
Tutorial 2 - Cuboid Tools

Table Of Contents

This tutorial will treat the following concepts:

●​ Simple command script mechanics.

●​ If commands and conditions.

●​ Stopping the queue.

●​ Complex items with data keys and flags.

●​ Building formatted text from input.

●​ Nesting tags.

●​ Custom event switches.

●​ Special item event switches.

●​ Simple player and server flags.

●​ Basic list handling.

●​ The choose command.

●​ Basic cuboid tools and usages.

●​ Converting flag values into tag types.

Introduction

While some might prefer to directly jump into some fun projects, it's been proven useful to

move in angles in order to reach a goal. That's why this second Denizen2Sponge tutorial

will be focused on preparing some tools that will be needed later on.

More specifically, we'll be scripting utilities related to cuboids. These will save us a lot of

work everytime we need to use cuboids in another script.

Cuboid Wand

What is this? It's just an ingame item that will generate cuboids for us just by simply clicking

the two desired opposite corner blocks. We will need these cuboids for our next tutorial. First

of all, we'll choose which item will serve as a wand. In our case, a shiny blaze rod will

probably do. We want to have easy access to this wand, so we'll make a command for it.

1

Let's make a new script and build a command script container. We specify a name, set the

type: key to command, debug: to full and then place a name: key. Command scripts accept

multiple names (or aliases), so we'll take advantage of that including both cuboidtool and the

shortened version ct. We should also specify a clear yet simple description, like Gives

yourself a cuboid wand., and then open an empty script section.

Our brand new command script container should be similar to this one:

Cuboid_Tool_Command:

 type: command

 debug: full

 name:

 - cuboidtool

 - ct

 description: Gives yourself a cuboid wand.

 script:

Since commands can be executed through the console, which can't receive items, we'll

restrict this command's usage to only players. We can achieve that by checking the

command source and then giving an error message and stopping the queue. Ifs are useful

script commands that execute a script block depending on the outcome of a condition, so we

can use one.

Command scripts, like events, have some special context tags with information linked to

them. According to the documentation, <context.source> will return either server, player,

block or minecart, so it's exactly what we needed. Just add an operator and a comparing

value, != player in our case.

Now we want to print an error in console, so we'll use a simple - echo. As we learnt on the

first tutorial, echo only needs a message argument, and This is a player command only! will

do. We also want to stop the running queue, and the command for that is just a - stop.

Our script section should look like this:

 - if <context.source> != player:

 - echo "This is a player command only!"

 - stop

2

https://meta.denizenscript.com/Home/Explanations#exp_In-Game%20Command%20Scripts
https://meta.denizenscript.com/Home/Commands#cmd_if
https://meta.denizenscript.com/Home/Explanations#exp_In-Game%20Command%20Scripts
https://docs.google.com/document/d/1VZsupQLf1PWZ6w1H5-9JUREcE7PTYbrE4bEn7KsD25c/edit
https://meta.denizenscript.com/Home/Commands#cmd_echo
https://meta.denizenscript.com/Home/Commands#cmd_stop

We also don't want every player to have access to this command, so we need to make

another similar check. Since Sponge doesn't have op players, we'll check if the player using

the command is in creative gamemode for now. We can retrieve the player's gamemode

through the simple <player.gamemode> tag, and then check if it's not equal to creative

inside an if.

In this case, we want to send an error message directly to the player, so we'll use the - tell

command, with the player as first argument and the message as second. Don't forget to also

stop the queue afterwards!

This if block should look like the following:

 - if <player.gamemode> != creative:

 - tell <player> "You don't have permission to use this command!"

 - stop

Time to add the real functionality to our command. We want to give ourselves a wand, so

we'll just use the give command, which was also shown in the first tutorial. The first

argument is clear, since we just want to give it to the player using the command. The item

argument, on the other hand, should be our own custom wand item.

We'll create an item script for that called Cuboid_Tool_Item. Let's follow the documentation

and start by setting its type to item and debug to full. Now we will set its static key to true

because we only need to get copies of the item, which will be generated on server start.

We're now ready to specify display name and lore keys. These accept formatted text, so let's

build some!.The way of doing this is through the <texts base tag. We prefer to build it from

input, so our display name will look like "<texts.for_input[text:Cuboid Tool|color:blue]>". Keep

in mind the quotes are needed, as there's a space inside the tag and the argument would be

split otherwise.

Let's do the same for the lore key, except there can be multiple lines of text so it'll take the

shape of a list. Our two lore lines, formatted correctly, will be "<texts.for_input[text:Left click

to set the first location|color:aqua]>" and "<texts.for_input[text:Right click to set the second

location|color:aqua]>".

