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1. Introduction (Alex) 
 
The GlueX Experiment in Hall D has been designed to search for quark-anti-quark states  or 
mesons in which the gluonic field binding the system contributes directly to the quantum numbers 
of the states. In order to do this very high statistics are needed leading to multi-petabyte sized 
data sets. In order to reliably extract physics from such data sets, the software and production of 
all data are managed centrally by the collaboration with the primary goal being to provide 
consistent reconstructed and simulated data in manageably sized data sets for physics analysis. 
Analyzers’ interaction with the large data sets and Monte Carlo generation are principally through 
web-based interfaces, ensuring that all compute-intense activities are set up and run in a 
consistent fashion, leaving very little chance for error. This document gives an overview of all the 
processes and procedures that are involved in this production, as well as ongoing efforts to 
improve procedures through the use of AI and machine learning. It also projects future computing 
needs. 
 

2. Hall D Online Skim System (Sergey) 
 
The first phase of GlueX was successfully completed in 2018 where more than 3.5 PB was 
acquired with DAQ system data rates of about 400 MB/s. For GlueX Phase II, the data rate more 
than doubled to approximately 1.25 GB/s. This stressed the original system developed under 
Phase I which consisted of a single output stream written to a large capacity RAID disk server. 
While technically within specs for the individual components, the DAQ system exhibited 
instabilities when pushed to these higher rates. This motivated changes to the system to ensure 
stable high-intensity running. Specifically the raw data files would need to be distributed among 
several RAID servers in order to reduce the average rate any one server needed to support. 
Another issue that came up while processing the Phase I data was the considerable effort 
required to extract special calibration events from the stored data files. Calibration events were 
typically made from special triggers for things like LED flashers used by the calorimeters. The 
calibration events were mixed into the single output stream and were rare (less than 1%) 
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compared to physics events. The DAQ system implementation for GlueX could not be easily 
changed to write separate output streams for these events directly. Thus they needed to be 
extracted from the full raw data set starting from tape producing skim files. An ability to generate 
these skim files in the counting house before the raw data ever made it to tape would save 
considerable time and effort. Implementation was done using a separate, new system, the Hall-D 
Online Skim System (HOSS). Because HOSS needed to transfer a copy of the entire 1.25 GB/s 
data stream to a small compute farm in the counting house, it also became a natural way to 
distribute the raw data files among several RAID server partitions, reducing the I/O requirements 
for each partition. This is illustrated in Fig. 1. 
 

 
Figure 1: Illustration of how HOSS is configured for GlueX Phase II high-intensity running. CODA 
is the DAQ system that is configured to write data to a RAM disk. HOSS watches specific 
directories for files without open file descriptors and then moves them through the system. 
 
The key orchestrator of HOSS is written in Python, but it relies on some key pieces of software to 
do the high-speed network transfers and CPU-intensive computations. RDMA is used over a 
40-56 Gbps infiniband network fabric in the counting house. Custom RDMA servers written in 
C++ for Hall D are run as system services on almost all of the nodes in the GlueX online cluster. 
A custom tool was also developed that skims just the header of the 40-event blocks produced by 
the data acquisition to check if any of the events in the block is a calibration trigger that must be 
written out to a skim file. This avoids having to do computationally expensive dis-entanglement 
on every 40-event block. This savings in compute load allows HOSS to consume the entire data 
stream with a modest complement of 6 older compute nodes (Intel circa 2013). While scanning 
the headers for event type information, HOSS also records statistics for each data file: counts of 
each type of trigger as well as starting and ending event numbers. This information is written into 
a database on a MySQL server. It can be accessed either programmatically or via the web[1]. 
More details of the HOSS system can be found in Ref. 2. 
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The planned increase in the luminosity of the GlueX experiment also leads to an increase in data 
flow. To prepare for the increase in data traffic, we have expanded our computer farm in Hall-D - 
from 500 cores  by another  1400 cores. 
 
