Exploring the performance of machine learning models to predict carbon monoxide solubility in underground pure/saline water



## By Ali H Alibak

# Soran University (SUN)

Faculty of Engineering

لينكى تويزينهوه:

https://doi.org/10.1016/j.marpetgeo.2024.106742

eng.soran.edu.iq

#### **Abstract**

released carbon monoxide (CO) into the atmosphere is a threat to human life and environmental safety. CO storage in surface and underground seawater/water may be viewed as a potential scenario to decrease the concentration of this dangerous gas in the atmosphere. A reliable tool to calculate CO solubility in aqueous media is a prerequisite for accomplishing such a process. Since the least-squares support vector regression (LSVR), CatBoost, extreme gradient boosting, light gradient boosting, random forest, and extra tree regression can extract even the most complex relationships among a series of independent-dependent variables, they are also potential candidates for modeling CO solubility in pure and saline water as a function of temperature and salt concentration. The present work performs relevancy tests, model construction, the best model selection, accuracy assessment, and trend monitoring using 232 literature records of CO solubility in aquatic solutions containing different salt concentrations. Relevancy analysis by the multiple linear regression as well as Pearson's method approve that CO solubility in water decreases by increasing the temperature and salinity. Moreover, trial and error justified that the LSVR with the Gaussian kernel function has the highest accuracy among the six checked models to estimate CO solubility in aqueous solutions. The acceptable agreement between literature and calculated CO solubility in aquatic solutions is also approved by comprehensive numerical and graphical investigations. According to the results, the LSVR predictions for the CO-water and CO-brine equilibrium behavior correspond well with the literature records (mean square error =  $6.18 \times 10^{-8}$ , summation of absolute error = 0.02581 cm3 CO/mL H2O, correlation coefficient = 0.99844, and mean absolute percentage error = 0.48 %).

#### پوحت

CO

له گیراوه ئاوییهکان که چریی خویی جیاوازیان نیدایه. شیکاری پهیوهندیدار به پاشهکشهی هیّلی فرهیی و ههروهها شیّوازی پیرسوّن پهسهندی دهکهن که تواوهیی CO له ئاودا کهم دهبیّتهوه به زیادکردنی پلهی گهرمی و شووتی. سهره رای ئهوه، تاقیکردنهوه و همله پاساویان دا که LSVR به ئمرکی ناوکی گاوسی بهرزترین وردبینی له نیّوان شهش موّدیّلی پشکنینکراودا ههیه بوّ خهملاندنی تواوهیی CO که گیراوه ئاوییهکاندا به لیّکولیهکان. همروهها ریّککهوتنی قبولّکراو له نیّوان ئهدهبیات و تواوهیی COی حیسابکراو له گیراوه ئاوییهکاندا به لیّکولّینهوه ژمارهیی و گرافیکی گشتگیر پهسهند کراوه. به پیّی ئهنجامهکان، پیشبینیهکان LSVR بوّ ههلسوکهوتی هاوسمنگی CO-ئاو و CO-شوور به باشی لهگهل تومارهکانی ئهدهبیاتدا دهگونجیّت

#### الملخص

يشكل أول أكسيد الكربون المنبعث في الغلاف الجوي تهديدًا لحياة الإنسان والسلامة البيئية. ويمكن النظر إلى تخزين ثاني أكسيد الكربون في مياه/مياه البحر السطحية والجوفية على أنه سيناريو محتمل لتقليل تركيز هذا الغاز الخطير في الغلاف الجوي. تعد الأداة الموبعات الموبوقة لحساب قابلية ذوبان ثاني أكسيد الكربون في الوسائط المائية شرطًا أساسيًا لإنجاز مثل هذه العملية. نظرًا لأن المربعات الصغرى تدعم انحدار المتجهات (LSVR)، وCatBoost، وتعزيز التدرج الشديد، وتعزيز التدرج الخفيف، والغابة العشوائية، والانحدار الشجري الإضافي، يمكنها استخلاص حتى العلاقات الأكثر تعقيدًا بين سلسلة من المتغيرات المستقلة، فهي أيضًا مرشحة محتملة لنمذجة قابلية ذوبان ثاني أكسيد الكربون في الماء النقي والمالح كدالة لدرجة الحرارة وتركيز الملح. يُجري العمل الحالي اختبارات الملاءمة، وبناء النموذج، واختيار أفضل نموذج، وتقييم الدقة، ومراقبة الاتجاه باستخدام 232 سجلًا من الأدبيات الخاصة بقابلية ذوبان ثاني أكسيد الكربون في المحاليل المائية التي تحتوي على تركيزات ملح مختلفة. يؤكد تحليل الملاءمة من خلال الانحدار والملوحة. علاوة على ذلك، بررت التجربة والخطأ أن LSVR مع وظيفة Gaussian kernel يتمتع بأعلى دقة بين النماذج الستة ودبان ثاني أكسيد الكربون في المحاليل المائية من خلال التحقيقات العددية والرسومية الشاملة. وفقًا للنتائج، فإن تنبؤات الأدبيات (متوسط الخطأ المربع وذوبان ثاني أكسيد الكربون في المحاليل المائية من خلال التحقيقات العددية والرسومية الشاملة. وفقًا للنتائج، فإن تنبؤات الأحلة المطلقة عوان ثاني أكسيد الكربون في الماء والمحلول الملحي تتوافق جيدًا مع سجلات الأدبيات (متوسط الخطأ المربع الخطأ المطلقة علم الكربون في الماء والمحلول الملحي تتوافق جيدًا مع سجلات الأدبيات (متوسط الخطأ المربع الخطأ المطلقة المطلق = 0.002581 مع ولا كلام الماك، معامل الارتباط =9.98440.%).

### **About Soran University**

Soran University (SUN) is located in the city of Soran, which is about a two-hour drive north-east of <a href="Erbil">Erbil</a> (Arbil, Hewlér), the capital of the <a href="Kurdistan Region">Kurdistan Region</a> of Iraq (KRIQ). The city is flanked by the famous Korek, Zozik, Henderén, and Biradost mountains. The medieval mountain village of <a href="Rewandiz">Rewandiz</a> (Rawanduz, Jozik, Henderén, and Biradost mountains. The medieval mountain village of <a href="Rewandiz">Rewandiz</a> (Rawanduz, Jozik, Henderén, and Biradost mountains. The medieval mountain village of <a href="Rewandiz">Rewandiz</a> (Rawanduz, Jozik, Henderén, and Biradost mountains. The medieval mountain village of <a href="Rewandiz">Rewandiz</a> (Rawanduz, Jozik, Jozik,

## How to get here

Soran University (SUN) is located in the heart of the city of Soran. The main city campus is easily found on Google Maps for direction.