3

https://meta.denizenscript.com/Home/Tags#tag_PlayerTag.gamemode
https://meta.denizenscript.com/Home/Commands#cmd_tell
https://meta.denizenscript.com/Home/Commands#cmd_give
https://meta.denizenscript.com/Home/Explanations#exp_Item%20Scripts
https://meta.denizenscript.com/Home/TagBases#tagbase_texts
https://meta.denizenscript.com/Home/Tags#tag_TextsBaseTag.for_input[%3CMapTag%3E]
https://meta.denizenscript.com/Home/Tags#tag_TextsBaseTag.for_input[%3CMapTag%3E]

We also want to store some hidden information inside the item. This will let us know it's a

wand later on. This can be done by adding a flags key, with key and value pairs inside it. In

our case, a cuboid_tool: true should be enough.

Our item script will now look like the following:

Cuboid_Tool_Item:

 type: item

 debug: full

 static: true

 display name: "<texts.for_input[text:Cuboid Tool|color:blue]>"

 lore:

 - "<texts.for_input[text:Left click to set the first location|color:aqua]>"

 - "<texts.for_input[text:Right click to set the second location|color:aqua]>"

 flags:

 cuboid_tool: true

Adding the give command with our new custom item, our whole command script should look

like this:

Cuboid_Tool_Command:

 type: command

 debug: full

 name:

 - cuboidtool

 - ct

 description: Gives yourself a cuboid wand.

 script:

 - if <context.source> != player:

 - echo "This is a player command only!"

 - stop

 - if <player.gamemode> != creative:

 - tell <player> "You don't have permission to use this command!"

 - stop

 - give <player> Cuboid_Tool_Item

4

Got it? Neat! Let's test it now. Save the script first and reload it ingame. We now want to test

all the options, so start by running the command from console, which should be just ct (no

backslash needed). If everything goes according to plan, you should now see an error

message there.

Let's test ingame now, but on survival gamemode. You should now see the other error

instead, and receive no wand. Time for the final test! Swap to creative and run the command

again. You should now have the wand in your inventory.

Selecting The Cuboid

So we have the wand, but it's not magical at all. Our next step is being able to select cuboids

by clicking their corners with the wand. Since we need to execute some code when we click,

we'll need to use events inside a world script. We're already familiar with those, so we can

build one fast and search for the appropiate events. We intend to use left click for selecting

the first corner, and right click for the second one, so let's grab those two events: on player

left clicks block and on player right clicks block.

Our brand new world script should look like this:

Cuboid_Tool_Events:

 type: world

 debug: full

 events:

 on player left clicks block:

 on player right clicks block:

But we only want the selection to work if the item in hand is our cuboid wand. Luckily, these

two events have with_item: switches, that will check for an item. Item switches are a bit

special and offer more options than other switches. We'll need to specify a type of item, and

the flag it contains. This is simpler than it sounds, since we just need to write

with_item:type:blaze_rod|flagged:Cuboid_Tool.

We also want the selection to only be possible for creative players, but there's no direct

switch for checking gamemodes. That's not a problem though, because we're just going to

learn how to create our own custom event switches. This is possible thanks to the general

require: switch, which will check if the condition specified is true before triggering the event.

5

https://meta.denizenscript.com/Home/Explanations#exp_World%20Scripts
https://meta.denizenscript.com/Home/Events#evt_player%20left%20clicks%20block
https://meta.denizenscript.com/Home/Explanations#exp_With%20Item%20Switch%20For%20Events
https://meta.denizenscript.com/Home/Explanations#exp_Script%20Event%20Requirements

The condition we need is similar to the one we used for the if command, except shaped as a

tag. We start with the <player base, add the .gamemode modifier and close it with an

.equals[creative]>.

The two events with our brand new switches should now look like this:

 on player left clicks block

with_item:type:blaze_rod|flagged:Cuboid_Tool

require:<player.gamemode.equals[creative]>:

 on player right clicks block

with_item:type:blaze_rod|flagged:Cuboid_Tool

require:<player.gamemode.equals[creative]>:

Once our switches are ready, we can go ahead and add the actual functionality. We want to

store the first and second block's location selected by the player, and we'll use flags for that.

Flags let us store information (a key and a value) inside an entity or globally inside the

server.

The command for creating or editing flags is just - flag. We want to flag the player, just in

case there are more than a single moderator creating cuboids at the same time. Finally, we'll

call the key Cuboid_Tool.Primary_Block for the first event, and

Cuboid_Tool.Secondary_Block for the second one. The value should just be the location

clicked, which can be obtained from the event's context.