New  GPU server (gluon201) for L3 trigger test, processing detector data 
 
Also, to keep the data  under control, the option of using a Level-3 trigger based on machine 
learning and neural networks is being considered. This will filter out the background and reduce 
the amount of data recorded. The data from the first level trigger will be sent to a heterogeneous 
system consisting of a computer farm, a GPU and an FPGA. Evaluation of an ML-FPGA based 
prototype for track reconstruction in FDC and calorimeter clusters has 5-10 μs latency. This 
should allow us to pre-process  data from Level 1 trigger  with rates up to 100 kHz.  
We can reduce the amount of data to tape , which will allow faster reprocessing/ reconstruction. 
Or we can lower the L1 trigger thresholds to have more physics. 
 
“Development of ML FPGA Filter for Particle Identification and Tracking in Real Time” 
￼IEEE Transactions on Nuclear Science, 2023 | Journal article 
DOI: 10.1109/TNS.2023.3259436 
 
“ML on FPGA for tracking and PID”  
Streaming readout Workshop SRO-XI 
https://indico.bnl.gov/event/20010/contributions/79168/attachments/51353/87814/MLFPGA_Stre
aming_XI_2023_12_03.pdf 

3. Calibration (Sean) 
 
Prompt and efficient data calibration and validation is crucial in reducing the time between 
collecting the data and its availability for physics analysis. There has been a continuous focus on 
improving the stability of the readout firmware and in improving and automating calibration 
procedures, which has dramatically decreased the required calibration time.  Generally, 
calibrations for well-understood experimental conditions, such as those for the nominal GlueX 
experiment and the PrimEx-η, are stable and allow for the reconstruction of important physics 
signals online or within hours of recording the data.  Procedures for new experiments, such as 
the Charged/Neutral Pion Polarizability experiment, can take longer to develop depending on the 
number of changes to the experimental setup. 
 
There have been several recent improvements in calibration procedures recently.  These include 
the full automation of the energy calibration procedures for both calorimeters, and recent 
developments in improved web-based data quality monitoring tools.  The AI-based control of the 
CDC reduced the processing time required for the calibration of that detector by roughly a factor 
4.  Additional processing has recently been added to the online computing farm in anticipation of 
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the 2024-25 GlueX-II/JEF run that is planned to be sufficient for the creation of all skims required 
for calibration work.  This will minimize our offline processing requirements while the experiment 
is operating, and will allow calibration processes that require these skims to run sooner.  Overall, 
we are making small and steady improvements in our procedures to promptly calibrate detectors 
and produce production-ready data for this next run, once the new FCAL insert is fully 
commissioned. 
 

4. Reconstruction (Igal) 
 
As is often the case, reconstruction of the raw data is by far the most compute intensive activity 
that we perform. For the past few years we have performed reconstruction not only on the JLab 
farm, but also at several High-Performance Computing (HPC) sites. Successful applications for 
allocations have been made to NERSC and the Pittsburgh Supercomputing Center.  Access to 
the Indiana University BigRed3 and BigRed200 supercomputers is a collaboration contribution 
and no application is needed.  Table 1 gives statistics for each of these facilities. 
 
At JLab the Scientific Computing group has developed a workflow manager SWIF that has been 
in operation for many years. It allows users to deal with job submission en masse, including 
efficient retrieval of input data from the Tape Library, with a built-in database keeping track of 
individual job progress. Processing campaigns or “launches” have used a set of by-now-legacy 
Python scripts to manage submissions to the SWIF2 system (both for “Reconstruction” and 
“Analysis” launches). 
 
For the HPC sites, job submission and management of input and output data is handled by a 
SWIF2 and Globus 
 

Run period Length of 
processing 

Fraction of 
events at each 
site 

CPU used at 
each site in 
millions of 
core-hours 

Number of jobs 

2017-01 1 Month JLab (100%) 6 42165 

2018-01 4 Months 
1 Month 

NERSC (81%) 
JLab (19%) 

20.4​
2.3 

77603 
16279 

2018-08 2 Months 
1 Month 
 
1 Month 

NERSC (52%) 
PSC (Bridges) 
(26%) 
JLab (22%) 

9.25 
0.81​
​
2.1 

24669 
6990 
 
13358 

2019-01 2 Weeks NERSC (100%) 0.12 1220 

4 



2019-11 4 Months 
2 Months 
2 Months 
4 Months 
4 Months 

NERSC 
PSC (Bridges) 
PSC (Bridges2) 
BigRed3  
JLab (57%) 

12.4 
2.33 
4.03 
3.56 
23.9 

45236 
17752 
19694 
16392 
119397 

2021-08 1 Month NERSC (100%) 0.15 13838 

2021-11 2 Months NERSC (49.5%) 
JLab (50.5%) 

0.32​
0.72 

28021 
28672 

2023-01 1 Month NERSC (100%) 0.04 7033 

 
Table 1: Reconstruction processing. 
 
