Attendees

- Pieter Pauwels [Ghent University]
- Markus Rickert [fortiss]
- Alexander Perzylo [fortiss]
- Kris McGlinn [TCD-Adapt]
- Mads Holten Rasmussen [DTU]
- Peter Bonsma [RDF Ltd.]
- Ana Roxin [Univ. Burgundy]
- Anna Wagner [TU Darmstadt]
- François Daoust [W3C]
- Aaron Costin [University of Florida]
- Georg Ferdinand Schneider [Fraunhofer IBP]
- Jun Wang [Curtin University]
- Michel Bohms [TNO]
- Claudio Mirarchi [Polimi]
- Kyriakos Katsigarakis [TUCrete]
- Georgios Lilis [TUCrete]
- Emilio Sanfilippo [LOA]

Excused

- Maxime Lefrançois [Mines Saint-Etienne]
- Gonçal Costa [LaSalle University]
- Odilo Schoch [ETHZurich]

Date and time

- 16/10/2017
- 17:00 CEST

Agenda

- 1. Presentation by Markus Rickert and Alexander Perzylo about their BREP ontology (geometry subdomain).
- 2. Discussion about Community Group / Working Group at the W3C

Minutes

1. The BREP ontology (Markus Rickert and Alexander Perzylo).

Presentation:

https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/geometry/20171016-fortiss-OntoBREP.pdf

Introduction to Fortiss - Research and transfer institute associated with TUMünich

BREP ontology developed within context of EU project on industrial robotics in mass production: SMERobotics

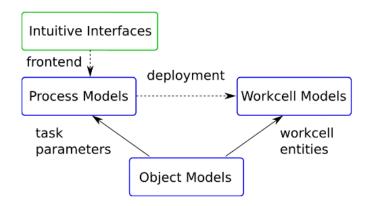
Unique challenges in robotics for SME due to quick turn around times per contract.

Robot programming complex for non-experts, long training periods.

The main aim is to make this programming a lot faster and more intuitive

Robot programming: State-of-the-art

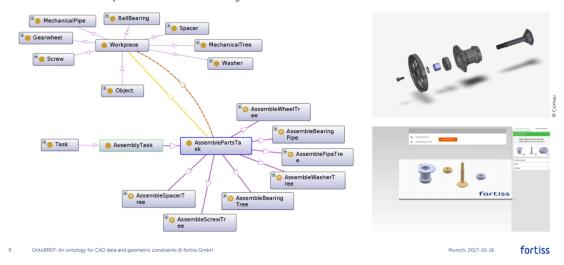
High complexity for non-experts and no connection to process



Our focus was service robotics, they have goal specific specification, i.e. "get glass of water from kitchen" not explicit set step by step.

Make use of semantic descriptions with intuitive interfaces at the front end:

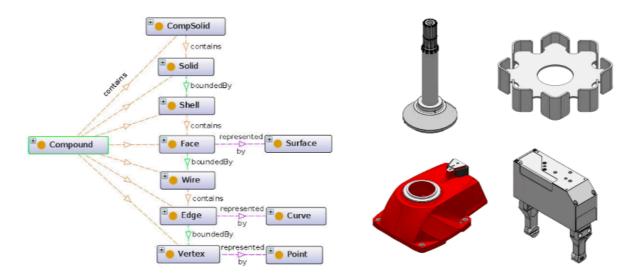
Semantic descriptions as backbone


Intuitive interfaces at the front

Behind the intuitive interfaces (e.g. aimed at welding), a number of process models capture the actual data (CAD and semantics). Intuitive interface is displayed on the right of the below image. This connects to the object model on the left.

