
As of Plone 4.0.9 and Plone 4.1 there are new Windows installers being provided to the
community. These installers behave differently than previous versions. This document explains
the changes and the rationale behind them.

Table of Contents
Overview
Details
Change Location
Building a Custom Windows Installer
References

Overview
Previously the Plone Windows installer ran buildout after allowing the user to input several
variables, including an installation directory. However, due to the way that Python, Windows
and buildout interact, long or complex installation directories did not always work, leading to
fatal errors during the buildout installation process. This failure would be very difficult for an
evaluator to recover the installation, thereby creating a bad “first impression” for a new user.

The new Plone Windows installer trades off some of this flexibility for vastly improved reliability.
Buildout is run when building the installer, not “live” during the installation process. This means
that buildout can never fail during installation. However, this means that the Windows installer
will only install Plone into C:\Plone41 (for 4.1) and C:\Plone42 (for 4.2).

For users who require more flexibility in installation paths, we have provided the ability to
copy-and-paste an installation directory to a new location, as well as a new facility to create
custom Windows installers for Plone (which ships with the Plone Windows installer). Now, you
can modify your buildouts and regenerate new Windows installers with different configurations
(e.g., using multiple ZEO clients, multiple databases or different products), which you can use in
production or distribute to customers.

Details
Plone’s Windows services now use a recipe called enfold.recipe.winservice which is a fork of
the z3c.winservice recipe for use in Zope 2. The new Plone Windows installer has three key
differences from previous versions:

●​ Default credentials for Plone
○​ Previously you could create these from inside the installer.

○​ Now it is hardcoded as login: admin and password: admin. This makes the
Windows installer consistent with the Unified Installer and the Mac OS X installer.​
This can be changed by editing buildout.cfg, see the [shared] section​
which contains the line: user = login:password

●​ Windows Service name
○​ Previously this was auto-generated during installation
○​ Now it is defined in buildout.cfg see the [service] and [service-zeo] sections​

name = Unique Service Name
●​ Installation Location

○​ Previously the user could select/create new folder to install Plone
○​ Now it installs into C:\Plone41 or C:\Plone40 (depending on version)

How to Change Installation Location
The new Plone Windows installer does not allow you to change the installation location when
you run the installer. However, it is still possible to install Plone into a different location after the
initial installation, albeit via a more manual process. For example, suppose you have installed
Plone into C:\Plone41 and after evaluation you want to copy it to a more permanent location,
lets say Z:\Plone41-Intranet\.

The good news is that your installation directory, C:\Plone41, is 100% self-contained. There are
no external dependencies defined anywhere else. You can simply copy/paste this directory,
modify your buildout.cfg file (described below), and rebuild your custom environment. For a
production-quality deployment of Plone, you will nearly always need to do this because the
default settings for Plone Windows installation are very basic, and intended more for evaluation
than for production deployment scenarios.

Here’s a simple example for moving Plone from its default installation directory (C:\Plone41) to a
new directory, Z:\Plone41-Intranet

●​ Change to Z:\ drive
●​ mkdir Plone41-Intranet
●​ cd Plone41-Intranet
●​ cp C:\Plone41* .
●​ switch to Z:\Plone41-Intranet
●​ edit the buildout.cfg file

○​ goto [shared] section
○​ change user variable to login:password they want to use
○​ change the http-address to a unique port, say 9090
○​ change the zeo-address to a unique port, say 9999

[shared]
user = administrator:s3kr1t

http-address = 9090
zeo-address = 9999
debug-mode = off
verbose-security = off​

○​ goto [service] section
○​ change name variable to “Plone 4.1 Intranet”​

[service]
recipe = enfold.recipe.winservice:service
name = Plone 4.1 Intranet
runzope = run-instance​

○​ goto [service-zeo] section
○​ change name variable to “Plone 4.1 Intranet Database”​

[service-zeo]
recipe = enfold.recipe.winservice:service
name = Plone 4.1 Intranet Database
runzope = run-zeo​

●​ re-build the configuration files

○​ bin\buildout.exe
●​ now install your new service

○​ bin\instance.exe install
○​ bin\zeo_service.exe install

●​ you can now start your database server service
○​ bin\zeo_service.exe start

●​ It is always best to start your client/instance in foreground mode. If this fails you a
substantial configuration problem or source code mismatch in your system.

○​ bin\instance.exe fg
Your terminal will be connected to the server. If it says “Zope Ready to Serve Requests”
you are good to. Control-C or Break out of it and start the service from services panel or
command line

○​ bin\instance.exe start

NOTE:
I believe there is a problem with registry and python. Since we *do not* register the python
system-wide you will need to have your current working directory as Python. The above
bin\instance.exe, bin\zeo_service.exe are incorrect. So the command will be as follows:

Z:\Plone41-Intranet> bin\buildout
Z:\Plone41-Intranet> cd python
Z:\Plone41-Intranet\Python> python ..\bin\service.py --startup auto install
Z:\Plone41-Intranet\Python> python ..\bin\service-zeo.py --startup auto install

Building a Custom Windows Installer
The biggest feature of the new installer is the ability to create a custom Windows installers,
which you can use or distribute. Previously, building a custom Windows installer required
substantial knowledge of how many different sub-systems work together. Now you simply edit
the installer.cfg buildout recipe. Re-run buildout with -c installer.cfg and you will get a new
Windows installer executable in the current working directory.

More details later. See the “Windows Packaging Details” link below for more information.

References
●​ Windows Packaging Details - http://package.enfoldsystems.com/docs/windows.html
●​ Buildout website - http://www.buildout.org/

NOTES FOR REVISION OF building custom windows
installer
Required SVN, Python 2.6, Innosetup
http://www.jrsoftware.org/isdl.php
Download isetup-5.4.2.exe
Put it in your path
start cmd (as administrator)
test: ISCC and ensure you see it

Grab SDK:
Windows SDK (for Win32 and .NET Framework)
download mt.exe
put it in your path ala
C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin
start cmd and ensure its in your path: mt

mkdir isntaller
cd installer
svn co
https://svn.enfoldsystems.com/public/plone-packages/plone41-windows-installer/installer.cfg
c:\installer>c:\Python26\python.exe bootstrap.py -c installer.cfg

http://package.enfoldsystems.com/docs/windows.html
http://www.buildout.org/

c:\installer>bin\buildout.exe -c installer.cfg
c:\installer>bin\installer.exe

You will get a buncha errors around mt tools and pyd files; ignore them.

mt.exe : general error c101008c: Failed to read the manifest from the resource o
f file "c:\INSTAL~1\build\plone41\417902~1.2\EXTERN~1.6-S\DLLs_testcapi.pyd". T
he specified image file did not contain a resource section.

ERROR:build:""C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\mt.EXE" "-
nologo" "-inputresource:c:\INSTAL~1\build\plone41\417902~1.2\EXTERN~1.6-S\DLLs_
tkinter.pyd;#2" "-out:c:\INSTAL~1\build\plone41\417902~1.2\EXTERN~1.6-S\DLLs_tk
inter.pyd.manifest"" failed: 31
ERROR:build:Last 100 lines of output:

 NOTE:
 - If you are building an installer and it fails half way through the build. You will probably have to
delete the installation directory and all of the files; and re-run. the build process is not re-entrant
(patches accepted).

	Table of Contents
	Overview
	Details
	How to Change Installation Location
	Building a Custom Windows Installer
	References
	NOTES FOR REVISION OF building custom windows installer