 
 

5. Analysis (Alex) 
 
The full set of reconstructed data files (Reconstructed Event Summary Tape or REST files) is 
stored on tape and too large to be easily handled by individual analyzers. See Table 2. In order to 
reduce the size of the data sets accessed by analyzers, a central system was developed to 
process the REST data at JLab and extract reaction-specific ROOT trees. 
 

Run period # REST 
files 

Size REST 
files [TB] 

# Analysis 
Launches 

# Channels Σ Tree Size 
[TB] 

Spring 2017 42k 117 51 1955 700 

Spring 2018 84k 377 19 360 700 

Fall 2018 48k 217 17 399 500 

Spring 2020 210k 1,112 2 31  

 
Table 2: GlueX run periods and Analysis Launches 
 
Users can request ROOT trees for reactions of interest via a web interface, shown in Fig. 2. 
Periodically, the submitted reactions are collected into a configuration file, which controls a 
workflow that produces all of the trees, an “Analysis Launch.” For each reaction, the GlueX 
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analysis library inside the JANA framework creates possible particle combinations from the 
reconstructed particle tracks and showers saved in the REST files. Standard selection criteria are 
applied for exclusivity and particle identification before performing a kinematic fit, which imposes 
vertex and four-momentum constraints. Displaced vertices and inclusive reactions are also  
supported. Objects representing successful particle combinations (e.g. π0 → γγ) and other 
objects are managed in memory pools, and can be reused by different channels to reduce the 
overall memory footprint of the process. With this scheme, up to one hundred different reactions 
can be combined into one analysis launch, processing the reconstructed data on multiple cores 
in parallel without large memory overhead. 
 

 
 
Figure 2: Web Interface for Analysis Launches. 
 
If the kinematic fit converges for one combination of tracks and showers, the event is stored into 
a reaction-specific but generic ROOT tree. The size of the resulting ROOT trees strongly 
depends on the selected reaction. ROOT trees (about 200 per run) are merged into a single file 
whose size is suitable for copying a user’s home institution for a physics analysis. 
For a given run period, a new version of REST production or global changes to the selection 
criteria require that Analysis Launches be repeated for the new conditions. The total number of 
channels in Table 2 may therefore include multiple versions of the same reaction. 
 
With nominal availability of JLab farm nodes, a typical analysis launch can be completed in one 
to two weeks. The elapsed time is limited by the latency due to retrieval of the REST data from 
the Tape Library. In the future, staging of files on SSD or on a distributed file system will help 
throughput. 
 

6. Simulation (Peter) 
  
Simulations of the detector response are required in order to study the feasibility of 
measurements or apply corrections to data. The simulation of a typical reaction is split up into 
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independent steps. The general flow consists of (1) event generation, (2) detector simulation 
where interaction of produced particles with detector elements is simulated, (3) smearing or 
addition of detector resolution and efficiency, (4) reconstruction, and (5) data analysis. The latter 
two steps are performed with the same reconstruction and analysis code as that used on real 
data. 
 
 

6.1. Simulation Components 
 
Event generation. A variety of event generators have been developed for different needs.  
 

●​ bggen produces minimum-bias hadronic photoproduction events. It is based on a custom 
version of Pythia for high-energy photons and a compilation of known reactions for 
photon energies below 3 GeV. 

●​ genr8 produces events from a user-defined decay tree of hadronic resonances according 
to 2-body and 3-body phase space for a fixed photon beam energy. 

●​ gen_amp is a collection of reaction-specific t-channel photoproduction generators. 
Samples are weighted by a user-selected set of partial-wave amplitudes. 

●​ The photon beam source models the coherent bremsstrahlung process at the diamond 
radiator. 