Semantic description of processes

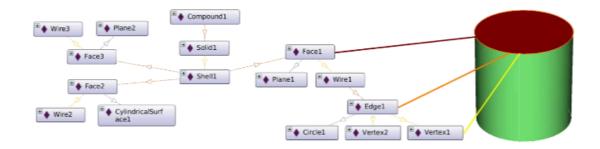
Connection of parts and assembly tasks



All objects are semantically described. In doing this, we try to maintain the exact original geometric representation as it was input in the CAD environment, hence the BREP ontology. E.g.:

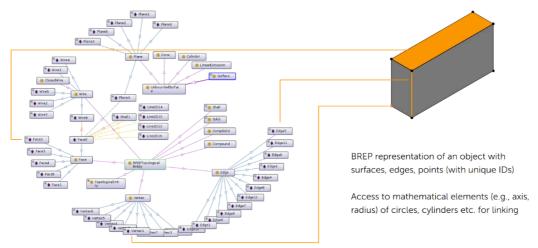
BREP Representation (BREP)

A compound can contain a number of solid elements, for example a CompSolid, which in itself contains a number of other geometric elements (solids, shells, faces, wires and so forth).

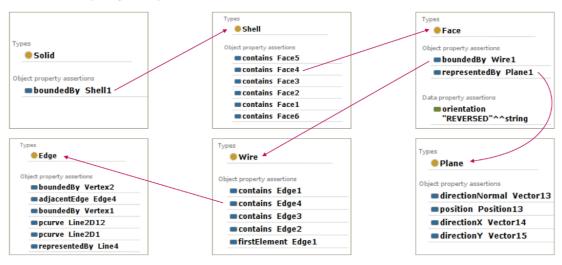


OntoBREP uses OWL, provides taxonomy of topological and geometric entities, properties, i.e. topological relations and geometric parameters.

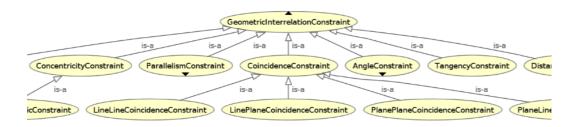
OntoBREP


Semantic description language for CAD data

- Using the Web Ontology Language (OWL)
- · Taxonomy of topological and geometric entities
- · Properties, i.e., topological relations and geometric parameters

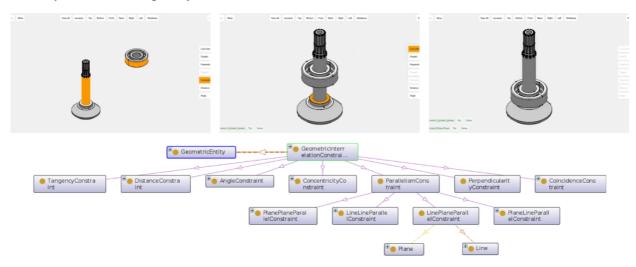

Complete example: Cuboid

Representation of geometry information



Semantic description of CAD data

The cuboid step-by-step



Besides taxonomies for topological and geometric entities, we also worked towards representing geometric interrelation constraints. This allows to specify relative poses of a robot (arm grasping, assembly positions, ...).

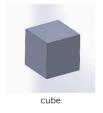
Description of geometric constraints

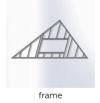
Example: Assembly of parts

An implementation has been done using the Open Cascade (OCC) kernel, a Java wrapper for OCC and the OWL API:

Automatic conversion to OntoBREP formalism

Import of STEP and IGES models


Conversion tool utilizing


- OpenCascade (OCC) CAD kernel
- JNI-based Java wrapper for OCC
- OWL API

Quantitative Evaluation

- Conversion time
- Load time in Sesame triple store (OWLIM)

Model	Converting STEP	Loading OWL in Sesame			
	time in ms	time in ms	axioms per ms		
CUBE	365	25	57.2		
FRAME	805	343	77.0		
ROTOR	1018	704	60.9		

20 OntoBREP: An ontology for CAD data and geometric constraints © fortiss GmbH

Munich, 2017-10-16

fortiss

STEP files can thus be parsed using this implementation; after which the application populates the BREP ontology automatically. Quantitative evaluations have been done of conversion times and file sizes, using a cube, frame and rotor geometry (see below image).

