of
current work, formative
assessment throughout

communicate content
and structure on a
web page?

●​ How can I incorporate
content I find online
into my own
webpage?

●​ What strategies can I
use when coding to
find and fix issues?

features.
●​ 1B-AP-15 - Test and debug (identify and fix errors)

a program or algorithm to ensure it runs as
intended.

●​ 2-AP-16 - Incorporate existing code, media, and
libraries into original programs, and give attribution.

●​ 2-AP-17 - Systematically test and refine programs
using a range of test cases.

●​ 2-AP-18 - Distribute tasks and maintain a project
timeline when collaboratively developing
computational artifacts.

●​ 2-AP-19 - Document programs in order to make
them easier to follow, test, and debug.

●​ 3A-AP-20 - Evaluate licenses that limit or restrict
use of computational artifacts when using
resources such as libraries.

IC - Impacts of Computing

●​ 1B-IC-21 - Use public domain or creative commons
media and refrain from copying or using material
created by others without permission.

●​ 2-IC-20 - Compare tradeoffs associated with
computing technologies that affect people's
everyday activities and career options.

●​ 2-IC-21 - Discuss issues of bias and accessibility in
the design of existing technologies.

●​ 2-IC-23 - Describe tradeoffs between allowing
information to be public and keeping information
private and secure.

lectures and work time

Hex 4 ●​ What is a computer
program?

●​ What are the core
features of most
programming
languages?

●​ How does
programming enable
creativity and
individual expression?

●​ What practices and
strategies will help me

Code.org curriculum AP - Algorithms & Programming
●​ 2-AP-10 - Use flowcharts and/or pseudocode to

address complex problems as algorithms.
●​ 2-AP-11 - Create clearly named variables that

represent different data types and perform
operations on their values.

●​ 2-AP-12 - Design and iteratively develop programs
that combine control structures, including nested
loops and compound conditionals.

●​ 2-AP-13 - Decompose problems and subproblems
into parts to facilitate the design, implementation,
and review of programs.

Periodic submissions of
current work, formative
assessment throughout
lectures and work time

as I write programs?

●​ 2-AP-16 - Incorporate existing code, media, and
libraries into original programs, and give attribution.

●​ 2-AP-17 - Systematically test and refine programs
using a range of test cases.

●​ 2-AP-18 - Distribute tasks and maintain a project
timeline when collaboratively developing
computational artifacts.

●​ 2-AP-19 - Document programs in order to make
them easier to follow, test, and debug.

IC - Impacts of Computing

●​ 2-IC-21 - Discuss issues of bias and accessibility in
the design of existing technologies.

Hex 5 ●​ How do software
developers manage
complexity and scale?

●​ How can programs be
organized so that
common problems
only need to be solved
once?

●​ How can I build on
previous solutions to
create even more
complex behavior?

Code.org curriculum AP - Algorithms & Programming

●​ 2-AP-10 - Use flowcharts and/or pseudocode to
address complex problems as algorithms.

●​ 2-AP-11 - Create clearly named variables that
represent different data types and perform
operations on their values.

●​ 2-AP-12 - Design and iteratively develop
programs that combine control structures,
including nested loops and compound
conditionals.

●​ 2-AP-13 - Decompose problems and
subproblems into parts to facilitate the design,
implementation, and review of programs.

●​ 2-AP-14 - Create procedures with parameters to
organize code and make it easier to reuse.

●​ 2-AP-15 - Seek and incorporate feedback from
team members and users to refine a solution
that meets user needs.

●​ 2-AP-16 - Incorporate existing code, media, and
libraries into original programs, and give
attribution.

●​ 2-AP-17 - Systematically test and refine
programs using a range of test cases.

●​ 2-AP-18 - Distribute tasks and maintain a
project timeline when collaboratively
developing computational artifacts.

●​ 2-AP-19 - Document programs in order to make
them easier to follow, test, and debug.

Periodic submissions of
current work, formative
assessment throughout
lectures and work time

Hex 6 ●​ How do designers
identify the needs of
their user?

●​ How can we ensure
that a user's needs
are met by our
designs?

●​ What processes will
best allow us to
efficiently create, test,
and iterate upon our
designs?

Code.org curriculum AP - Algorithms & Programming
●​ 2-AP-10 - Use flowcharts and/or pseudocode to

address complex problems as algorithms.
●​ 2-AP-13 - Decompose problems and subproblems

into parts to facilitate the design, implementation,
and review of programs.

●​ 2-AP-14 - Create procedures with parameters to
organize code and make it easier to reuse.

●​ 2-AP-15 - Seek and incorporate feedback from
team members and users to refine a solution that
meets user needs.

●​ 2-AP-16 - Incorporate existing code, media, and
libraries into original programs, and give attribution.

●​ 2-AP-17 - Systematically test and refine programs
using a range of test cases.

●​ 2-AP-18 - Distribute tasks and maintain a project
timeline when collaboratively developing
computational artifacts.

●​ 2-AP-19 - Document programs in order to make
them easier to follow, test, and debug.

CS - Computing Systems

●​ 2-CS-01 - Recommend improvements to the design
of computing devices, based on an analysis of how
users interact with the devices.

●​ 2-CS-02 - Design projects that combine hardware
and software components to collect and exchange
data.

DA - Data & Analysis

●​ 2-DA-08 - Collect data using computational tools
and transform the data to make it more useful and
reliable.

●​ 2-DA-09 - Refine computational models based on
the data they have generated.

IC - Impacts of Computing

●​ 2-IC-20 - Compare tradeoffs associated with
computing technologies that affect people's
everyday activities and career options.

●​ 2-IC-21 - Discuss issues of bias and accessibility in
the design of existing technologies.

Periodic submissions of
current work, formative
assessment throughout
lectures and work time

●​ 2-IC-22 - Collaborate with many contributors
through strategies such as crowdsourcing or
surveys when creating a computational artifact.