●​ The beam conversion source models pair+triplet production in the polarimeter target. 
●​ The Bethe-Heitler source models e+e⁻ and μ+μ⁻ pair conversion in various types of GlueX 

targets. 
 
Detector Simulation. The original hdgeant simulation based on the CERNLIB GEANT3 library 
has been superseded by hdgeant4 based on the Geant4 toolkit. Both programs utilize the same 
abstract geometry description and magnetic field maps, can read events from the same 
generators, and produce output events in the same format. The ability to directly compare the 
outputs from the two simulations has been very helpful throughout the transition period. 
 
Smearing. The mcsmear program reads in lists of raw hits from hdgeant4, and applies a set of 
transformations to them, designed to imitate the detector response when passing particles 
deposit energy in sensitive elements. Run-dependent parameters describing the resolution 
functions and the efficiencies are stored in a database. Significant progress has been made in 
improving and calibrating these parameterizations over the past years. mcsmear also overlays 
accidental detector hits on top of the pattern of hits from hdgeant4. This is done by including hits 
from a set of random triggers obtained with each run. Simulated data is produced on a run-by-run 
basis so that the prevalence of accidental hits matches that of the real data. 
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6.2. Simulation with MCwrapper 

 
To help users perform these five steps in an efficient and accurate manner, the tool 
MCwrapper[4] was developed to manage the entire chain. It is controlled with a configuration file 
in which the user specifies software parameters such as package versions, or experimental 
parameters such as beam energy or polarization. MCwrapper can also query the run condition 
database to pull information that may vary on a run-by-run basis. MCwrapper can be invoked 
from the command line, but the recommended method is to use a web-based submission form. 
Fig. 3 shows a screenshot of the form. Here the user only has to choose default settings for a 
given beam time and provide a path to a configuration file used by the event generator.  This 
minimizes the room for errors even further. Alternatively, users can make choices from dropdown 
menus and configure a MCwrapper project that way. Projects submitted via the webform are first 
checked against a database to make users aware of other projects using the same 
configurations to avoid duplication of effort. Projects undergo automated small-scale testing and 
upon passing, jobs are submitted to the Open Science Grid (OSG). As of January 18, 2024, 77 
unique users have submitted 2,958 projects, which ran more than 5.1 million jobs and produced 
about 95 billion events. The total CPU time used for successful projects is about 24 million core 
hours. 
 

 
Figure 3: Screenshot of MCwrapper submission web interface. 
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7. Artificial Intelligence and Machine Learning (Naomi) 
 

Hall D, the JLab Data Science Department, the Artificial Intelligence for the Electron Ion Collider 
Group, and Universities (Indiana & Massachusets)  have pursued several projects in the area of 
artificial intelligence (AI) and machine learning (ML). 
 

7.1. Online systems 
 
RoboCDC (EPSCI + Naomi Jarvis, CMU) ​
RoboCDC paper https://10.1088/1742-6596/2438/1/012132 
AI/ML has been incorporated into detector control for the GlueX Central Drift Chamber (CDC), 
using a model trained using previous calibration data and environmental measurements from 
EPICS to predict the CDC gain at its traditional operating HV, and altering the HV autonomously 
at the start of each run to compensate for changes in the environment and thereby keep the 
detector gain constant. This system is known as RoboCDC and was developed during 
2021-2023; it is now in routine use. 
 
Hydra (EPSCI + GlueX collaboration) 
Hydra paper https://doi.org/10.1051/epjconf/202125104010 
 
The AI/ML software Hydra has been used in Hall D during data collection since 2019, using 
image classification models for data quality monitoring to alert the shift-takers promptly when a 
potential issue has been identified. Hydra is able to check the online monitoring data more 
efficiently than the shift-takers because it can inspect images many times faster, and can detect 
intermittent problems.  Hydra has also been deployed in Halls A, B and C more recently. 
 
On-board processing with FPGAs (Sergey + JLab EIC) 
FPGA ML paper: https://misportal.jlab.org/ul/publications/view_pub.cfm?pub_id=16832 
Work is ongoing using prototype EIC detectors to refine ML algorithms implemented on FPGA 
chips for particle identification and shower clustering, aiming to identify the useful detector hits  
and reduce the volume of data recorded.   
 
