
📓 Homework 7

CS 60 HW 7

Homework 7: Inheritance in Java

In this assignment, we will practice working with and implementing inheritance hierarchies and

interfaces.

Details

You are welcome (and encouraged) to buddy or pair program for all parts of this assignment!

The can remind you of the differences. If you have not tried buddy CS 60 Fall 2025 Syllabus

or pair programming, give it a try! Feel free to use the “Search for Teammates” channel on

Piazza to identify potential programming buddies, or ask the teaching team to help you find a

partner during lab hours.

We are really excited to help people on Piazza - so please ask questions early and often! Some

more tips:

●​ Please use the #hw7 tag on Piazza.

●​ Your code will be graded anonymously. Please do not include your name

anywhere in your submission.

●​ If you choose to pair program, remember to add your partner to each

Gradescope submission.

— Your profs & your awesome CS60 Grutoring team!

Bonus!

This homework assignment is one of the best to review if/when you are practicing for job

interviews in software. Interviewers *love* to ask questions about linked lists. Fortunately, this

is not a job interview, so make sure to get help and work together (e.g. pair programming) as you

are learning this stuff!

Starter Code

Before starting, download the starter code for this homework. Visit the Homework Setup

guide for how to get the starter code setup in Racket or VS Code.

Navigation

This guide uses Document Tabs for navigation. You can find these tabs in the collapsible left

panel and linked below.

https://docs.google.com/document/d/11Lw5AJl-7DKrCkf4JYHVPg9j7qJAtXzIv8ft2VwId9c/edit?usp=sharing
https://drive.google.com/file/d/186psXiaM1r5LFmCUUdn2_rdCjQTF-kKt/view?usp=sharing
https://docs.google.com/document/d/1J0sOquU0voKXYEO2hKdK4PJpvEr_DhuKYFsUJ9HlrN4/edit?tab=t.7927uxhneyw9
https://support.google.com/docs/answer/15499791?hl=en&co=GENIE.Platform%3DDesktop

Problem Instructions

●​ Problem 1: Inheritance

●​ Problem 2: Refactor

Other Details

●​ Grading Rubric

1️⃣ Problem 1: Inheritance

CS 60 HW 7

Problem #7.1: Inheritance and Interfaces

The learning goal of this problem is: practice extending a class and implementing an interface.

Fun Facts: The guinea pigs and clarinets in the part of the assignment are inspired by Prof.

Wu, who originally wrote this assignment and who has three guinea pigs and plays the

clarinet.

Prerequisites

Java inheritance and interfaces

Starter Files

The starter files you will reference for this problem are:

●​ GuineaPig.java
●​ Instrument.java

These files are located in the src/main/java within the com.gradescope.hw7 package.

Tasks

The tasks for this problem are:

​ Submit GuineaPig.java, Clarinet.java, and Squeakable.java in Gradescope

HW #7.1 GuineaPig, Clarinet, and Squeakable (3 files).​

​ Submit GuineaPigTests.java and ClarinetTests.java in Gradescope HW #7.1

GuineaPigTests and ClarinetTests (2 files).

Make sure you are submitting the files in the correct assignment!

Instructions

Part A: Make GuineaPig comparable
Part B: Create Clarinet instrument
Part C: Create Squeakable interface
Part D: Implement Squeakable interface
Part E: Submit files on Gradescope

Java

Java

Part A: Make GuineaPig comparable

Update the GuineaPig class to implement the Comparable interface. Read the steps below for

details.

Step 1: Update class declaration

Update the class declaration of GuineaPig to implement the Comparable interface.

Specifically, change the original declaration from:

public class GuineaPig {

…to the new declaration:

public class GuineaPig implements Comparable<GuineaPig> {

As you do this, think back to using < > in our List class. What does the use of < > in

Comparable<GuineaPig> tell us about the Comparable interface?

Step 2: Add unimplemented method

The change you just made to class GuineaPig (adding implements
Comparable<GuineaPig>) is only a promise to implement the methods required by the

Comparable interface. Your code will not compile until you do implement those methods (thus

fulfilling that promise)!

Add the required method compareTo. It will take in an argument of type GuineaPig.

Pro Tip: Let VSCode help you! Look for the red squiggly that appears under GuineaPig. Mouse

over it and see the following message, telling you that you must implement compareTo.

Then, click on Quick Fix to get the following menu. Click on “Add unimplemented methods”:

Now, you should see a stub (note: this is not a completed function) for compareTo! Thanks

VSCode! Whether you do it yourself or let VSCode help, do not forget to add a doc comment!

Your doc comment should clarify how two guinea pigs are compared. This said, you

will probably have to read the logic below to properly specify how the comparison works...