Model	Number of topological BREP entities								
	Ve a	Ed ^b	Fa c	Wi d	Sh e	So f	CS g	Co h	Total
CUBE	8	12	6	6	1	1	0	1	35
FRAME	152	228	114	114	19	19	0	1	647
ROTOR	270	405	153	155	9	9	0	1	1002

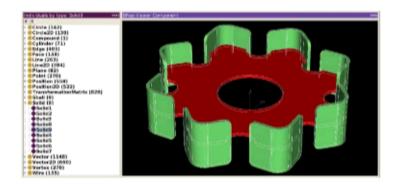
a	Vertex	bEdge	^c Face	^d Wire	eShell	f Solid	gCompSolid	hCompound

Num	Number of OWL axioms									
Ci	OP j	DP k	I^1	CA ^m	<i>OPA</i> ⁿ	DPA°	Total			
15	12	17	206	206	281	694	1431			
16	12	17	3915	3915	5358	13186	26419			
19	12	18	6068	6068	8342	22314	42841			

ⁱClass ^jObject property ^kData property ¹Individual ^mClass assertion

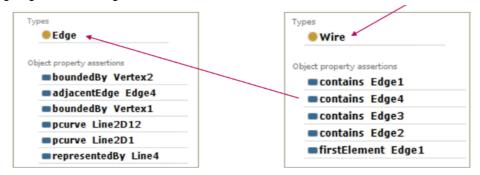
cube

frame



rotor

Example implementations have been presented on various occasions, focusing a lot on the intuitive interface for programming a robot:


An open source release is available in github (partial): https://github.com/ontobrep. This project includes an OWL ontology and a SWIG project for generating Java bindings for the OpenCascade library (C++).

ⁿObject property assertion ^oData property assertion

Questions:

Pieter: how is the order of elements handled?
 We indicate which is the first Edge 1, which in turns specifies the following edge. This keeps going, thus creating order.

- Giorgios: how are inner boundaries connected?
 It depends on the orientation of the wire (if CCW, it is considered as a whole).
- 3) Peter: how is the transformation from STEP handled? Are the geometric constraints exported to STEP?
 - No, only in Catia or SolidWorks. Could be done by writing a plugin for Catia / SolidWorks.
- 4) Michel: how would it relate to CSG geometries? Some shapes could be more efficiently represented with CSG instead of BREP?
 - An extension to CSG is envisaged, along with the mappings CSG->BREP and vice-versa.
- 5) Michel: could BREP on the fly be generated (like triang. from brep)? could be.
- 6) Michel: is it a generic BREP (how related to "ISO STEP Part 21's BREP and bSI IFC's BREP)? Based on OpenCascade

Github - https://github.com/ontobrep

2. Discussion about Community Group / Working Group at the W3C

W3C - consortium, so members decide together and develop standards (approved by members).

A community group doesn't require W3C membership, and gives quite some freedom. A working group, on the other hand, needs something that is scoped enough to become a candidate for standardisation. It has a different context: W3C membership is required, the scope has to be very strictly specified (with regard to certain patent policies). The deliverables need to be met, so the scope needs to be very realistic.

Ideas:

- Restrict our scope to 1 or 2 deliverables keep in mind efficiency
- 5% paid membership
- Groups with 10 active participants are ok
- Then create a WG think of finding support among other W3C members (20-25 W3C members have to express support for the WG to be created)

Interest Groups is more of a Steering Committee

- For geometries at the W3C, we should consider discussing with the Spatial Data on the Web Interest Group - https://w3c.github.io/sdw/jwoc/

Previous minutes

 $\frac{https://docs.google.com/document/d/1do2nyz1FcRaj-o0dQ1MbtMKIUGeXfbR \ PzhvtinyaO8/edit}{\#}$

Next Calls

Monday, 30th of October during bSI London, 5PM CET