AI Optimized Polarization (EPSCI lead, JLab, W&M, CMU) 
Staff have been hired already, we are literally waiting for the funding.​
https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2875-NP-AI-ML-Awards-List.pdf 
The proposal: https://wiki.jlab.org/epsciwiki/images/4/45/FOA_002875_AIEC_v0.3.pdf 
A multi-institutional team led by the EPSCI group has been awarded DOE funding to develop 
AI/ML models and control software to optimize polarization of beams and targets used across the 
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experimental Halls. In Hall D, the software will adjust the position and orientation of the diamond 
radiator for optimal photon beam polarization. Work on this will start as soon as the funds have 
arrived.  

7.2. Offline systems 
 
FCAL shower classification 
FCAL Shower Classification ML paper: https://doi.org/10.1088/1748-0221/15/05/P05021 
A ML algorithm has been implemented in the GlueX reconstruction software to differentiate 
between low energy photons and split-offs occurring from hadronic interactions in the detector.  
 
Pion identification for CPP​
https://halldweb.jlab.org/DocDB/0060/006060/002/BetheHeitlerPhysics_AndrewSchick_GlueXCol
lab_May2023.pdf 
https://halldweb.jlab.org/DocDB/0060/006061/001/identifying_muon_pairs.pdf 
 
Analysis of data from Hall D’s charged pion polarizability (CPP) experiment requires the ability to 
separate pion tracks from Bethe-Heitler (BH) muon and electron/positron tracks.  Two ML neural 
nets (one for each charge state) have been developed and incorporated in the GlueX 
reconstruction software to separate pions from BH electrons/positrons, using data from FCAL 
and the FDC.  A third neural net is under development to separate pions from BH muons, using 
data from the MWPCs (multi-wire proportional counters), FDC and CTOF. 
 

7.5. Charged-pion polarizability experiment and Bethe-Heitler pair 
identification () 
The charged-pion polarizability experiment in Hall D is a precision measurement of low-energy 
QCD using pion pairs produced via the Primakoff effect. Making such a measurement relies on 
the ability to distinguish pions produced at threshold from Bethe-Heitler muon and electron pairs. 
Separating muons from pions is significantly more difficult than separating pions from electrons. 
The primary difficulty is that muon, like pions, generally do not produce electromagnetic showers 
forward calorimeter (FCAL). Construction of six multi-wire proportional chambers (MWPCs), to 
be deployed between several layers of steel absorbers, has been completed to assist in /  π µ
separation, and a neural net that combines information from the forward drift chambers, 
calorimeters, and the MWPCs is under development. 
 
The simpler problem of identifying Bethe-Heitler electron pairs has been studied with 
already-taken GlueX data. A multi-layer perceptron neural net was trained using ROOT’s TMVA 
package using three features from the forward calorimeter and drift chambers–the ratio of FCAL 
energy to charged track momentum, the E9E25 shower ratio (the ratio of energy deposited in a 
3x3 block grid to that for a 5x5 block grid), and the distance between the charged track projection 
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and the centroid of the calorimeter shower. The electrons were trained on simulated data and 

pions on real data from the  peak. Fig. 7 shows results from the study. ρ0

 
Figure 8: Left: input GlueX data containing both electrons and pions prior to classification. 
Right: the neural net applied to the input data twice, first selecting for pions (blue), then 
electrons (red). 

 
 
 
 
7.7. Physics-Informed Neural Network (Daniel/Igal) 
 
A model has been developed for Hall D physics analysis, specifically for experiments like 
PrimEx-eta and JEF. It includes a custom loss function and corresponding machinery, enabling a 
detailed study of the model and facilitating the determination of systematic errors associated with 
its usage.  
 

