

Indraprastha College for Women

Automotion course and and a	
Course Name:	B.Sc. (Hons.) Mathematics
Paper Title:	Sequences and Series of Functions
Unique Paper Code:	
Semester:	IV
Faculty(s):	Mrs. Sarita Anand
Year:	2023-2024

Work Plan			
Unit No.	Learning Objective	Lecture No.	Topics to be Covered
I	Sequences of Functions	1	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
Ι	Sequences of Functions	2	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
Ι	Sequences of Functions	3	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
Ι	Sequences of Functions	4	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
Ι	Sequences of Functions	5	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
Ι	Sequences of Functions	6	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
I	Sequences of Functions	7	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
Ι	Sequences of Functions	8	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
I	Sequences of Functions	9	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence.
Ι	Sequences of Functions	10	Continuity of the limit function of a sequence of functions, Interchange of

			the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
I	Sequences of Functions	11	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
Ι	Sequences of Functions	12	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
Ι	Sequences of Functions	13	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
Ι	Sequences of Functions	14	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
Ι	Sequences of Functions	15	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
Ι	Sequences of Functions	16	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
I	Sequences of Functions	17	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
Ι	Sequences of Functions	18	Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.
II	Series of Functions	19	Pointwise and uniform convergence of series of functions, Theorems on the continuity, and integrability of the sum function of a series of functions.
II	Series of Functions	20	Pointwise and uniform convergence of series of functions, Theorems on the continuity, and integrability of the sum function of a series of functions.
II	Series of Functions	21	Pointwise and uniform convergence of series of functions, Theorems on the

-			
			continuity, and integrability of the sum function of a series of functions.
II	Series of Functions	22	Pointwise and uniform convergence of series of functions, Theorems on the continuity, and integrability of the sum function of a series of functions
Π	Series of Functions	23	Pointwise and uniform convergence of series of functions, Theorems on the continuity, and integrability of the sum function of a series of functions.
Π	Series of Functions	24	Pointwise and uniform convergence of series of functions, Theorems on the continuity, and integrability of the sum function of a series of functions.
II	Series of Functions	25	Theorem on the differentiability of the sum function of a series of functions, Cauchy criterion, and the Weierstrass M-test for uniform convergence.
Π	Series of Functions	26	Theorem on the differentiability of the sum function of a series of functions, Cauchy criterion, and the Weierstrass M-test for uniform convergence.
Π	Series of Functions	27	Theorem on the differentiability of the sum function of a series of functions, Cauchy criterion, and the Weierstrass M-test for uniform convergence.
Π	Series of Functions	28	Theorem on the differentiability of the sum function of a series of functions, Cauchy criterion, and the Weierstrass M-test for uniform convergence.
II	Series of Functions	29	Theorem on the differentiability of the sum function of a series of functions, Cauchy criterion, and the Weierstrass M-test for uniform convergence.
Ш	Series of Functions	30	Theorem on the differentiability of the sum function of a series of functions, Cauchy criterion, and the Weierstrass M-test for uniform convergence.

Syllabus			
Unit	Unit Contents		
	UNIT – I: Sequences of Functions	18	
Ι	Pointwise and uniform convergence of sequence of functions, The uniform norm, Cauchy criterion for uniform convergence, Continuity of the limit function of a sequence of functions, Interchange of the limit and derivative, and the interchange of the limit and integral of a sequence of functions, Bounded convergence theorem.		
	UNIT – II: Series of Functions	12	
II	Pointwise and uniform convergence of series of functions, Theorems on the continuity, differentiability and integrability of the sum function of a series of functions, Cauchy criterion and the Weierstrass M-test for uniform convergence.		

III	UNIT – III: Power Series Definition of a power series, Radius of convergence, Absolute convergence Hadamard theorem), Differentiation and integration of power series, Abel's Weierstrass's approximation theorem; The exponential, logarithm trigonometric functions: Definitions and their basic properties.	(Cauchy theorem, nic and	15
		Total	45
	Text Books/Suggested Readings:		
S. No.	Name of Authors/Books/Publishers	Year of Pu Rep	ublication/ r int
1.	Bartle, Robert G., & Sherbert, Donald R. (2011). Introduction to Real Analysis (4th ed.). Wiley India Edition. Indian Reprint.	2011	
2.	Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus (2nd ed.). Undergraduate Texts in Mathematics, Springer. Indian Reprint.	20	13

Paper Components			
Credits	Lecture (L)	Tutorial (T)	Practical (P)
4	3	1	0
	Assessi	nent Scheme	
S.No.	Component	Marking Scheme	Total Marks
1	Internal Assessment	30	
	• Assignment/Quiz/Project/ Presentation	12	
	• Class Test	12	
	• Attendance	6	
2.	Continuous Assessment (Tutorial)	40	
	• Activity 1	20	
	• Activity 2	15	
	• Attendance	5	
3.	Practical	NA	
	Continuous Assessment		
	• End Term Written/Practical Exam		
	• Viva		
4.	End Semester Examination		90