Step 3: Write compareTo logic

Now, fill in the stub! The compareTo method should return:

●​ the value 0 if the argument guinea pig is “equal to” this guinea pig

●​ a value less than 0 if this guinea pig is “smaller than” the argument guinea pig

●​ a value greater than 0 if this guinea pig is “larger than” the argument guinea pig

For our purposes, we care only about the sign of the returned value (e.g. less than 0, exactly 0, or

greater than 0). We do not care about its magnitude.

How do we determine smaller / equal / larger?

●​ If two pigs have different ages, the pig with the younger age is “smaller”.

●​ If two pigs have the same age, the pig with the name that is alphabetically earlier is

“smaller”.

●​ If two pigs have the same age and name, they are “equal”.

Hint: You can (and should) use the String method compareTo(String anotherString)

to help out. Be careful to note that this method implements lexicographic order (where

upper-case characters are “less than” lower-case characters). The Integer class also has a

static compare method.

Step 4: Create GuineaPig test cases

Create the file GuineaPigTests.java in which you will write JUnit test cases. Your tests

should:

●​ Test the constructor(s) and all public methods in GuineaPig.java

○​ Be sure your tests for compareTo are thorough, i.e., they test each possible case​

●​ Test the static type Comparable<GuineaPig>.

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/String.html#compareTo(java.lang.String)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Integer.html#compare(int,int)

○​ Test that you can have references of static type Comparable<GuineaPig> that

refer to GuineaPig objects.​

○​ Test that we can compare such objects (static type Comparable) using

compareTo. Note that the argument for compareTo must have static type

GuineaPig. ​
​
(Concept Check: What part of the code makes it so that compareTo must take in

an object of static type GuineaPig?). Here, you need not test every path in

compareTo, just that compareTo can successfully be called.

Reference the Resources tab for instructions on creating a new CS 60 HW5 - OOP in Java

class file in VS Code.

Part B: Create Clarinet instrument

Create a new Clarinet class to inherit from the provided Instrument class. Read the steps

below for details.

Step 1: Create the class

Create the file Clarinet.java and write the class stub (remember that for a class stub, you

will declare the class with something like: public class … but the class will have nothing in

it yet).

Reference the Resources tab for instructions on creating a new CS 60 HW5 - OOP in Java

class file in VS Code.

Step 2: Add a constructor

Notice the error in the Clarinet class. When you mouse over the red squiggly, you’ll see this

error:

VSCode is telling us to define a constructor.

https://docs.google.com/document/d/1INnI44F4HY2DYc9fJt8ZJVarGlqMPipCjyfEZtIhKVQ/edit?tab=t.jabgwjad46g3
https://docs.google.com/document/d/1INnI44F4HY2DYc9fJt8ZJVarGlqMPipCjyfEZtIhKVQ/edit?tab=t.jabgwjad46g3

Java

Create a zero-parameter constructor for Clarinet. It should use the superclass constructor and

pass in "Bb" as the key. (That is, a new clarinet object has the key B-flat). Similar to Part A, you

can click “Quick Fix” to create the stub, but you’ll still need to edit the constructor to fit the

description.

Step 3: Create Clarinet test cases

Create the file ClarinetTests.java in which you will write JUnit test cases. Your tests

should:​

●​ Test all public methods in Clarinet.java, including inherited methods from

Instrument ​

●​ Test the static type Instrument with dynamic type Clarinet. That is, test that you can

have references of static type Instrument that refer to Clarinet objects.

Part C: Create Squeakable interface

Create a new Squeakable interface. Read the steps below for details.

Step 1: Create file and declaration

To create a new interface, the instructions are similar to creating a class. In VSCode, click "New

File" and enter the name, in this case Squeakable.java, and then in the file, choose

“interface” from the drop-down option list:

Alternatively, you can simply write the declaration the way you would with a class but replace

public class with public interface instead.

The interface should require this method:

public String squeak();

Java

Step 2: Add documentation

Be sure to add doc comments to the interface and to the method. The squeak() method returns

a string representation of the squeak.

Documenting an interface is essentially the same as documenting a class: We want to have a

Javadoc comment for every method in the interface. Additionally, we want to have a top-level

comment that describes the interface. As with classes, this Javadoc comment goes above the

interface declaration, like so:

/**
 * High-level description goes here
 *
 */
public interface Squeakable {
 ...

For a real-word example, you can check out the Comparable interface. But that is a

gold-standard level of documentation; you do not have to be as detailed.

Part D: Implement Squeakable interface

Update the class declaration of GuineaPig and Clarinet to implement the Squeakable

interface.

Step 1: Implement interface

If you have questions about how to implement an interface (or multiple interfaces), you might

refer back to the lecture slides or do a quick web search on “Java interface example”. Of course,

you are also encouraged to post to Piazza or ask course staff, but we want you to get used to

looking for information on the internet (and to practice identifying quality sources on the

internet).