8. GPU resources for amplitude analysis (Alex) 
 
The final step in the GlueX analysis chain often involves a single analyst performing an amplitude 
analysis on a data set.  Amplitude analysis involves an unbinned multi-dimensional likelihood fit 
to the data set and has, for decades, been the standard technique for extracting resonance 
properties from data.  Very roughly the computing cost of a fit is given by the product of the 
number of events being fit and the complexity of the model.  The large GlueX data set and 
sophisticated phenomenological models developed by the Joint Physics Analysis Center (JPAC) 
drive both terms in this product.  The problem is ideal for parallel computing on GPUs, and the 
collaboration is currently using the AmpTools library, which initially supported NVIDIA 
GPU-accelerated fitting about ten years ago and has undergone many iterations of improvement 
and optimization in the past decade.  While AmpTools has methods to optimize memory use and 
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also distribute a single fit across multiple GPUs (even on different nodes via MPI), the limitation 
one often runs into is memory.  If all of the data needed to perform the unbinned fit can’t be 
loaded into GPU memory, then GPU acceleration is not a viable option.  The new NVIDIA A100 
and V100 GPUs, which are also effectively deployed for machine learning applications, provide 
up to an order of magnitude more memory than previous generations of GPU and are ideal for 
using computationally complex models to fit the large GlueX data sets. 
 
Our experience is that it is relatively easy for a single analyst to saturate the available GPU 
resources on the GPU enabled nodes on the JLab SciComp cluster (3 with TitanRTX cards and 3 
with Tesla T4 cards = 44 GPU cards in total).  For a typical analysis, a standard workflow 
requires multi-dimensional binning resulting in ~100 independent fits, each running for several 
hours on a single GPU to fit a given model.  With hundreds of possible models to fit and many 
analyses being performed in parallel the existing resources will soon be oversubscribed, given 
that their usage for machine learning applications are also growing rapidly.  In addition the cost of 
the high-memory GPUs that are ideal for amplitude analysis prohibits many institutions from 
making an investment in this hardware.  The collaboration would benefit from an enhanced pool 
of state-of-the-art high-memory NVIDIA GPUs that could be shared with other activities at the lab 
that can exploit this computing architecture. 
 

9. Reconstruction on the Open Science Grid (move to 4) 
A demonstration system has been developed, deployed and tested to do GlueX event 
reconstruction on the OSG. Each 20 GB raw data file is split into 60 to 70 small files and a single 
OSG reconstruction job is run against each one. This allows us to run single-threaded jobs taking 
2 to 3 hours, opening access to opportunistic resources. Results are copied back to a local host 
and merged to produce one output file per input raw data file. A PostgreSQL database is used to 
keep track of all the partial files. We hope to roll out the system, at scale, in the coming year. 
 

10. Areas for Improvement (All) 
There are several areas in which we would like to do better. 
 

●​ Data Catalog. Our workflows, in total, produce millions of files. We would benefit from a 
global data catalog not only to keep track of what files we have and where they are, but 
also what files that we expect to be produced have in fact been produced. Another 
desirable feature would be to validate files, according to some user-defined criteria, as 
they are produced and record results of the validation. Many of the workflow managers 
that we use have databases underpinning their work, but those are not instrumented for 
direct user access to facilitate custom queries and are generally aimed at tracking jobs 
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and not files. We are particularly interested in pursuing solutions that leverage work by 
other collaborations/labs and adapting them to our needs. 

●​ Work Flow Management. We need a mechanism to couple work flow management 
systems more tightly to any future data catalog. Lack of coupling defeats many of the 
advantages of a data catalog.  

●​ Continuous Integration (CI). We have a system for CI but the tests are limited in scope. 
●​ Comprehensive Testing. Global testing of reconstruction and simulation is done, but 

there is not a good way to track changes in performance over time. 
●​ Unit Testing. We do very little unit testing and have not developed a paradigm for 

implementation. 
●​ Documentation. We have recently focused some resources on this area. New 

collaborators have complained that documentation is hard to find and often out of date, 
among other age-old problems. We have recently formed a documentation task force to 
take a comprehensive look at how we can improve in this area. 

 

11. Conclusions 
 
It has been a busy period for GlueX since the last Computing Review three years ago. All stages 
of the scientific enterprise from data taking, through data analysis, and publication of results are 
now in full flight. Many lessons have been learned and areas of improvement have been 
identified. There are also many ideas for future developments, some of which have been 
pioneered by other experiments, others that are more speculative. All of these endeavors would 
benefit from more human resources deployed at the interface of physics data analysis and 
software engineering.  
 

12. Summary of Computing Requirements 
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