These two flag commands would look like this:

 - flag <player> Cuboid_Tool.Primary_Block:<context.location>

 - flag <player> Cuboid_Tool.Secondary_Block:<context.location>

We should now be able to select blocks easily, but let's make sure! With our magic wand all

we have to do is left and right click different blocks. Then we can just use the /ex command

to tell ourselves the value of the flags we've used. It would look something like this: /ex tell

<player> <player.flag[Cuboid_Tool.Primary_Block]>, and Secondary_Block for the second.

Can you see the location you clicked in chat? Perfect!

We can also just automatically give that information when a block is selected. Let's add a -

tell to both events that narrates the location clicked. We also want to cancel the left click

breaking the target block, so we'll slip a - determine cancelled into the left clicks event.

6

https://meta.denizenscript.com/Home/Commands#cmd_flag
https://meta.denizenscript.com/Home/Explanations#exp_The%20Ex%20Command

Putting it together, our world script will look like this:

Cuboid_Tool_Events:

 type: world

 debug: full

 events:

 on player left clicks block

with_item:type:blaze_rod|flagged:Cuboid_Tool

require:<player.gamemode.equals[creative]>:

 - determine cancelled

 - flag <player> Cuboid_Tool.Primary_Block:<context.location>

 - tell <player> "Primary block selected: <context.location>"

 on player right clicks block

with_item:type:blaze_rod|flagged:Cuboid_Tool

require:<player.gamemode.equals[creative]>:

 - flag <player> Cuboid_Tool.Secondary_Block:<context.location>

 - tell <player> "Secondary block selected: <context.location>"

Let's select two blocks again. You should now automatically see the locations in chat, which

is very handy.

Creating The Cuboid

After making sure our cuboid selection code works as intended, it's time to continue

scripting. We want to be able to create a brand new cuboid (and remove it if needed) from

these two locations and store it globally on a server flag. We'll need to change the structure

of our command script a bit for this, but that's not a problem.

We'll start with the command description. Since it will do more than just give out a wand,

we'll explain its usage. Replacing it with a Main Cuboid Tool command. Proper usage is /ct

wand/create/remove (name). should work.

Now we need to change the script section. We'll start by adding a check before the give

command that throws an error and stops the queue if the command has no arguments.

That's possible checking the size of the argument list, which can be obtained from a context

tag. Our condition would be <context.arguments with a .size> modifier and then compared to

1.

7

https://meta.denizenscript.com/Home/Tags#tag_ListTag.size

This new check will look like this:

 - if <context.arguments.size> < 1:

 - tell <player> "Proper command usage is /ct wand/create/remove

(name)"

 - stop

Now we need to execute different blocks of script depending on the first argument specified,

and - choose is the perfect command for that. We'll use this first argument, which can be

accessed with the .get[1]> modifier, as the choose value. Then we can just add cases with

the expected values, as well as a default case that throws an error. Remember to place the

give command inside the proper wand case.

Putting the choose together, it should look like this:

 - choose <context.arguments.get[1]>:

 - case wand:

 - give <player>

"<item[blaze_rod].with[display_name:<texts.for_input[text:Cuboid

Tool|color:blue]>].with_flags[Cuboid_Tool:true]>"

 - case create:

 - case remove:

 - default:

 - tell <player> "Unknown argument specified! Proper command usage

is /ct wand/create/remove (name)"

Now it's time to develop the create and remove cases. We'll start by making sure that the

command contains a name argument, as the proper usage explains. We can do that by

checking if the argument list size is less than 2 and throwing an error (and stopping the

queue) if that's the case.

This new checks would look like the following:

 - case create:

 - if <context.arguments.size> < 2:

 - tell <player> "No name specified! Proper command usage is /ct

create (name)"

 - stop

8

 - case remove:

 - if <context.arguments.size> < 2:

 - tell <player> "No name specified! Proper command usage is /ct

remove (name)"

 - stop

And after all these checks, we just lack the actual functionality. For the create subcommand,

we'll flag the server with the cuboid name and the selected cuboid. So we start with - flag

server, then add Cuboids.<context.arguments.get[2]>, which is the name argument, and

then create the cuboid after a :.

Denizen2Sponge has a cuboid wrapping tool which can be accessed through the <server

base tag. For creating a cuboid from two locations, all we have to do is

<server.cuboid_wrapping[Location1|Location2]>. These two locations can be obtained from

the flags we set earlier on the player thanks to the <player.flag[FlagName]> tag.

Putting it together, our flag command is ready:

 - flag server

Cuboids.<context.arguments.get[2]>:<server.cuboid_wrapping[<player.flag[

Cuboid_Tool.Primary_Block]>|<player.flag[Cuboid_Tool.Secondary_Block]>]>

For our remove subcommand, removing the cuboid is much easier. We just have to use the -

unflag command with the proper flag key.