Then, let VSCode help make method stubs again, and fill in the body of the methods squeak as

follows:

●​ When a guinea pig object squeaks, it returns:​
 "Squeak! (Feed me!)"​

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Comparable.html

●​ When a clarinet object squeaks, it returns:​
"Squeak! (Need more practice...)"

Be sure to add JavaDoc for the overridden methods that detail the message.

Step 2: Write Squeakable test cases

Add test cases to GuineaPigTests.java and ClarinetTests.java. Your tests should:

●​ Test the added Squeakable functionality with objects of static type GuineaPig and

Clarinet.​

●​ Test that you can have references of static type Squeakable that refer to GuineaPig

and Clarinet objects.​

●​ Test that references of static type Squeakable can be squeaked.

Part E: Submit files on Gradescope

There are two questions on Gradescope for this problem. The first asks for the GuineaPig,

Clarinet, and Squeakable files; the other asks for the GuineaPigTests and

ClarinetTests test files.

Double check you are not missing any files and everything compiles properly on

Gradescope!

2️⃣ Problem 2: Refactor

CS 60 HW 7

Problem #7.2: Refactor Repetitive Code Using Inheritance

The learning goal of this problem is: practice writing code that uses inheritance.

Prerequisites

Java inheritance

Starter Files

The starter files you will reference for this problem are:

●​ Table.java

●​ SnackTable.java

●​ HochTable.java

●​ SuperFriendlyHochTable.java

●​ TableTests.java

These files are located in the src/main/java within the com.gradescope.hw7 package.

Tasks

The tasks for this problem are:

​ Submit Table.java, SnackTable.java, HochTable.java, and

SuperFriendlyHochTable.java in Gradescope HW #7.2 Tables (4 files).

Make sure you are submitting the files in the correct assignment!

Instructions

Part A: Introduction
Part B: Plan Changes
Part C: Refactor Using Inheritance
Part D: Submit files on Gradescope

Part A: Introduction

The starter code for this problem showcases BAD DESIGN! That is because the classes are

closely related and contain duplicated code (both instance variables and methods) and do not

take advantage of code reuse via inheritance, which could be used to streamline their

functionality.

Your goal is to refactor this code to use inheritance. What is refactoring?

●​ Restructures existing code without changing its behavior

●​ Improves design, structure, and/or implementation while preserving functionality

How do we ensure that we are preserving functionality? Through an extensive test suite of

course! Luckily, we have provided such a suite in TableTests.java.

●​ Before diving into the implementation of each class, we recommend that you take a look

at the tests to try and understand the required functionality of each class.

Next, read through the starter files, and draw out a diagram showing the structure of each class.

If you want to do it the way the pros do it, you can check out Unified Modeling Language (UML):

For example, the class diagram above shows a BankAccount class (top) with two fields

(middle) and two methods (bottom). Notice how we specify types and parameter names. Though

it is not shown in the example, you can even specify visibility (private / protected /

public).

You will see many “bad code smells” (legit software term) as you progress in computer science.

One is duplicated code—yuck! In this part of the assignment, your task is to remove the

duplicated code/variables by moving them to one (or more) superclasses.

Things to think about as you carefully read through the starter files:

●​ Where will I put extends?

●​ Which instance variables are unnecessary/duplicated?

●​ Which methods are unnecessary/duplicated?

Part B: Plan Changes

Before changing any code, draw out a new diagram showing the different classes and their

relationships after refactoring. This will help you set up your super/subclass relationships and

move (or delete) the right code.

https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Code_smell

For example, if classes Tart and Pizza both inherit from superclass Pie, you might draw

something similar to what you see below.
1
 (Again, if you want to be fancy, UML has special

arrows for showing relationships between objects. You are welcome but not required to use

them.)

We recommend being explicit about whether fields and methods are private, protected, or

public. Our general rule so far is that classes and methods are public and fields are private

(though there are exceptions, e.g. private inner classes and helper functions). We have mostly

been ignoring protected so far, but inheritance provides a great opportunity to use this access

modifier! Check out Java’s handy table (source).

Remember: Do not change the tests! You should only need to make small

modifications to the starter code! The hardest part of this problem is thinking about how

best to set up hierarchical relationships so that your code is as “condensed” as possible. If you

are not sure, do ask for help before moving on.

