
Software

The software team had the unique challenge this year of utilizing a simulator to prove and test programs without access to the
assembled sub.

Architecture​ 2
Flight Controller​ 3
Mission Planning and Execution​ 3
Voting​ 4

Computer Vision​ 4
CV Evolution​ 4

Architecture
General

The software system consists of four different parts.
A group of programs

Flight Controller
No image Contrary to last season, we are moving in the direction of directly

controlling our thrusters and developing a custom flight controller for
Onyx. In simulated tests, we are mimicking the behavior of the thrusters
by having each simulated thruster propel a force as controlled by a
software client that represents the flight controller.

Basic translation is handled by the flight controller, meaning that if we
wish the AUV to move in a certain direction, we simply need to send a
command to the flight controller with the specified direction and power.
The details concerning which motors should be activated to translate in
the specified direction (forward/backward, laterally, yaw, vertically, etc) are
handled by the flight controller. The flight controller will compensate for
drift caused by currents and other factors, and will have features like
holding the sub’s depth while underwater to compensate for its
buoyancy. We also take advantage of the flight controller’s capability to
maintain a depth while translating forwards, backwards, and laterally.

Mission Planning and Execution
No image This season, we’ve begun working on developing a mission planner

between the two AUVs to be able to prioritize tasks and maximize our
ability to gain points while underwater.

 The mission planner has two key parts: a decision maker and mission
scheduler. The decision maker works like a trade study, weighting
different variables to decide which task to pursue. The different variables
are the current status of the missions, time it takes to complete each of

the remaining missions, the point value of the remaining missions, the
probability of successfully completing the remaining missions, and the
time remaining in the run.

 Græy and Onyx are designed to communicate with one another.
Inter-Sub communication and mission planning go hand-in-hand. This
way, we avoid overlap while strategically planning to gain the most
points.

Voting
See last year’s page (Software > Voting)​
https://team11128.wixsite.com/main/graey

Computer Vision
CV Evolution

In past seasons, the computer vision subteam focused on learning and
curating programs that would work for multiple missions. We did this
by experimenting with 3 different forms of computer vision: OpenCV,
Vuforia, and machine learning.
Through the development of these programs, we established a set of
basic programs that could be repurposed for different missions in
Robosub. We created programs to detect the gate, buoy, octagon, and
bins and planned to expand to other missions.
At this stage, we had not implemented our computer vision programs

https://team11128.wixsite.com/main/graey

successfully onto the physical robot. This would turn into a goal that we
work to accomplish this season.

Furthermore, we noticed that we did not have a well established testing
strategy. When testing our programs, we typically only tested our
program on a few pre-recorded videos recorded from the team pool
and from TRANSDEC during our 2019 season.
In order to increase the accuracy of our computer vision programs, we
needed to test on more footage in order to ensure our program works in
any circumstances. We also needed to improve our test plan so we
could collect quantitative data that would help us find our program's
accuracy and see when and what needed to be improved. We also
needed to increase the specificity of our testing goals so that other
programmers would be able to understand our test data and clearly
understand what we changed and why. We could improve this by
writing improved test plans in the beginning of our test and collecting
test data that describes what we are testing and what changes we
made beforehand. This would make the test results more clear to
viewers.

During this season, we implemented these changes in our testing
strategy. Since in previous years, we tested our programs on old in pool
footage, we already had relatively accurate programs for those videos,
but we soon discovered that this would be ineffective, because we were
only testing in a limited set of conditions.

We tested these programs on pre recorded simulator footage this
season to see if these programs would maintain their accuracy in a new
environment.
The subteam working on the simulator sent us screen recordings of the
asset we wished to test on. CV members tested a corresponding
program.

Once tested on pre recorded footage, we tested in the simulator. This
involved taking the video stream from the virtual camera and applying
the filters directly to them. Our test results were significantly different,
dropping from around 85% accuracy to below 50%. This was likely
caused by changes in the lighting conditions/fog settings of the
underwater environment, so we adjusted the HSV values accordingly.
We were able to move the robot around and test the accuracy of the CV
by looking at the bounding boxes formed. Originally, problems were
faced with the CV program detecting parts of the floor as the same
color as the gate, and this problem was fixed by cropping out the
bottom at the beginning of the program. We also used the same code
to test the path, and it was able to draw a bounding box around the
path with ~90% accuracy. Simulating the robot also gave us a baseline

for integrating CV with our actual sub, since integration is done in the
same way.

The data collected from these tests were quantified and displayed on a
graph to visualize the accuracy of the test results. In the example to the
top left, the graph is comparing the top left x-coordinate received from
a CV test on buoy footage. The closer the line is to the 340, the higher
the accuracy of the program was. The more tests we did, the closer the
line got to 340, indicating to others that the program increased in
accuracy. In the graph on the bottom left, the line is close to 340.

This season, we were able to integrate our CV program with the sub as a
whole within the simulation. This allowed us to test in more versatile
conditions, and gave us more data points to improve our program and
introduce/change the order of our filters. Because we were able to focus
on OpenCV, we were able to carry out the process of making programs
for each mission more effectively.

 In the future, we plan on integrating our programs with the sub much
earlier so we can test more accurately earlier on. We will continue to test
in both real-life conditions (through videos and on the physical sub), as
well as the simulation. We also plan on reintroducing Machine Learning
because it will allow for the greatest amount of learning, and after
further development, could yield more accurate results.

	
	Architecture
	Flight Controller
	Mission Planning and Execution

	
	Voting

	
	
	Computer Vision
	CV Evolution