This command looks just like this:

 - unflag server Cuboids.<context.arguments.get[2]>

We can also add some - tell commands to all three subcommands to give information about

what happened.

Our command script should now be ready for some intensive testing and looks like this:

Cuboid_Tool_Command:

 type: command

 debug: full

 name:

 - cuboidtool

9

https://meta.denizenscript.com/Home/Commands#cmd_flag
https://meta.denizenscript.com/Home/Tags#tag_ServerBaseTag.cuboid_wrapping[%3CListTag%3E]
https://meta.denizenscript.com/Home/Commands#cmd_unflag

 - ct

 description: Gives yourself a cuboid wand.

 script:

 - if <context.source> != player:

 - echo "This is a player command only!"

 - stop

 - if <player.gamemode> != creative:

 - tell <player> "You don't have permission to use this command!"

 - stop

 - if <context.arguments.size> < 1:

 - tell <player> "Proper command usage is /ct wand/create/remove

(name)"

 - stop

 - choose <context.arguments.get[1]>:

 - case wand:

 - give <player> Cuboid_Tool_Item

 - case create:

 - if <context.arguments.size> < 2:

 - tell <player> "No name specified! Proper command usage is /ct

create (name)"

 - stop

 - flag server

Cuboids.<context.arguments.get[2]>:<server.cuboid_wrapping[<player.flag[

Cuboid_Tool.Primary_Block]>|<player.flag[Cuboid_Tool.Secondary_Block]>]>

 - case remove:

 - if <context.arguments.size> < 2:

 - tell <player> "No name specified! Proper command usage is /ct

remove (name)"

 - stop

 - unflag server Cuboids.<context.arguments.get[2]>

 - default:

 - tell <player> "Unknown argument specified! Proper command usage

is /ct wand/create/remove (name)"

10

While this might look like a monster script, it's pretty well organized and we've written it step

by step, so it's not a big deal.

Testing

So we can already create a cuboid, but what now? We can't see it at all, so we better make

sure it exists. Let's give ourselves a wand with /ct wand, and then left and right click two

different blocks. Now we can do /ct create mycuboid to create it, and should receive a

message in chat confirming the creation.

Now it's time to prove how useful cuboids can be. We can mimic WorldEdit and fill the whole

cuboid with a block type. Let's do that directly ingame through the /ex command. We just

need to use the command - setblock a list of locations, which can be obtained through the

tag modifier for cuboids .block_locations>.

In our cause, we can retrieve the cuboid from the server flag, making sure we convert it to a

cuboid type tag (flags usually lose their type when being retrieved). This can be done by

nesting the flag value inside a <cuboid[] base tag. The resulting cuboid tag would in the end

be <cuboid[<server.flag[Cuboids.mycuboid]>]

Our block of choice is just stone, though any block type can be used. The whole command

would be: /ex setblock <cuboid[<server.flag[Cuboids.mycuboid]>].block_locations> stone.

Did that work? Assuming you are not stuck inside a stone cuboid, you can now see your

creation. Great!

Additional Checks

Our script already works as intended and does the job, but some problems might arise when

a user without experience tries to use it. For example, we should probably check if a cuboid

name mycuboid already exists before creating it, as well as check if a cuboid exists before

removing it.

This shouldn't be too complex. Let's scroll to our create case and place a new - if before the

flag command. We want to check if the cuboid already exists, so we can use the

<server.has_flag[FlagName]> tag.

Our new if will take the following shape:

11

https://meta.denizenscript.com/Home/Commands#cmd_setblock
https://meta.denizenscript.com/Home/TagBases#tagbase_cuboid[%3CCuboidTag%3E]
https://meta.denizenscript.com/Home/Tags#tag_ServerBaseTag.has_flag[%3CTextTag%3E]

 - if <server.has_flag[Cuboids.<context.arguments.get[2]>]>:

 - tell <player> "A cuboid with name <context.arguments.get[2]>

already exists!"

 - stop

Now for the remove subcommand, we have to invert the condition with a .not> tag modifier.

This if block would look like this:

 - if <server.has_flag[Cuboids.<context.arguments.get[2]>].not>:

 - tell <player> "The cuboid with name <context.arguments.get[2]>

doesn't exist!"

 - stop

This should be it for now. Now we have a handy Cuboid Tool, which will be used a lot in

other tutorials. Thanks for putting the time in following this tutorial and happy scripting!

12

https://meta.denizenscript.com/Home/Tags#tag_BooleanTag.not

	Tutorial 2 - Cuboid Tools
	Table Of Contents
	Introduction
	Cuboid Wand
	Selecting The Cuboid
	Creating The Cuboid
	Testing
	Additional Checks