1
 Image description: The diagram describes the classes, their fields and methods, and their inheritance

relationships. The diagram has one box for each of the three classes: Pie, Tart, and Pizza. Inside each

box is the name of the class. Arrows indicate that Tart and Pizza inherit from Pie. Associated with the

Pie class are two fields (numSlices of type int and diameterinCm of type float) and one method

(eatSlice, which takes no arguments and has return type void). Associated with the Tart class is one

method (addWhippedCream, which takes no arguments and has return type void). Associated with the

Pizza class is one field (isHotFromOven of type boolean) and one method (eatSlice, which should

call the super eatSlice, then turn the hotness boolean to false).

https://en.wikipedia.org/wiki/Class_diagram#Relationships
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Java

Note: You do not need to turn in your diagram. But we are confident that drawing out the

relationships between the classes will save you time in the next part!

Part C: Refactor Using Inheritance

Execute the plan you devised in Part B to rewrite the classes Table, SnackTable, HochTable,

and SuperFriendlyHochTable using inheritance. The classes should behave exactly as they

did in the starter version.

Hint: Refactor one thing, then test using TableTests.java. That way, you can see when

something breaks and fix it (or revert it) before moving on!

Unfortunately, there is not an automated way to make sure that you have (1) removed all

duplicate instance variables and (2) removed all duplicate code by calling parent methods. So

you will have to work carefully and double-check these yourself!

●​ Companies use code reviews to do this double-checking. Finding and automatically

removing code smells is also an active area of research!​

●​ If you have been clicking around VSCode, you might notice that VSCode has a “Refactor”

option when right-clicking within a file. We suggest not using it for this assignment —

using it without a deeper understanding of what it is doing will do more harm than good.

Hint: Commonly, you might want a child class’s method to (a) do what the parent’s version of

the method did, then (b) do something else specific to the child class. Remember that you can

always explicitly call the parent’s version of the method using the keyword super. To make that

more concrete, here is an example using Pie and Pizza from the diagram above:

Superclass (parent class):

class Pie {​
 int numSlices = 8;​
​
 public void eatSlice() {​
 this.numSlices--;​
 }​
}

Subclass (child class):

(calls the parent version, then does something more)

Java

class Pizza extends Pie {​
 boolean isHotFromOven;​
​
 public void eatSlice() {​
 super.eatSlice();​
 this.isHotFromOven = false;​
 }​
}

Part D: Submit files on Gradescope

Submit all of the table files on Gradescope (without the tests). This includes: Table.java,

SnackTable.java, HochTable.java, and SuperFriendlyHochTable.java. Do not

include TableTests.java in your submission!

Double check you are not missing any files and everything compiles properly on

Gradescope!

💯 Grading Rubric

CS 60 HW7

Assignment Rubric

We want to be as transparent as possible in our grading system. We’ll include a grading rubric

for each homework assignment:

Name Autograder Functionality Style Testing Total

1 GuineaPig, Clarinet, Squeakable 21 0 4 0 25

1 GuineaPigTest & ClarinetTest 0 0 3 17 20

2 Tables 10 20 5 0 35

 39.00% 25.00% 15.00% 21.00% 80

In addition to the list from previous assignments, we will check for the following elements of

bad style:

●​ Class Design

○​ Mark methods with @Override when (1) a class method overrides a superclass

method, (2) a class method implements an interface method, and (3) an interface

method respecifies a superinterface method.​

●​ Tests

○​ Put @Test on its own line before all test functions. Make sure to use import
org.junit.jupiter.api.Test; as the import (which uses JUnit 5).​

○​ It is generally better practice to test one functionality per test method! This

potentially means multiple tests for a single function. This approach isolates

exactly what functionality is failing without having to retest multiple times (and

helps prevent cases in which we fix one bug only to discover another).

	📓 Homework 7
	Homework 7: Inheritance in Java
	Details
	Starter Code
	Navigation
	Problem Instructions
	Other Details

	1️⃣ Problem 1: Inheritance
	Problem #7.1: Inheritance and Interfaces
	Prerequisites
	Starter Files
	Tasks
	Instructions
	Part A: Make GuineaPig comparable
	Step 1: Update class declaration
	Step 2: Add unimplemented method
	Step 3: Write compareTo logic
	Step 4: Create GuineaPig test cases

	Part B: Create Clarinet instrument
	Step 1: Create the class
	Step 2: Add a constructor
	Step 3: Create Clarinet test cases

	Part C: Create Squeakable interface
	Step 1: Create file and declaration
	Step 2: Add documentation

	Part D: Implement Squeakable interface
	Step 1: Implement interface
	Step 2: Write Squeakable test cases

	Part E: Submit files on Gradescope

	2️⃣ Problem 2: Refactor
	Problem #7.2: Refactor Repetitive Code Using Inheritance
	Prerequisites
	Starter Files
	Tasks
	Instructions
	Part A: Introduction
	Part B: Plan Changes
	Part C: Refactor Using Inheritance
	Part D: Submit files on Gradescope

	💯 Grading Rubric
	

	Assignment Rubric

